請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45781
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 朱時宜(Shih-I Chu) | |
dc.contributor.author | Jhih-An You | en |
dc.contributor.author | 游至安 | zh_TW |
dc.date.accessioned | 2021-06-15T04:46:02Z | - |
dc.date.available | 2011-08-06 | |
dc.date.copyright | 2010-08-06 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-05 | |
dc.identifier.citation | [1] G. Petite P. Agostini, F. Fabre and N. K. Rahman. Atomic physics with super-high
intensity lasers. Rep. Prog. Phys., 60:389, 1997. [2] A. Einstein. On the quantum theory of radiation. Phys. ZS., 18:121, 1917. [3] T. H. Maiman. Optical and microwave-optical experiments in ruby. Phys. Rev. Lett., 4:564, 1960. [4] T. H. Maiman. Stimulated optical radiation in ruby. Nature, 187:493, 1960. [5] M. R. Andrews N. J. van Druten D. S. Durfee D. M. Kurn K. B. Davis, M. O. Mewes and W. Ketterle. Observation of bose-einstein condensation in a dilute atomic vapor. Science, 269:198, 1995. [6] M. R. Andrews N. J. van Druten D. S. Durfee D. M. Kurn K. B. Davis, M. O. Mewes and W. Ketterle. Bose-einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75:3969, 1995. [7] G. Petite P. Agostini, F. Fabre and N. K. Rahman. Free-free transitions following six-photon ionization of xenon atoms. Phys. Rev. Lett., 42:1127, 1979. [8] H. Walther P. Villoresi M. Nisoli S. Stagira E. Priori G. G. Paulus, F. Grasbon and S. De Silvestri. Absolute-phase phenomena in photoionization with few-cycle laser pulses. Nature, 414:182, 2001. [9] N.B. Delone G.S. Voronov, G.A. Delone and O.V. Kudrevatova. Multiphoton ionization of the hydrogen molecule in the strong electric field of ruby laser emission. JETP Lett, 2:237, 1965. [10] J.-F.; Mainfray G.; Manus C.; Morellec J. Agostini, P.; Bonnal. Multi-photon ionization of gases and metallic vapors. IEEE J. Quantum Electronics, 4:390, 1968. [11] G. Petite P. Agostini, F. Fabre and N. K. Rahman. Multiphoton above-threshold ionisation of xenon at 0.53 and 1.06μm. J. Phys. B: At. Mol. Phys., 15:1353, 1982. [12] M. Bashkansky P. H. Bucksbaum, R. R. Freeman and T. J. McIlrath. Role of the ponderomotive potential in above-threshold ionization. J. Opt. Soc. Am. B, 4:760, 1987. [13] H. G. Muller P. Kruit, J. Kimman and M. J. van der Wiel. Electron spectra from multiphoton ionization of xenon at 1064, 532, and 355 nm. Phys. Rev. A, 28:248, 1983. [14] G. Mainfray L. A. Lompre, A. L’Huillier and C. Manus. Laser-intensity effects in the energy distributions of electrons produced in multiphoton ionization of rare gases. J. Opt. Soc. Am. B, 2:1906, 1985. [15] S L Chint W Xiongt, F Yergeaut and P Lavigne. Multiphoton ionisation of rare gases by a co, laser: electron spectroscopy. J. Phys. B: At. Mol. Opt. Phys., 21:L159, 1988. [16] H. Milchberg S. Darack D. Schumacher R. R. Freeman, P. H. Bucksbaum and M. E. Geusic. Above-threshold ionization with subpicosecond laser pulses. Phys. Rev. Lett., 59:1092, 1987. [17] A. LHuillier H. G. Muller P. Agostini, P. Breger and G. Petite. Giant stark shifts in multiphoton ionization. Phys. Rev. Lett., 63:2208, 1989. [18] M. Brickwedde D. Feldmann H. Rottke, B. Wolff and K. H. Welge. Multiphoton ionization of atomic hydrogen in intense subpicosecond laser pulses. Phys. Rev. Lett., 64:404, 1990. [19] L.F. Dimauro and P. Agostini. Ionization dynamics in strong laser fields. Adv. At. Mol. Opt. Phys., 35:79, 1995. [20] L. F. DiMauro P. Agostini K. J. Schafer B. Walker, B. Sheehy and K. C. Kulander. Precision measurement of strong field double ionization of helium. Phys. Rev. Lett., 73:1227, 1994. [21] Huale Xu P. Lambropoulos G. G. Paulus, W. Nicklich and H. Walther. Plateau in above threshold ionization spectra. Phys. Rev. Lett., 72:2851, 1994. [22] K.C. Kulander B. Walker, B. Sheehy and L.F. DiMauro. Elastic rescattering in the strong field tunneling limit. Phys. Rev. Lett., 77:5031, 1996. [23] B. Walker K. C. Kulander P. Agostini Baorui Yang, K. J. Schafer and L. F. Di- Mauro. Intensity-dependent scattering rings in high order above-threshold ionization. Phys. Rev. Lett., 71:3770, 1993. [24] W. Nicklich G. G. Paulus and H. Walther. Investigation of above-threshold ionization with femtosecond pulses: Connection between plateau and angular distribution of the photoelectrons. Europhys. Lett., 27:267, 1994. [25] H.Walther A. Baltuska E. Goulielmakis M. Lezius G.G. Paulus, F. Lindner and F. Krausz. Measurement of the phase of few-cycle laser pulse. Phys. Rev. Lett., 91:253004, 2003. [26] H. Walther A. Baltuska E. Goulielmakis F. Krausz D. B. Milosevic D. Bauer W. Becker F. Lindner, M. G. Schatzel and G. G. Paulus. Attosecond double-slit experiment. Phys. Rev. Lett., 95:040401, 2005. [27] W. Helml M. G. Schatzel X. Gu A. Cavalieri G. G. Paulus T. Wittmann, B. Horvath and R. Kienberger. Single-shot carriervenvelope phase measurement of fewcycle laser pulses. Nature Physics, 5:357, 2009. [28] C. W. Peters P. A. Franken, A. E. Hill and G. Weinreich. Generation of optical harmonics. Phys. Rev. Lett., 7:118, 1961. [29] G. H. C. New and J. F. Ward. Optical third-harmonic generation in gases. Phys. Rev. Lett., 19:556, 1961. [30] X F Li L A Lompre G Mainfray M Ferray, A L’Huillier and C Manus. Multipleharmonic conversion of 1064 nm radiation in rare gases. J. Phys. B: At. Mol. Opt. Phys., 21:L31, 1988. [31] Kenneth J. Schafer Jeffrey L. Krause and Kenneth C. Kulander. High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett., 68:3535, 1992. [32] P. B. Corkum. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett., 71:1994, 1993. [33] M. Yu. Ivanov Anne LHuillier M. Lewenstein, Ph. Balcou and P. B. Corkum. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A, 49:2117, 1994. [34] S. Long W. Becker and J. K. McIver. Modeling harmonic generation by a zerorange potential. Phys. Rev. A, 50:1540, 1994. [35] A Lohr W Becker and M Kleber. Effects of rescattering on above-threshold ionization. J. Phys. B: At. Mol. Opt. Phys, 27:L325, 1994. [36] K. J. Schafer M. Lewenstein, K. C. Kulander and P. H. Bucksbaum. Rings in above-threshold ionization: A quasiclassical analysis. Phys. Rev. A, 51:1495, 1995. [37] F. Krausz and M. Ivanov. Attosecond physics. Rev. Mod. Phys., 81:163, 2009. [38] W Nicklich G G Paulus, W Becker and H Walther. Rescattering effects in abovethreshold ionization: a classical model. J. Phys. B: At. Mol. Opt. Phys, 27:L703, 1994. [39] Shih-I Chu Xiao-Min Tong. Theoretical intense study of multiple high-order harmonic generation by ultrashort pulsed laser fields: A new generalized pseudospectral time-dependent method. Chemical Physics, 217:119, 1997. [40] Shih-I Chu Xiao-Min Tong. Time-dependent density-functional theory for strongfield multiphoton processes: Application to the study of the role of dynamical electron correlation in multiple high-order harmonic generation. Phys. Rev. A, 57:452, 1998. [41] A. Quarteroni C. Canuto, M.Y. Hussaini and T.A. Zang. Spectral methods in fluid dynamics. Springer, Berlin, 1988. [42] S. I. Chu J. Y.Wang and C. Laughlin. Multiphoton detachment of H−. ii. intensitydependent hotodetachment rates and threshold behavior v complex-scaling generalized pseudospectral method. Phys. Rev. A, 50:3208, 1994. [43] G. H. Yao and S. I. Chu. Generalized pseudospectral methods with mappings for bound and resonance state problems. Phys. Rev. Lett., 204:381, 1994. [44] D. A. Telnov and S. I. Chu. Multiphoton detachment of H− near the one-photon threshold: Exterior complex-scaling-generalized pseudospectral method for complex quasienergy resonances. Phys. Rev. A, 59:2864, 1999. [45] Shih-I Chu T. F. Jiang. High-order harmonic generation in atomic hydrogen at 248 nm: Dipole-moment versus acceleration spectrum. Phys. Rev. A, 46:7322, 1992. [46] J. Cooper K. Burnett, V. C. Reed and P. L. Knight. Calculation of the background emitted during high-harmonic generation. Phys. Rev. A, 45:3347, 1992. [47] Kenneth J. Schafer Jeffrey L. Krause and Kenneth C. Kulander. Calculation of photoemission from atoms subject to intense laser fields. Phys. Rev. A, 45:4998, 1992. [48] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864, 1964. [49] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:A1133, 1965. [50] R. G. Parr and W. T. Yang. Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York, 1989. [51] J. P. Perdew and A. Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23:5048, 1981. [52] R. T. Sharp and G. K. Horton. A variational approach to the unipotential manyelectron problem. Phys. Rev., 90:317, 1953. [53] James D. Talman and William F. Shadwick. Optimized effective atomic central potential. Phys. Rev. A, 14:36, 1976. [54] Y. Li J. B. Krieger and G. J. Iafrate. Systematic approximations to the optimized effective potential: Application to orbital-density-functional theory. Phys. Rev. A, 46:5453, 1992. [55] Iafrate G. J. J. B. Krieger, Yan Li. Derivation and application of an accurate kohn-sham potential with integer discontinuity. Phys. lett. A, 146:256, 1990. [56] Y. Li J. B. Krieger and G. J. Iafrate. Construction and application of an accurate local spin-polarized kohn-sham potential with integer discontinuity: Exchange-only theory. Phys. Rev. A, 45:101, 1992. [57] J. B. Krieger Y. Li and G. J. Iafrate. Self-consistent calculations of atomic properties using self-interaction-free exchange-only kohn-sham potentials. Phys. Rev. A, 47:165, 1993. [58] J. B. Krieger Jiqiang Chen and Yan Li. Kohn-sham calculations with selfinteraction- corrected local-spin-density exchange-correlation energy functional for atomic systems. Phys. Rev. A, 54:3939, 1996. [59] Xiao-Min Tong and Shih-I Chu. Density-functional theory with optimized effective potential and self-interaction correction for ground states and autoionizing resonances. Phys. Rev. A, 55:3406, 1996. [60] Erich Runge and E. K. U. Gross. Density-functional theory for time-dependent systems. Phys. Rev. Lett., 52:997, 1984. [61] U. J. Gossmann C. A. Ullrich and E. K. U. Gross. Time-dependent optimized effective potential. Phys. Rev. Lett., 74:872, 1995. [62] X. M. Tong and S. I. Chu. Time-dependent density-functional theory for strongfield multiphoton processes: Application to the study of the role of dynamical electron correlation in multiple high-order harmonic generation. Int. J. Quantum Chem, 69:293, 1998. [63] Walter C. Henneberger. Perturbation method for atoms in intense light beams. Phys. Rev. Lett., 21:838, 1968. [64] D. A. Telnov and S. I. Chu. Multiphoton above-threshold detachment by intense laser-pulses: a new adiabatic approach. J. Phys. B: At. Mol. Opt. Phys., 28:2407, 1995. [65] R. Gopal et al. Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses. Phys. Rev. Lett., 103:053001, 2009. [66] William P. Reinhardt. Complex coordinates inthe theory of atomic and molecular structure and dynamics. Ann. Rev. Phys. Chem., 33:223, 1982. [67] Nuttall J and Cohen H L. Method of complex coordinates for three-body calculations above the breakup threshold. Phys. Rev., 188:1542, 1969. [68] Byrum D Rescigno T N, Baertschy M and McCurdy C W. Making complex scaling work for long-range potentials. Phys. Rev. A, 55:4253, 2004. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45781 | - |
dc.description.abstract | 本文提出了新的數值方法,用無自我交互作用的時變孔恩-沈方程
式來處理非微擾的多光子游離、超閾值電離。因為在此我們不需要處 理離核很遠處的波函數的時間演化,所以這個方法不但精確也很省 時。這方法是建立在將波函數從實驗室座標轉換到 Kramers-Henneberger 框架上,我們把這方法應用到惰性氣體的超閾值 電離。在此我們計算電子的能譜跟其角度分布,結果顯示了電子頻譜 與雷射強度、頻率、載波包相位的相依性,並跟實驗作比較。 | zh_TW |
dc.description.abstract | We present a new method for the the numerical solution of the self-interaction-free
time-dependent Kohn-Sham equation for the nonperturbative treatment of multiphoton ionization (MPI), above-threshold ionization (ATI), and electron energy and angular distribution after ATI. The method is accurate and efficient because we don’t need to perform the propagation of the time-dependent wave function to the large distance. The procedure is based on the extension of the Kramers-Henneberger picture of the ionization process while the initial expressions involve the wave function in the laboratory frame only. This approach is applied to the accurate study of ATI processes of the rare gas atoms subject to intense laser pulse. We calculate and discuss ejected electron energy and angular distributions. The results reveal the electron spectrum dependence on the duration of the laser pulse and the carrier-envelope phase. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:46:02Z (GMT). No. of bitstreams: 1 ntu-99-R96222060-1.pdf: 10136662 bytes, checksum: e12acfd793c196d85d5f0ae40fb8a0d1 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 1 Introduction 1
2 Above-Threshold Ionization and High-order Harmonic Generation 4 2.1 Some histories of ATI and HHG . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Semiclassical modeling of strong field-matter interaction . . . . . . . . 8 2.2.1 Conclusion of Semiclassical Model . . . . . . . . . . . . . . . . . 13 3 Generalized Pseudospectral Time-dependent Method 14 3.1 Spectral Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Generalized Pseudospectral for TDSE . . . . . . . . . . . . . . . . . . . 17 3.3 HHG Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4 Density Functional Theory 23 4.1 Hohenberg-Kohn theorem . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 The Effective One-Particle Theory: Kohn-Sham Equation . . . . . . . . 26 4.2.1 Hartree-Fock and Exchange-Correlation Energy . . . . . . . . . 26 4.2.2 Kohn-Sham Equation . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 Self-Interaction Correction . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.4 Optimized Effective Potential (OEP) and KLI-SIC Method . . . . . . . 30 4.5 Time-Dependent Density Functional Theory . . . . . . . . . . . . . . . 32 4.5.1 Runge-Gross theorem . . . . . . . . . . . . . . . . . . . . . . . . 33 4.5.2 Time-dependent OEP formulation . . . . . . . . . . . . . . . . . 34 5 Theory of Electron Spectra of ATI 37 5.1 General Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2 Krammers-Henneberger Frame . . . . . . . . . . . . . . . . . . . . . . . 38 5.3 Specific Expression of the Coulumb interaction with the core . . . . . . 42 5.4 Specific Expressions with KS equation . . . . . . . . . . . . . . . . . . 44 6 Results and Discussions 46 6.1 ATI of Atomic hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.2 ATI of Atomic Helium . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7 Conclusion 56 A Exterior Complex Scaling 57 A.1 The Origins of Complex Scaling and Exterior Complex Scaling . . . . . 57 A.2 Scattering Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 A.3 Exterior Complex Scaling for Scattering State . . . . . . . . . . . . . . 60 A.4 Continuun State wavefunctions for atoms . . . . . . . . . . . . . . . . . 61 Bibliography 62 | |
dc.language.iso | en | |
dc.title | 強場雷射中原子的超閾值電離譜:近核區域波包的第一原理計算 | zh_TW |
dc.title | Above-Threshold Ionization Spectra of Rare Gases
Atoms in Intense Laser Pulses: the Ab-initio Approach from Core Region of Wave Packet | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡政達,黃克寧 | |
dc.subject.keyword | 多光子游離,閾值電離,密度泛函理論,擬譜方法,載波包相位, | zh_TW |
dc.subject.keyword | multiphoton ionization,above-threshold Ionization,density functional theory,pseudospectral spectral method,carrier-envelope phase, | en |
dc.relation.page | 71 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-06 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 9.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。