Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45768
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙坤茂(Kun-Mao Chao)
dc.contributor.authorChih-Ying Huangen
dc.contributor.author黃稚穎zh_TW
dc.date.accessioned2021-06-15T04:45:49Z-
dc.date.available2011-08-09
dc.date.copyright2010-08-09
dc.date.issued2010
dc.date.submitted2010-08-05
dc.identifier.citation[1] C. R. Aragon, D. S. Johnson, L. A. McGeoch, and C. Schevon. Optimization by Simulated Annealing: An Experimental Evaluation, Part II (Graph Coloring and Number Partitioning), Operations Research 39: 379-406, 1991.
[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness of approximation problems, Journal of the ACM 45 (3): 501–555, 1998.
[3] L. Babel. Finding maximum cliques in arbitrary and in special graphs, Computing 45: 321-341, 1991.
[4] E. Balas and J. Xue. Weighted and unweighted maximum clique algorithms with upper bounds from fractional coloring, Algorithmica 15: 397-412, 1996.
[5] R. Battiti and M. Protasi. Reactive local search for the maximum clique problem, Algorithmica 29 (4): 610–637, 2001.
[6] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph, Communications of the ACM 16 (9): 575–577, 1973.
[7] R. Carraghan and P. M. Pardalos. An exact algorithm for the maximum clique problem, Operations Research Letters 9(6): 375-382, 1990.
[8] J. Chen, X. Huang, I. A. Kanj, and G. Xia. Strong computational lower bounds via parameterized complexity, Journal of Computer and System Sciences 72: 1346-1367, 2006.
[9] R. G. Downey and M. R. Fellows. Fixed-Parameter Tractability and Completeness I: Basic Results, SIAM Journal on Computing archive 24 (4): 873–921, 1995.
[10] T. Fahle. Simple and fast: Improving a branch-and-bound algorithm for maximum clique, Lecture Notes in Computer Science 2461: 47–86, 2003.
[11] U. Feige. Approximating Maximum Clique by Removing Subgraphs, SIAM Journal on Discrete Mathematics, 18(2): 219-225, 2005.
[12] T. A. Feo, M. G. C. Resende, and S. H. Smith. A Greedy Randomized Adaptive Search Procedure for Maximum Independent Set, 42(5): 860-878, 1994.
[13] M. R. Garey and D. S. Johnson. ' Strong' NP-Completeness Results: Motivation, Examples, and Implications, Journal of the ACM 25: 499–508, 1978.
[14] A. Grosso, M. Locatelli, and F. D. Croce. Combining swaps and node weights in an adaptive greedy approach for the maximum clique problem, Journal of Heuristics 10 (2): 135–152, 2004.
[15] J. Hastad. Clique is hard to approximate within n^(1-ϵ), Acta Mathematica 182(1): 105-142, 1999.
[16] Z. He, X. Xu, and S. Deng. Modeling Complex Higher Order Patterns, 2009.
[17] A. Jagota and L. A. Sanchis. Adaptive, Restart, Randomized Greedy Heuristics for Maximum Clique, Source Journal of Heuristics 7(6): 565-585, 2001.
[18] D. S. Johnson and M. A. Trick. Cliques, coloring and satisfiability. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical Society Providence 26, 1996.
[19] K. Katayama, A. Hamamoto, and H. Narihisa. An effective local search for the maximum clique problem, Information Processing Letters 95(5): 503-511, 2005
[20] J. W. Moon and L. Moser. On cliques in graphs, 1965.
[21] P. R. J. Ostergard. A fast algorithm for the maximum clique problem, Discrete Applied Mathematics 120 (1–3): 197–207, 2002.
[22] P. M. Pardalos and G.P. Rogers. A branch and bound algorithm for the maximum clique problem, Computers & Operations Research 19 (5): 363–375, 1992.
[23] J. C. Regin. Using constraint programming to solve the maximum clique problem, Lecture Notes in Computer Science 2833: 634–648, 2003.
[24] J. M. Robson. Finding a maximum independent set in time O(2^(n/4) ), 2001.
[25] E. C. Sewell, A branch and bound algorithm for the stability number of a sparse graph, INFORMS Journal on Computing 10(4): 438-447, 1998.
[26] E. Tomita and T. Kameda. An efficient branch-and-bound algorithm for finding a maximum clique with computational experiments, Journal of Global Optimization 37 (1): 95–111, 2007.
[27] D. R. Wood. An algorithm for finding a maximum clique in a graph, Operations Research Letters 21(5), 211-217, 1997.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45768-
dc.description.abstract找尋最大完整子圖問題為組合數學上一個經典且眾所皆知的NP-hard難題。完整子圖為圖G= {V,E}中一個子圖,在完整子圖中的每個點都與點集合中的其他點相鄰。找尋最大完整子圖問題即是在一個任意圖中尋找包括最多點數目的完整子圖。在本篇論文中,我們提出一個利用分支設限法的精確演算法,對於任意給定的圖來解決找尋最大完整子圖問題。我們提出的演算法之主要結構為分支設限法,應用了預先排序點集合來達成經實驗結果證實較為有效的作法,並用點的著色數和分支度當作完整子圖的上限來減少不必要的分支搜尋。我們提出的演算法成功的解決許多在DIMACS挑戰上的基準圖與指定點與邊的數目隨機產生的圖。經由執行這些圖形實驗的結果得知,我們提出的演算法比其他現有也使用分支設限法的精確演算法有較佳的時間效率。zh_TW
dc.description.abstractThe maximum clique problem is a classical and well-known NP-hard problem on combinatorial mathematics. A clique of a graph G= (V,E) is a subset C⊆V such that every two vertices in C are adjacent by an edge in E. The maximum clique problem is to find a clique of G with the largest cardinality of vertices. In the thesis, we present a new exact branch-and-bound algorithm for solving the maximum clique problem. Our algorithm applies a branch-and-bound approach based on an initial ordering strategy and the pruning strategies using vertex-coloring and vertex degree as upper bounds to avoid unnecessary searches. Our algorithm successfully solves instances from the DIMACS benchmark graphs and random graphs successfully. The results of our empirical tests show that it outperforms other existing exact branch-and-bound algorithms.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:45:49Z (GMT). No. of bitstreams: 1
ntu-99-R97922083-1.pdf: 276634 bytes, checksum: 58da2798f35dedbb417c85dff18d6c6f (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
List of Figures vi
List of Tables vii
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Related work 4
Chapter 2 Preliminaries 7
2.1 Definitions 7
2.2 A basic algorithm for finding the maximum clique 8
Chapter 3 An algorithm for finding the maximum clique in graph 11
3.1 An initial ordering for heuristic 11
3.2 Searching strategies 15
3.2.1 Using vertex-coloring as an upper bound 15
3.2.2 Pruning strategies 20
3.3 A new algorithm for finding the maximum clique 24
Chapter 4 Implementation 26
4.1 Comparisons for different orderings 27
4.2 Results for DIMACS benchmark graphs 30
4.2.1 Results for brock and c-fat graph groups 30
4.2.2 Results for hamming, johnson, and MANN graph groups 32
4.2.3 Results for p_hat graph groups 34
4.2.4 Results for san graph group 36
4.3 Results for random graphs 38
Chapter 5 Concluding remarks 40
Appendix 42
Reference 43
dc.language.isoen
dc.subject預先排序(initial ordering)zh_TW
dc.subject演算法(algorithm)zh_TW
dc.subject最大完整子圖(maximum clique)zh_TW
dc.subject分支設限法(branch and bound)zh_TW
dc.subject削減搜尋法(prune and search)zh_TW
dc.subject點著色(vertex coloring)zh_TW
dc.subjectBranch-and-bounden
dc.subjectInitial orderingen
dc.subjectVertex coloringen
dc.subjectPrune-and-searchen
dc.subjectAlgorithmen
dc.subjectMaximum cliqueen
dc.title找尋最大完整子圖之演算法zh_TW
dc.titleAn Algorithm for Finding a Maximum Cliqueen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐熊健,黃光璿
dc.subject.keyword演算法(algorithm),最大完整子圖(maximum clique),分支設限法(branch and bound),削減搜尋法(prune and search),點著色(vertex coloring),預先排序(initial ordering),zh_TW
dc.subject.keywordAlgorithm,Maximum clique,Branch-and-bound,Prune-and-search,Vertex coloring,Initial ordering,en
dc.relation.page45
dc.rights.note有償授權
dc.date.accepted2010-08-06
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
270.15 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved