Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45763
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳(Yang-Fang Chen)
dc.contributor.authorLi-Chia Yehen
dc.contributor.author葉力嘉zh_TW
dc.date.accessioned2021-06-15T04:45:45Z-
dc.date.available2010-08-10
dc.date.copyright2010-08-10
dc.date.issued2010
dc.date.submitted2010-08-06
dc.identifier.citationReferences of Chapert 1
1. K. Ramanathan, M. Contreras, C. Perkins, S. Asher, F. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, and J. Ward, Progress in Photovoltaics Research and Applications 11, 225 (2003).
2. M. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. Young, B. Egaas, and R. Noufi. Progress in Photovoltaics Research and Applications 13, 209 (2005).
3. K. S. Leschkies, R. Divakar, J. Basu, E. E. Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, Nano Lett. 7, 1793 (2007).
4. J. Jiao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. Yao, J. Y. Zhang, B. H. Li, D. X. Zhao, X. W. Fan, and Z. K. Tang, Appl. Phys. Lett. 88, 031911 (2006).
5. Z. P. Wei, Y. M. Lu, D. Z. Shen, Z. Z. Zhang, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, X. W. Fan, and Z. K. Tang, Appl. Phys. Lett. 90, 042113 (2007).
6. H. B. Zeng, W. P. Cai, Y. Li, J. L. Hu, and P. S. Liu, J. Phys. Chem. B 109, 18260 (2005)
7. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. L. Wang, Nano Lett. 7, 1003 (2007).
8. C. L. Hsu, S. H. Chang, Y. R. Yu, P. C. Li, T. S. Lin, S. Y. Tsai, T. H. Lu, and I. C. Chen, Chem. Phys. Lett. 416, 75 (2005).
9. D. H.Zhang, J. Phys. D 23 1273 (1995).
10. H. L. Porter, A. L. Cai, J. F. Muth, and J. Narayan, Appl. Phys. Lett. 86, 211918 (2005).
11. H. K. Yadav, K. Sreenivas, and V. Gupta, Appl. Phys. Lett. 90, 172113 (2007).
12. W. C. W. Chan, and S. M. Nie, Science 281, 2016 (1998).
13. X. G. Peng , Nature 404, 59 (2000).
14. X. J. Ji, J. Y. Zheng, J. M. Xu, V. K. Rastogi, T. C. Cheng, J. J. DeFrank, and R.M. Leblanc, J. Phys. Chem. B 109, 3793 (2005).
References of Chapter 2
1. S. M. Sze, and Kwok K. Ng, Physics of Semiconductor Devices, 3nd ed Wiley, New York, (2007).
2. U. Ozgur Ya. I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).
3. T. Ohgaki, N. Ohashi, S. Sugimura, H. Ryoken, I. Sakaguchi, Y. Adachi, and H. Haneda, J. Mater. Res. 23, 2293 (2008).
4. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
5. A. I. Persson, M. W. Larsson, S. Stenstrom, B. J. Ohlsson, L. Samuelson, and L. R. Wallenberg, Nat. Mater. 3, 677 (2004).
6. X. D. Wang, C. J. Summers, and Z. L. Wang, Nano Lett. 4, 423 (2004).
7. Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zhou, and G. Wang, J. Mater. Res. 16, 683 (2001).
8. R. A. Laudise, Hydrothermal Synthesis of Crystals, C&EN. 30 (1986).
9. G. Spezzia, Atti. Accad. Sci. Torino 40, 254 (1905).
10. J. Tittel, W. Gohde, F. Koberling, T. Basche, A. Kornowski, H. Weller, and A. Eychmuller, J. Phys. Chem. B 101, 3013 (1997).
11. M. Bruchez, Jr., M. Moronne, O. Gin, S. Weiss, and A. P. Alivisatos, Science 239 176 (2005).
12. R. A. Strabling, and P. C. Klipstein, Growth and Characterization of Semiconductors. (Adam Hilger: September 1989).
13. S. Perkowitz, Optical Char acterization of Semiconductors: Infared, Raman, and Photoluminescence Spectroscopy. (London; San Diego: Academic Press, 1993).
References of Chapter 4
1. A. N. M. Green, E. Palomares, S. A. Haque, J. M. Kroon, and J. R. Durrant, J. Phys. Chem. B 109 12525 (2005)
2. Md. K. Nazeeruddin, R. Splivallo, P. Liska, P. Comte, and M. Grätzel, Chem. Commun. 1456 (2003)
3. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nat. Mater. 4 (6), 455-459 (2005).
4. Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, Y. S. Park and C. J. Youn, Appl. Phys. Lett. 87, 153504 (2005).
5. H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, M. Kamiya, T. Kamiya and H. Hosono, Appl. Phys. Lett. 83, 1029 (2003).
6. Y. S. Choi, J. Y. Lee, W. H. Choi, H. W. Yeom, and S. Im, J. Appl. Phys. Lett, 41, 7357 (2002).
7. Y. R. Ryu, T. S. Lee, J. A. Lubguban, A. B. Corman, H. W. White, J. H. Leem, M. S. Han, C. J. Youn, and W. J. Kim, Appl. Phys. Lett. 88, 052103 (2006).
8. D. Vaufrey, M. B. Khalifa, M. P. Besland, C. Sandu, M. G. Blanchin, V. Teodorescu, J. A. Roger, and J. Tardy, Synth. Met. 127 207–211 (2002).
9. Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, and B. J. Kim, Appl. Phys. Lett. 90, 131115 (2007).
10. S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Cryst. Growth 225, 110 (2001).
11. W. I. Park, Y. H. Jiun, S. W. Jung, and G. C. Yi, Appl. Phys Lett. 82, 964 (2003).
12. F. D. Auret, S. A. Goodman, M. Hayer, M. J. Legodi, H. A. V. Laarhoven, and D. C. Look, Appl. Phys. Lett. 79, 3074 (2001).
13. Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, Nano Lett. 8, 1649 (2008).
14. L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Cheng, Appl. Phys. Lett. 94, 203106 (2009).
15. L. J. Mandalapu,F. X. Xiu, Z. Yang, D. T. Zhao, and J. L. Liu, Appl. Phys. Lett. 88, 112108 (2006).
16. H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films 445, 317 (2003).
17. Ellingson, R. J, Beard, M. C, Johnson, J. C, Yu, P, Micic, O. I, Nozik, A. J, Shabaev, A, Efros, A. L. Nano Lett. 5, 865 (2005).
18. M. c. Beard., K. P.Knutsen, P. R. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. K. Ellingson, and A. J. Nozik, Nano Lett. 7, 2506(2007).
19. M. C. Jeong, B. Y. Oh, W. Lee, and J. M. Myoung, Appl. Phys. Lett. 86, 103105 (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45763-
dc.description.abstract本研究觀察到氧化鋅奈米柱與硒化鎘量子點的複合材料具有比單純的氧化鋅奈米柱更顯著之光電流轉換特性,這潛在的機制是藉由改變硒化鎘量子點的大小來控制硒化鎘量子點在真空中的能階使得硒化鎘導帶位置高於氧化鋅的導帶,當激發光入射時將造成電子電洞對的產生,位於硒化鎘上的電子將遷移到氧化鋅奈米柱上並與電洞分開降低它們再結合的機率,這樣的結果能幫助傳導,我們可以發現其電流呈現一種線性的情況而且比單純的氧化鋅奈米柱產生的光電流還高。同時由於硒化鎘幫助光的吸收我們也可觀察到在可見光區的光響應程度比純氧化鋅高,這樣的結果對於我們發展高效率且涵蓋大範圍波長的光偵測器有很大的幫助zh_TW
dc.description.abstractA large enhancement of photocurrent has been observed in the composite of ZnO nanorods and CdSe/ZnS quantum dots (QDs). The underlying mechanism can be attributed to the type II band alignment between ZnO and CdSe materials. After photoexcitation, the electrons and holes will be spatially separated, which will reduce the probability of recombination and enhance the detected photocurrent. Because of the absorption of CdSe QDs, the responsivity of the sample is much higher than that of pure ZnO nanorods at ultraviolet region. Besides, it is found that the spectrum of photoresponse now can cover from UV to visible region. This result is helpful to develop high efficient photodetectors with a wide range response.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:45:45Z (GMT). No. of bitstreams: 1
ntu-99-R97245013-1.pdf: 962613 bytes, checksum: 3f09b5e7a561f8e73a78d6b257a315a7 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsContents
1. Introduction ...1
References of Chapter 1 ...4
2. Theoretical Background...6
2.1 Photodetector... 6
2.2 The theory of photoconductivity...7
2.3 Properties of Znic Oxide...7
2.3.1 CrystalStructures...7
2.3.2 Electrical properties...8
2.4 Vapor-Liquid-Solid Growth Mechanism (VLS)...9
2.4.1 Introduction...9
2.4.2 Fabrication of ZnO nanorods...10
2.5 Hydrothermal method...12
2.5.1 Introduction...12
2.5.2 Fabrication of ZnO nanorods...13
2.6 Quantum Confinement Effect...15
2.7 Recombination processes...17
2.8 Photoluminescence (PL) Spectroscopy...20
References of section 2.1 – 2.8...21
3. Experiment Apparatus...23
3.1 Photoluminescence Apparatus...23
3.2 Scanning Electron Microscopy...25
3.3 X-ray diffraction (XRD)...28
3.4 DC sputter deposition...30
4. Enhancement of photocurrent in composite consisting of ZnO nanorods and CdSe/ZnS quantum dots...32
4.1 Introduction...32
4.2 Experiment details...34
4.3 Results and Discussion...36
4.4 Conclusion...43
References...44
5. Conclusion...46
dc.language.isoen
dc.title氧化鋅奈米柱/硒化鎘量子點奈米複合材料之光學性質研究zh_TW
dc.titleOptoelectronic properties of ZnO nanorods and CdSe quantum dots compositesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林泰源(Tai-Yuan Lin),沈志霖(Ji-Lin Shen)
dc.subject.keyword氧化鋅,硒化鎘,光偵測器,光響應度,zh_TW
dc.subject.keywordZnO,CdSe,photodetector,responsivity,en
dc.relation.page46
dc.rights.note有償授權
dc.date.accepted2010-08-06
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
940.05 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved