Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4574
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建彰
dc.contributor.authorChih-Hung Wuen
dc.contributor.author吳志鴻zh_TW
dc.date.accessioned2021-05-14T17:43:35Z-
dc.date.available2015-08-07
dc.date.available2021-05-14T17:43:35Z-
dc.date.copyright2015-08-07
dc.date.issued2015
dc.date.submitted2015-08-06
dc.identifier.citation[1] A. Dahal, R. Addou, A. Azcatl, H. Coy-Diaz, N. Lu, X. Peng, et al., 'Seeding Atomic Layer Deposition of Alumina on Graphene with Yttria,' ACS applied materials & interfaces, vol. 7, pp. 2082-2087, 2015.
[2] D. C. Harris, 'Durable 3–5 mm transmitting infrared window materials,' Elsevier Science, 1998.
[3] D. C. Harris, Materials for infrared windows and domes: properties and performance: SPIE press, 1999.
[4] H. J. Quah and K. Y. Cheong, 'Retardation Mechanism of Ultrathin Al2O3 Interlayer on Y2O3 Passivated Gallium Nitride Surface,' ACS applied materials & interfaces, vol. 6, pp. 7797-7805, 2014.
[5] T. Kusunose and T. Sekino, 'Increasing Resistivity of Electrically Conductive Ceramics by Insulating Grain Boundary Phase,' ACS applied materials & interfaces, vol. 6, pp. 2759-2763, 2014.
[6] M. Bera, Y. Liu, L. Kyaw, Y. Ngoo, S. Singh, and E. Chor, 'Positive Threshold-Voltage Shift of Y2O3 Gate Dielectric InAlN/GaN-on-Si (111) MOSHEMTs with Respect to HEMTs,' ECS Journal of Solid State Science and Technology, vol. 3, pp. Q120-Q126, 2014.
[7] B.-Y. Tsui, H.-H. Hsu, and C.-H. Cheng, 'High-Performance Metal–Insulator–Metal Capacitors With Stacked Dielectric,' Electron Device Letters, IEEE, vol. 31, pp. 875-877, 2010.
[8] L. Wang, X. Chen, Y. Wang, Z. Wu, W. Li, Y. Han, et al., 'Modification of electronic properties of top-gated graphene devices by ultrathin yttrium-oxide dielectric layers,' Nanoscale, vol. 5, pp. 1116-1120, 2013.
[9] Z. Wang, H. Xu, Z. Zhang, S. Wang, L. Ding, Q. Zeng, et al., 'Growth and performance of yttrium oxide as an ideal high-κ gate dielectric for carbon-based electronics,' Nano letters, vol. 10, pp. 2024-2030, 2010.
[10] W.-H. Chang, S.-Y. Wu, C.-H. Lee, T.-Y. Lai, Y.-J. Lee, P. Chang, et al., 'Phase Transformation of Molecular Beam Epitaxy-Grown Nanometer-Thick Gd2O3 and Y2O3 on GaN,' ACS applied materials & interfaces, vol. 5, pp. 1436-1441, 2013.
[11] Y.-J. Cho, J.-H. Shin, S. Bobade, Y.-B. Kim, and D.-K. Choi, 'Evaluation of Y 2 O 3 gate insulators for a-IGZO thin film transistors,' Thin Solid Films, vol. 517, pp. 4115-4118, 2009.
[12] X. Cheng, Z. Qi, G. Zhang, H. Zhou, W. Zhang, and M. Yin, 'Growth and characterization of Y 2 O 3 thin films,' Physica B: Condensed Matter, vol. 404, pp. 146-149, 2009.
[13] F. Zhu, S. J. Rhee, C. Y. Kang, C. H. Choi, M. S. Akbar, S. Krishnan, et al., 'Improving channel carrier mobility and immunity to charge trapping of high-K NMOSFET by using stacked Y/sub 2/O/sub 3//HfO/sub 2/gate dielectric,' Electron Device Letters, IEEE, vol. 26, pp. 876-878, 2005.
[14] K.-Y. Choi, Y.-S. Oh, S. Kim, and S.-M. Lee, 'High erosion resistant Y2O3-carbon electroconductive composite under the fluorocarbon plasma,' Ceramics International, vol. 39, pp. 1209-1214, Mar 2013.
[15] T. Maeda, Y. Makino, H. Nakano, and I. Uehara, 'Conductive, plasma-resistant member,' ed: Google Patents, 2007.
[16] J. Y. Sun, K. S. Collins, R.-G. Duan, S. Thach, T. Graves, X. He, et al., 'Plasma-resistant ceramics with controlled electrical resistivity,' ed: Google Patents, 2013.
[17] S. Ikeda and K. Ogawa, 'Structure Images of Y2O3 Corresponding to the Shift of Y-atoms,' Journal of electron microscopy, vol. 41, pp. 330-336, 1992.
[18] Y.-N. Xu, Z.-q. Gu, and W. Ching, 'Electronic, structural, and optical properties of crystalline yttria,' Physical Review B, vol. 56, p. 14993, 1997.
[19] J. Kitamura, H. Mizuno, N. Kato, and I. Aoki, 'Plasma-erosion properties of ceramic coating prepared by plasma spraying,' Materials Transactions, vol. 47, pp. 1677-1683, Jul 2006.
[20] S. Iijima, 'Helical microtubules of graphitic carbon,' nature, vol. 354, pp. 56-58, 1991.
[21] S. Hong and S. Myung, 'Nanotube Electronics: A flexible approach to mobility,' Nature Nanotechnology, vol. 2, pp. 207-208, 2007.
[22] M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, 'Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,' Science, vol. 287, pp. 637-640, 2000.
[23] B. Eliasson and U. Kogelschatz, 'Nonequilibrium volume plasma chemical processing,' Plasma Science, IEEE Transactions on, vol. 19, pp. 1063-1077, 1991.
[24] A. Schütze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, 'The atmospheric-pressure plasma jet: a review and comparison to other plasma sources,' Plasma Science, IEEE Transactions on, vol. 26, pp. 1685-1694, 1998.
[25] K. Tachibana, 'Current status of microplasma research,' IEEJ Transactions on Electrical and Electronic Engineering, vol. 1, pp. 145-155, 2006.
[26] A. Hobby, 'Screen printing for the industrial user,' DEK Printing Machines Ltd, 1997.
[27] 'http://www.cleanroom.byu.edu/metal.phtml.'
[28] 'Michael Kohler, Etching in Microsystem Technology, chap 4,MILEY-VCH, 1999..'
[29] 'A.J.van Roosmalen, J.A.G.Baggerman and S.J.H. Brader, Dry Etch for VLSI, chap 5, Plenum Press, New York, 1991..'
[30] 'Michael Quirk and Julian Serda, Semiconductor manufacturing technology, chap 16, pp.450~452, Prentice-Hall, 2001..'
[31] 'Gary S. May and Simon M. Sze, Fundamentals of Semiconductor Fabrication, chap 5, John Wiley & Sons, 2004..'
[32] 林世凱 and 柯富祥, '研究電漿蝕刻技術製作奈米級光阻線,' 2010.
[33] 'http://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html.'
[34] 'http://www.microscopy.ethz.ch/sem_detectors.htm.'
[35] 'https://universe-review.ca/F13-atom04.htm.'
[36] 'http://pruffle.mit.edu/atomiccontrol/education/xray/xray_diff.php.'
[37] 'https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCoQFjABahUKEwjm0sCs0YzGAhXNLrwKHejDAKY&url=http%3A%2F%2Fwww.slvs.tc.edu.tw%2F125%2F20120919020307.ppt&ei=RB18VeagBc3d8AXoh4OwCg&usg=AFQjCNHemMPXaG1Vgmh0FjKoin_XDzsPuQ&sig2=xXT4zsFbZRXs2bdPnUXnow.'
[38] 'http://faculty.sdmiramar.edu/fgarces/LabMatters/Instruments/FTIR/FTIR.htm.'
[39] P. Scherrer, 'Estimation of the size and internal structure of colloidal particles by means of röntgen,' Nachr. Ges. Wiss. Göttingen, vol. 2, pp. 96-100, 1918.
[40] A. Patterson, 'The Scherrer formula for X-ray particle size determination,' Physical review, vol. 56, p. 978, 1939.
[41] S. Som and S. K. Sharma, 'Eu3+/Tb3+-codoped Y2O3 nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization,' Journal of Physics D-Applied Physics, vol. 45, Oct 17 2012.
[42] Y. S. R.Venkatalakshmi*1, M.Mohan Varma1, and C. S. C. Madhuchudana Chetty3, 'http://www.priory.com/pharmacy/carvedilol_film.htm.'
[43] 'http://www.senseair.se/senseair/gases-applications/ethanol/.'
[44] C. Cunha, S. Panseri, D. Iannazzo, A. Piperno, A. Pistone, M. Fazio, et al., 'Hybrid composites made of multiwalled carbon nanotubes functionalized with Fe3O4 nanoparticles for tissue engineering applications,' Nanotechnology, vol. 23, Nov 23 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4574-
dc.description.abstract本研究利用快速大氣電漿燒結製程,製作氧化釔/奈米碳管複合材料,其具有導電性和抵抗低壓電漿侵蝕的能力。快速大氣電漿燒結製程所需的時間只需要3秒至5秒,即可燒結完成。在摻入奈米碳管後的複合材料,其電導率也會因此顯著的增加。用網印法製作而成的試片,試片裡所組成的奈米碳管和含碳物質會與氮氣大氣電漿產生劇烈反應在快速燒結的過程中。然而,此複合材料在低壓三氟甲烷感應耦合電漿(CHF3 ICP)的蝕刻下,表現很好的抗電漿侵蝕能力。並在低壓三氟甲烷感應耦合電漿侵蝕30分鐘後,複合材料的電導率維持在同一個級距。說明這個塗層可做為保護層在低壓電漿裝置中,且在低壓電漿系統中,有高電導率的材料有利於防止電弧發生與累積電荷。zh_TW
dc.description.abstractWe developed an ultrafast sintering process for a conductive low-pressure-plasma-resistant Y2O3/carbon-nanotube composite using an atmospheric pressure plasma jet. The processing time can be as short as 3 to 5 s. The incorporation of carbon nanotubes (CNTs) significantly improves the conductivity. N2 APPJ reacts violently with the CNTs and carbonaceous materials in the screen-printed pastes, rendering ultra-short processing. However, the synthesized films show great erosion resistance to low-pressure CHF3 inductively coupled plasma (ICP). The conductivity remains in similar level after exposing to the CHF3 ICP for 30 min. This coating can serve as a protection layer in low-pressure plasma environment. The high conductivity (>0.01 S cm-1) is advantageous in preventing arcing or charging effects in the low-pressure plasma environment.en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:43:35Z (GMT). No. of bitstreams: 1
ntu-104-R02543050-1.pdf: 7674224 bytes, checksum: e3f22ddd04d6ab6abd39deaf4f4aad59 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xiii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文架構 3
第二章 理論與文獻回顧 4
2.1 氧化釔(Yttrium Oxide, Y2O3)之基本性質 4
2.1.1 氧化釔之晶體結構 4
2.1.2 抗電漿能力 5
2.2 奈米碳管(CNT)之基本性質 9
2.2.1 導電性與機械性質 10
2.3 常壓電漿 11
2.3.1 大氣電漿種類與工作原理 12
2.3.2 常壓電漿的優勢 15
第三章 實驗方法與流程 16
3.1 實驗藥品與量測儀器 16
3.2 實驗規劃 18
3.3 實驗流程 20
3.3.1 基板清洗 20
3.3.2 氧化釔/奈米碳管漿料製作 21
3.3.3 以網印法製備氧化釔/奈米碳管試片實驗流程 23
3.3.4 奈米碳管/氧化釔於ITO玻璃網印製程(上電極) 25
3.3.5 奈米碳管/氧化釔於ITO玻璃網印製程(下電極) 26
3.4 製程儀器與原理 27
3.4.1 迴旋濃縮機 27
3.4.2 網版印刷機 28
3.4.3 大氣電漿(Atmospheric pressure plasma jet, APPJ)退火處理 29
3.4.4 電子束蒸鍍機(E-beam evaporator) 31
3.4.5 感應耦合電漿蝕刻系統(Inductively coupled plasma, ICP) 33
3.5 量測儀器與原理 35
3.5.1 紫外光-可見光光譜儀(UV-Visible spectrometer) 35
3.5.2 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 36
3.5.3 X光繞射儀(X-ray Diffraction, XRD) 38
3.5.4 傅立葉轉換紅外光光譜儀(Fourier-Transform Infrared Spectrometer, FTIR) 40
3.5.5 光放射頻譜儀 42
3.5.6 兩點探針電性量測 43
第四章 實驗結果與討論 44
4.1 大氣噴射電漿溫度變化趨勢 44
4.2 大氣電漿放光頻譜分析 46
4.3 SEM 表面形態分析 48
4.4 光學性質分析 55
4.5 X光繞射分析 58
4.6 傅立葉轉換紅外線光譜 62
4.7 抗電漿電性分析 64
4.8 抗電漿蝕刻分析 68
第五章 結論與未來展望 71
第六章 附錄 72
6.1 附錄A 電子束蒸鍍氧化釔薄膜基本性質分析 72
6.1.1 X光繞射分析 72
6.1.2 穿透率分析 75
6.1.3 薄膜表面型態分析 76
6.1.4 電子束蒸鍍氧化釔薄膜於藍寶石基板上之SEM圖與XRD分析 79
6.2 附錄B 溶膠-凝膠法製備氧化釔薄膜之實驗結果 81
6.2.1 氧化釔溶膠-凝膠法溶液配製 81
6.2.2 X光繞射分析 86
6.2.3 穿透率分析 87
6.2.4 SEM薄膜截面型態分析 88
6.3 附錄C 氧化釔/奈米碳管複合材料EPMA分析 89
6.4 附錄D 氧化釔/奈米碳管複合材料光響應之實驗結果 91
6.5 附錄E 聚二甲基矽氧烷製備 94
參考文獻 98
dc.language.isozh-TW
dc.subject氧化釔zh_TW
dc.subject奈米碳管zh_TW
dc.subject大氣電漿zh_TW
dc.subjectCarbon nanotubeen
dc.subjectY2O3en
dc.subjectAPPJen
dc.title快速大氣噴射電漿燒結奈米孔隙氧化釔/奈米碳管複合材料zh_TW
dc.titleRapid Atmospheric-Pressure-Plasma-Jet Sintered Nanoporous Y2O3/Carbon Nanotube Compositesen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳奕君,張世航
dc.subject.keyword氧化釔,奈米碳管,大氣電漿,zh_TW
dc.subject.keywordY2O3,Carbon nanotube,APPJ,en
dc.relation.page100
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-08-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf7.49 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved