Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45820
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱有田,姜延年
dc.contributor.authorYu-Chun Huangen
dc.contributor.author黃育鈞zh_TW
dc.date.accessioned2021-06-15T04:46:44Z-
dc.date.available2011-10-13
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-08-18
dc.identifier.citationAhren, K. and D. Jacobsohn. 1956. Mammary gland growth in hypophysectomized rats injected with ovarian hormones and insulin. Acta Physiol. Scand. 37:190–201.
Burnol, A. F., M. Loizeau, and J. Girard. 1990. Insulin receptor activity and insulin sensitivity in mammary gland of lactating rats. Am. J. Physiol. 259:E828–E834.
Carrascosa, J. M., P. Ramos, J. C. Molero, and E. Herrera. 1998. Changes in the kinase activity of the insulin receptor account for an increased insulin sensitivity of mammary gland in late pregnancy. Endocrinology 139: 520–526.
Couet, J., M. M. Belanger, E. Roussel, and M. C. Drolet. 2001. Cell biology of caveolae and caveolin. Advanced Drug Delivery Reviews 49: 223–235.
Darsari, A., J. N. Bartholomew, D. Volonte, and F. Galbiati. 2006. Oxidative stress induces premature senescence by stimulating caveolin-1 gene transcription through p38 mitogen-activated protein kinase/Sp1-mediated activation of two GC-rich promoter elements. Cancer Res. 66:10905–10814.
Elias, J. J. 1959. Effect of insulin and cortisol on organ cultures of adult mouse mammary gland. Proc. Soc. Exp. Biol. Med. 101:500–502
Engelman, J. A., C. C. Wycoff, S. Yasuhara, K. S. Song, T. Okamoto, and M. P. Lisanti. 1997. Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. J. Biol. Chem. 272:16374–16381.
Engelman, J. A., X. L. Zhang, and M. P. Lisanti. 1999. Sequence and detailed organization of the human caveolin-1 and -2 genes located near the D7S522 locus (7q31.1). Methylation of a CpG island in the 59 promoter region of the caveolin-1 gene in human breast cancer cell lines. FEBS Lett. 448.
Glenney, J. R. and D. Soppet. 1992. Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proc. Natl. Acad. Sci. USA. 89:10517–10521.
Hennighausen, L. and G. Robinson. 2005. Information networks in the mammary gland. Nat. Rev. Mol. Cell. Biol. 6:715–725.
Heuvel, A. P., A. Schulze, and B. M. Burgering. 2005. Direct control of caveolin-1 expression by FOXO transcription factors. Biochem. J. 385:795–802.
Kathuria, H., Y. Cao, M. I. Ramirez, and M. C. Williams. 2004. Transcription of the caveolin-1 gene is differentially regulated in lung type I epithelial and endothelial cell lines. J. Biol. Chem. 279:30028–30036.
Kogo, H. and T. Fujimoto. 2000. Caveolin-1 isoforms are encoded by distinct mRNAs. Identification of mouse caveolin-1 mRNA variants caused by alternative transcription initiation and splicing. FEBS. Lett. 465:119–123.
Kulski, J. K., K. R. Nicholas, Y. J. Topper, and P. Qasba. 1983. Essentiality of insulin and prolactin for accumulation of rat casein mRNAs. Biochem. Biophys. Res. Commun. 116:994–999.
Lau, C., M. K. Sullivan, and R. L. Hazelwood. 1993. Effects of diabetes mellitus on lactation in the rat. Proc. Soc. Exp. Biol. Med. 204:81–89.
Lee, S. W., C. L. Reimer, P. Oh, I. D. B. Campbel, J. E. Schnitzer. 1998. Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 16:1391–1397.
Lemay, D. G., M. C. Neville, M. C. Rudolph, K. S. Pollard, and J. B. German. 2007. Gene regulatory networks in lactation: identification of global principles using bioinformatics. BMC. Syst. Biol. 1:56–80.
Li, S., T. Okamoto, M. Chun, M. Sargiacomo, J. E. Casanova, S. H. Hansen, I. Nishimoto, and M. P. Lisanti. 1995. Evidence for a regulated interaction between hetero-trimeric G proteins and caveolin. J. Biol. Chem. 270:15693–15701.
Lindeman, G. J., S. Wittlin, H. Lada, M. J. Naylor, M. Santamaria, J. G. Zhang, R. Starr, D. J. Hilton, W. S. Alexander, C. J. Ormandy, and J. Visvader. 2001. SOCS1 deficiency results in accelerated mammary gland development and rescues lactation in prolactin receptor-deficient mice. Genes Dev. 15:1631–1636.
Lockwood, D. H., A. E. Voytovich, F. E. Stockdale, and Y. J. Topper. 1967. Insulin-dependent DNA polymerase and DNA synthesis in mammary epithelial cells in vitro. Proc. Natl. Acad. Sci. USA 58:658–664.
Park, D. S., H. Lee, C. Riedel, J. Hulit, P. E. Scherer, R. G. Pestell, and M. P. Lisanti. 2001. Prolactin negatively regulates caveolin-1 gene expression in the mammary gland during lactation, via a Ras-dependent mechanism. J. Biol. Chem. 276:48389–48397.
Park, D. S., H. Lee, P. G. Frank, B. Ranazi, A. V. Nguyen, A. F. Parlow, R. G. Russel, J. Hulit, R. G. Pestell, and M. P. Lisanti. 2002. Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signaling cascade. Mol. Biol. Cell 13:3416–3430.
Parton, R. G. and K. Simons. 2007. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 8:185–194.
River, E. and H. A. Bern. 1961. Influence of insulin on maintenance and secretory stimulation of mouse mammary tissues in organ-culture. Endocrinology 69:340–353.
Saltiel, A.R. 2001. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 104:517–529.
Saltiel, A.R. and J. E. Pessin. 2002. Insulin signaling pathways in time and space. Cell biology. 12:65–71.
Scherer, P. E., Z. Tang, M. Chun, M. Sargiacomo, H. F. Lodish, and M. P. Lisanti. 1995. Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. Identification and epitope mapping of an isoform-specific monoclonal antibody probe. J. Biol. Chem. 270:16395–16401.
Scherer, P. E., R. Y. Lewis, D. Volonte, J. A. Engelman, F. Galbiati, J. Couet, D. S. Kohtz, E. van Donselaar, P. Peters, and M. P. Lisanti. 1997. Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J. Biol. Chem. 272:29337–29346.
Schwertfeger, K. L., M. M. Richert, and S. M. Anderson. 2001. Mammary gland involution is delayed by activated Akt in transgenic mice. Mol. Endocrinol. 15:867-881.
Schwertfeger, K. L., J. L. McManaman, C. A. Palmer, M. C. Neville, and S. M. Anderson. 2003. Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J. Lipid Res. 44:1100-1112.
Shaul, P. W., E. J. Smart, L. J. Robinson, Z. German, I. S. Yuhanna, Y. Ying, R. G. W. Anderson, and T. Michel. 1996. Acylation targets endothelial nitric-oxide synthase to plasmalemmal caveolae. J. Biol. Chem. 271:6518–6522.
Sloan, K. A., H. A. Marquez, J. Li, Y. Cao, A. Hinds, C. J. O’Hara, S. Kathuria, M. I. Ramirez, M. C. Williams, and H. Kathuria. 2009. Increased PEA3/E1AF and decreased Net/Elk-3, both ETS proteins, characterize human NSCLC progression and regulate caveolin-1 transcription in Calu-1 and NCI-H23 NSCLC cell lines. Carcinogenesis 30:1433–1442.
Smart, E. J., G. A. Graf, M. A. McNiven, W. C. Sessa, J. A. Engelman, P. E. Scherer, T. Okamoto, and M. P. Lisanti. 1999. Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell Biol. 19:7289–7304. Review.
Song, K. S., P. E. Scherer, Z. Tang, T. Okamoto, S. Li, M. Chafel, C. Chu, D. S. Kohtz, and M. P. Lisanti. 1996. Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J. Biol. Chem. 271:15160–15165.
Streuli, C. H. 1993. Extracellular matrix and gene expression in mammary epithelium.
Semin. Cell. Biol. 4:203–12.
Volonte, D., K. Zhang, M. P. Lisanti, and F. Galbiati. 2002. Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts. Mol. Biol. Cell 13:2502–2517.
Zucchi, I., L. Bini, D. Albani, R. Valaperta, S. Liberatori, R. Raggiaschi, C. Montagna, L. Susani, O. Barbieri, V. Pallini, P. Vezzoni, and R. Dulbecco. 2002. Dome formation in cell cultures as expression of an early stage of lactogenic differentiation of the mammary gland. Proc. Natl. Acad. Sci. U.S.A. 99: 8660–5
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45820-
dc.description.abstractCaveolin-1 (Cav-1) 是 caveolae 細胞膜構造中主要的膜蛋白。Cav-1 蛋白質具有多種功能,參與膽固醇的結合與運輸、抑制訊息傳遞以及減緩細胞不正常轉型或癌化現象。小鼠於懷孕末期至泌乳時期,發現 Cav-1 在乳腺中的表現受到明顯抑制;除此之外,於 Cav-1 基因剔除小鼠中發現其乳腺有提早發育及提早泌乳的現象。齧齒類動物自懷孕末期開始,乳腺細胞會藉由提高胰島素受體的磷酸酶活性而增加對胰島素的敏感度。胰島素為一種泌乳內泌素,於哺乳動物的泌乳時期中扮演一重要角色,主要經由活化 PI3-kinase/Akt 訊息傳遞路徑進而調控乳腺細胞功能。胰島素被認為具有維持乳腺上皮細胞存活的能力。先前研究指出,在小鼠肌纖維母細胞 C2C12 及能夠穩定表現人類胰島素受體的 NIH 3T3 細胞中,胰島素能夠抑制 Cav-1 RNA 及蛋白質的表現量。若抑制細胞中 PI3-kinase/Akt 訊息傳遞路徑則使 Cav-1 表現量上升。然而在乳腺上皮細胞中,對於胰島素調控 Cav-1 表現的分子機制仍存在著許多未知。
目前山羊 Cav-1 啟動子的核苷酸序列尚未被發表,因此根據綿羊 Cav-1 啟動子包含部分 5’-UTR (2497 bp) 去設計引子,再透過 nested-PCR 以選殖出山羊 Cav-1 啟動子之序列 (Cav-1 F2R3, 2793 bp)。比較山羊與人類以及山羊與小鼠 Cav-1 基因序列 (自起始密碼至上游 975 個核苷酸序列,Cav-1 FR4),發現相似度分別是 74.2% 及 64.3%。更進一步對山羊 Cav-1 進行分析,透過 5’-RACE 試驗,經序列比對分析後推測,山羊 Cav-1 mRNA 於 5’ 端含有 61 bp 之 5’-UTR。為了觀察胰島素於乳腺上皮細胞中是否具有調控 Cav-1 基因轉錄活性之能力,而構築不同長度的Cav-1啟動子片段 (Cav-1 F2R3 及 Cav-1 FR4) 於帶有螢火蟲冷光素酶報導基因的質體中,接著利用 Dual-Glo Luciferase 系統檢測 Cav-1 啟動子在不朽化山羊乳腺上皮細胞株 (CMEC) 中之活性。將帶有 Cav-1 啟動子之質體與 pGL4.83 TK 共同轉染入 CMEC 中,並於胰島素 (5.0 μg/ml) 處理細胞 24 小時後偵測其冷光之活性。結果顯示,Cav-1 F2R3 啟動子的活性從對照組的 16.62 下降至 10.04 (F Luc/R Luc ratio, p<0.05),而 Cav-1 FR4 啟動子的活性也呈現出相似的結果,從 5.40 下降至 3.47 (F Luc/R Luc ratio, p<0.05)。為了探討胰島素抑制山羊 Cav-1 啟動子的活性是否經由 PI3-K/Akt 訊息傳導路徑所影響,於是將 Cav-1 FR4啟動子及穩定維持活化態的 Akt 共同轉染入 CMEC 之中,經 24 小時之後發現啟動子的活性明顯下降。反觀蛋白質層面,CMEC 受到胰島素 (5.0 μg/mL) 處理經 24 及 48 小時之後,內源性的 Cav-1 蛋白質表現量下降,若改以 PI3-K 訊息路徑抑制劑 LY294002 進行處理,則 Cav-1 蛋白質的表現量降低的情形則受到抑制。
綜上所述,本研究成功選殖山羊 Cav-1 啟動子,並推測轉錄起始點位於轉譯起始點上游第 61 個核苷酸序列中。胰島素可經由 PI3-K/Akt 訊息傳遞路徑以抑制 Cav-1 啟動子活性與蛋白質的表現。未來研究可朝向分析山羊 Cav-1 啟動子上受到胰島素調控的序列 (insulin response elements),以及找出胰島素訊息傳遞路徑中,其下游具有調控 Cav-1 啟動子活性之轉錄因子。
zh_TW
dc.description.abstractCaveolin-1 (Cav-1) is a major integral membrane protein in caveolae of cell membrane. Cav-1 possesses versatile functions, such as cholesterol binding and transport, inhibition of signaling molecules, and suppression of oncogenic transformation. In mouse mammary glands, Cav-1 expression is dramatically down-regulated during late pregnancy and lactation. In addition, Cav-1 null mice showed accelerated mammary gland development and premature lactation during pregnancy. In preparation for lactation, the development of rodent mammary gland increases insulin sensitivity during late pregnancy due to an augmented kinase activity of the insulin receptor. Insulin is an essential lactogenic hormone, plays a central role during lactation via activation the PI3-kinase/Akt pathway. Insulin was also assumed to perform a role of maintenance of mammary epithelial cell survival. In previous study, the RNA and protein levels of Cav-1 were down-regulated by treatment with insulin and were increased by treatment with LY294002 in C2C12 mouse myoblasts and NIH 3T3 that were stably expressing the human insulin receptor. The molecular mechanism of regulating Cav-1 expression by insulin in mammary gland remains largely unknown.
Because the caprine Cav-1 promoter sequence is unpublished, the Nested-PCR primers were designed to obtain the sequence based on ovis Cav-1 promoter and its partial 5’-UTR (2497 bp). The caprine Cav-1 promoter F2R3 (2739 bp) included partial 5’-UTR was cloned. To compare 975 bases of the upstream regulatory region of the Cav-1 promoters (Cav-1 promoter FR4) between caprine versus human and mouse, the sequence similarity is 74.2% and 64.3%, respectively. Furthermore, to analyze the correct transcription start site of caprine Cav-1 gene, the rapid amplification of cDNA ends (5’-RACE) has been done. As 5’-RACE products, by the sequence analysis, products containing 61 bp of 5’-UTR were obtained from caprine Cav-1 mRNA. In order to confirm whether the insulin regulated the activity of Cav-1 gene, the plasmids possessed caprine Cav-1 promoter with different lengths (Cav-1 F2R3 and Cav-1 FR4) drove firefly luciferase reporter gene were constructed, and the promoters activity were examined in immortalized caprine mammary epithelial cells (CMEC) by Dual-Glo Luciferase system. The Cav-1 promoter constructs and pGL4.83-TK were transiently co-transfected into CMECs. Cells were treated with insulin (5 μg/mL) for 24 hours after transfected, luciferase activity was measured. The results have shown that Cav-1 promoter F2R3 activity was decreased from 16.62 to 10.04 ( F Luc/R Luc ratio, p<0.05), and Cav-1 promoter FR4 activity has the similar result from 5.40 to 3.47 (F Luc/R Luc ratio, p<0.05). To investigate whether caprine Cav-1 promoter activity could be regulated by insulin through PI3-K/Akt pathway, CMECs were co-transfected Cav-1 promoter FR4 and constitutively active form of Akt for 24 hours, the promoter activity was remarkable decreased. In protein level, after treatment with insulin (5 μg/mL) for 24 and 48 hours, the endogenous Cav-1 expression was down-regulated, but increased when blocked the PI3-K/Akt pathway by PI3-kinase inhibitor, LY294002.
Taken together, this study succeeded in cloning caprine Cav-1 promoter and indicated that transcription start site contained 61 bp of upstream sequence from start codon. Insulin signaling decreases of Cav-1 promoter activity and protein expression partially via PI3-K/Akt pathway. Therefore, the future work will focus on analyzing the insulin response elements in caprine Cav-1 promoter, and investigating the current transcription factor regulating the promoter activity.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:46:44Z (GMT). No. of bitstreams: 1
ntu-100-R98626017-1.pdf: 2554920 bytes, checksum: 5250ae4b8d4e41c342a2821e1cb79ba1 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents圖次 IV
表次 V
壹、前言 1
貳、中文摘要 2
參、英文摘要 4
肆、文獻檢討 6
一、乳腺發育與分化: 6
1. 乳腺生理構造 6
2. 乳腺發育與分化 6
二、Caveolin-1 的發現及功能 7
三、影響 caveolin-1 基因轉錄的調控機制 8
1. 氧化壓力刺激 caveolin-1 啟動子活性 8
2. ETS 蛋白質家族對 Cav-1 啟動子之調控 9
3. FOXO 轉錄因子對 Cav-1 表現之影響 9
四、Caveolin-1 對乳腺上皮細胞之影響 10
五、胰島素 (insulin) 11
1. 概述 11
2. 胰島素受體於泌乳時期活性的改變 11
3. 胰島素於乳腺上皮細胞啟動之訊息傳遞 12
4. 胰島素於乳腺發育扮演之角色 13
伍、材料與方法 14
一、自細胞萃取 total RNA 14
二、5’-RACE (Rapid Amplification of cDNA Ends) 14
1. cDNA 之合成 14
2. 5’-RACE (Rapid Amplification of cDNA Ends) 15
三、山羊血液萃取genomic DNA 16
四、聚合酶連鎖反應 (PCR) 16
五、巢式聚合酶連鎖反應 (nested polymerase chain reaction, nested PCR) 17
六、質體pGEM-T easy caprine Cav-1 promoter 之構築: 18
七、小量質體 DNA 萃取 19
八、質體 pGL4.18 caprine Cav-1 promoter 之構築 20
九、中量質體 DNA 萃取 21
十、細胞活化 22
十一、細胞培養 22
十二、細胞繼代 23
十三、細胞轉染 23
十四、胰島素 (insulin) 抑制 caprine Cav-1 promoter 之活性 24
十五、雙重冷光酶分析系統 24
十六、細胞蛋白質萃取 24
十七、蛋白質定量 25
十八、西方墨點法 (Western blotting): 25
陸、結果 27
一、選殖山羊 caveolin-1 (Cav-1) 啟動子 27
二、山羊 caveolin-1 啟動子序列之比對 28
三、山羊 caveolin-1 啟動子之轉錄起始點位於起始密碼上游第 61 個鹼基對中 29
四、胰島素於山羊乳腺上皮細胞中負調控 caveolin-1 啟動子之活性 30
五、表現外源性磷酸化 Akt 負調控山羊 caveolin-1 啟動子活性 31
六、胰島素經由 PI3-K/Akt 抑制內源性 Caveoilin-1 蛋白質表現 32
柒、討論 34
一、選殖山羊 caveolin-1 啟動子與轉錄起始點之分析 34
二、CMEC 處理胰島素負調控 caveolin-1 啟動子之活性 35
三、表現不同形式之外源性 Akt 對 Cav-1 啟動子之影響 35
四、胰島素經由 PI3-K/Akt 抑制內源性 Cav-1 蛋白質表現 36
捌、結論 55
玖、參考文獻 56
附錄 62
附錄 1. 小鼠乳腺於發身、懷孕以及泌乳時期之發育 62
附錄 2. Caveolae 與 caveolins 63
附錄 3. 胰島素受體與受質 64
附錄 4. 第一股 cDNA 之合成及 5’-RACE 試驗流程 65
dc.language.isozh-TW
dc.title山羊 caveolin-1 啟動子活性及其於山羊乳腺上皮細胞中受胰島素調控之探討zh_TW
dc.titleThe study of caprine caveolin-1 promoter activity and the regulation by insulin in caprine mammary epithelial cellen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林志生,楊瀅臻
dc.subject.keyword乳腺上皮細胞,caveolin-1 啟動子,胰島素,zh_TW
dc.subject.keywordmammary epithelial cell,caveolin-1,insulin,en
dc.relation.page65
dc.rights.note有償授權
dc.date.accepted2011-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
2.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved