請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45743完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許圳塗(Chou-Tou Shii) | |
| dc.contributor.author | Mei-Chen Wang | en |
| dc.contributor.author | 王美琴 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:45:25Z | - |
| dc.date.available | 2011-08-16 | |
| dc.date.copyright | 2010-08-16 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-06 | |
| dc.identifier.citation | 呂美麗. 1995. 金花石蒜之雙磷片繁殖. 國立台灣大學園藝學研究所碩士論文.
阮明淑. 2000. 金花石蒜及相關遺傳歧異性分析及核型重塑之研究. 國立台灣大學園藝學研究所博士論文. 林秀霞. 2008. 聖誕紅腋芽增殖及瓶內微枝梢開花品質之研究. 國立嘉義大學農學研究所碩士論文. 洪志忠. 2007. 孤挺花幼花序器內培養之體胚發生. 國立中興大學園藝學研究所碩士論文. 郭珮琪. 2001. 紅花石蒜及相關種胚乳培養及三倍體再生之研究. 國立台灣大學園藝學研究所碩士論文. 曹燕慧. 2004. 石蒜屬雙核型雜種幼花培養之植株再生. 國立台灣大學園藝學研究所碩士論文. 許圳塗、張祖亮、阮明淑、吳旻靜、郭佩琪、謝欣芸. 2006. 石蒜種源遺傳歧異及多核型育種. 花卉育種研討會專刊 .92-121. 陳威臣、蕭翌柱、楊淑如、葉茂生、蔡新聲. 2001. 瓶內馴化處理對組織培養苗生長之影響. 科學農業. 49: 276-280. 陳威臣、夏奇鈮、葉茂生、蔡新聲. 2004. 鹽類濃度、蔗糖、植物生長素及培養容器瓶口覆蓋物對高氏柴胡組培苗發根與馴化之影響. 中華農業研究 53: 249-260. 梁素秋. 1992. 金花石蒜花芽分化及體外培養之探討. 國立台灣大學園藝學研究所碩士論文. 黃鈴如. 2003. 石蒜胚乳組織程序性凋零及其挽救培養再生. 國立台屋大學園藝學研究所碩士論文. 賴思倫. 2005. 培養基活性碳及出瓶後藥劑處理對蝴蝶蘭出瓶苗品質的影響. 國立中興大學園藝學研究所碩士論文. 謝文華. 1960.台灣自生有用重要園藝植物圖說. pp.771. 蕭翌柱、陳威臣、楊淑如、夏奇鈮. 2003. 活性碳的物理化性狀及其在植物組織培養上的應用. 科學農業. 51:225-234. Albarran, J., B. Bertrand, M. Lartaud and H. Etienne. 2005. Cycle characteristics in a temporary immersion bioreactor affect regeneration, orphology, water and mineral status of coffee (Coffea Arabica) somatic embryos. Plant Cell, Tiss. Org. Cult. 81: 27-36. Chen, L., X. Zhu, L. Gu, and J. Wu. 2005. Efficient callus induction and plant regeneration from anther of Chinese narcissus (Narcissus tazetta L. var. chinensis Roem). Plant Cell Rpt. 24:401-407. Colque, R., F Viladoma, J. Bastida, and C. Codina. 2002. Micropropagation of the rare Eucrosia stricklandii (Amaryllidaceae) by twin-scaling and liquid culture. J. Hort. Sci. Biotechnol. 77:739-743. Dumas, E. and O. Monteuuis. 1995. In vitro rooting of micropropagated shoots from juvenile and mature Pinus pinaster explants: influence of activated charcoal. Plant Cell, Tiss. Org. Cult. 40: 231-235. Escalona, M., J. C. Lorenzo, B. Gonzalez, M. Daquinta, J. L. Gonzalez, Y. Desjardins and C. G. Borroto. 1999. Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rpt. 18: 743-748. Escalona, M., G. Samson, C. Borroto and Y. Desjardins. 2003. Physiology of effects of temporary immersion bioreactors on micropropagated pineapple plantlets. In vitro Cell. Dev. Biol. 39: 651-656. Etienne, H. and M. Berthouly. 2002. Temporary immersion systems in plant micropropagation. Plant Cell, Tiss. Org. Cult. 69: 215-231. Huang, C. L., K. C. Chang, and H. Okubo. 2005. In vitro morphogenesis from ovaries of Hippeastrum × hybridum. J. Fac. Agr. Kyushu Univ. 50:19-25. Huang, C. L., K. C. Chang, and H. Okubo. 2005. In vitro morphogenesis from pedicels of Hippeastrum × hybridum. J. Fac. Agr. Kyushu Univ. 50:27-33. Jova, M. C., R. G. Kosky, M. B. Pérez, and A. Santos. 2005. Production of yam microtubers using a temporary immersion system. Plant Cell, Tiss. Org. Cult. 83:103-107. Kurita, S. 1987a. Variation and evolution on the karyotype of Lycoris, Amaryllidaceae II. Karyotype analysis of ten taxa among which seven are native in China. Cytologia 52: 19-40. Kurita, S. 1987b. Variation and evolution in the karyotype of Lycoris, Amaryllidaceae III. Intraspecific variation in the karyotype of L. traubii Hayward. Cytologia 52: 117-128. Kurita, S. 1987c. Variation and evolution in the karyotype of Lycoris, Amaryllidaceae IV. Cytologia 52: 137-149. Kurita, S. 1988. Variation and evolution in the karyotype of Lycoris, Amaryllidaceae. VII. Modes of karyotype alteration within species and probable trend of karyotype evolution in the genus. Cytologia 53: 323-335. Lian M. L., D. Chakrabarty, and K. Y. Paek. 2003. Bulblet formation from bulbscale segments of Lilium using bioreactor system. Biol. Plant. 46:199-203. Lorenzo, J. C., B. L. Gonzalez, M. Escalona, C. Teisson, P. Espinosa, and C. Borroto. 1998. Sugarcane shoot formation in an improved temporary immersion system. Plant Cell, Tiss. Org. Cult. 54: 197-200. Ma, B., I. Tarumoto, and Q. Liu. 2001. An improved method of ovule culture for producing interspecific hybrids in the genus Lycoris (Amaryllidaceae). J. Jpn. Soc. Hort. Sci. 70:460-462. Malik, M. 2008. Comparison of different liquid/solid culture systems in the production of somatic embryos from Narcissus L. ovary explants. Plant Cell, Tiss. Org. Cult. 94:337-345. Mirici, S., Ì. Parmaksiz, S. Özcan, C. Sancak, S. Uranbey, E. O. Sarihan, A. Gümüşcü, B. Gürbüz, and N. Arslan. 2005. Efficient in vitro bulblet regeneration from immature embryos of endangered Sternbergia fischeriana. Plant Cell, Tiss. Org. Cult. 80:239-246. Morán, G. P., R. Colque, F. Viladomat, J. Bastida, and C. Codina. 2003. Mass propagation of Cyrtanthus clavatus and Cyrtanthus spiralis using medium culture. Scientia. Hort. 98:49-60. Mohamed-Yasseen, Y., W. E. Splittstoesser, and R. E. Litz. 1994. In vitro shoot proliferation and production of sets from garlic and shallot. Plant Cell, Tiss. Org. Cult. 36: 243-247. Peak, K. Y., D. Chakrabarty and E. J. Hahn. 2005. Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell, Tiss. Org. Cult. 81: 287-300. Ran, Y. and S. Simpson. 2005. In vitro propagation of the genus Clivia. Plant Cell Tiss Org. Cult. 81:239-242. Roels, S., M. Escalona, I. Cejas, C. Noceda, R. Rodriguez, M. J. Canal, J. Sandoval and P. Debergh. 2005. Optimization of Plantain (Musa AAB) micropropagation by temporary immersion system. Plant Cell, Tiss. Org. Cult. 82: 57-66. Santos, A., F. Fidalgo, I. Santos, and R. Salema. 2002. In vitro bulb formation of Narcissus asturiensis, a threatened species of the Amaryllidaceae. J. Hort. Sci. Biotechnol. 77:149-152. Shii, C. T., J. F. Lee, M. S. Yuan and S. W. Chin. 1997. Nucleotype remodelling in interspecific hybridization of Lycoris aurea Herb. and Lycoris radiata Herb. Acta Hort. 430: 521-528. Slabbert, M. M., M. H. de Bruyn, D. I. Ferreira, and J. Pretorius. 1995. Adventitious in vitro plantlet formation from immature floral stems of Crinum macowanii. Plant Cell, Tiss. Org. Cult. 43:51-57. Staikidou, I., S. Watson, B. M. R. Harvey, and C. Selby. 2005. Narcissus bulblet formation in vitro: effects of carbohydrate type and osmolarity of the culture medium. Plant Cell, Tiss. Org. Cult. 80:313-320. Šušek, A., B. Javornik, and B. Bohanec. 2002. Factors affecting direct organogenesis from flower explants of Allium giganteum. Plant Cell, Tiss. Org. Cult. 68:27-33. Vishnevetsky, J., E. Zamski, and M. Ziv. 2003. Enchanced bud and bulblet regeneration from bulbs of Nerine sarniensis cultured in vitro. Plant, Cell, Rpt. 21:645-650. Wawrosch, C., A. Kongbangkerd, A. Köpf, and B. Kopp. 2005. Shott regeneration from nodules of Charybdis sp.: a comparison of semisolid, liquid and temporary immersion culture systems. Plant Cell, Tiss. Org. Cult. 81:319-322. Ziv, M. and H. Lilien-Kipnis. 2000. Bud regeneration from inflorescence explants for rapid propagation of geophytes in vitro. Plant Cell Rpt. 19:845-850. 吳奇璋. 1997. 金花石蒜、紅花石蒜與相關種核型及其C - banding特性分析. 國立台灣大學園藝學研究所碩士論文. 陳春賓. 2008. 百合遠緣雜種LA即LO之稔性特性及多倍體誘導. 國立台灣大學園藝學研究所碩士論文. 曹燕慧. 2004. 石蒜屬雙核型雜種幼花培養之植株再生. 國立台灣大學園藝學研究所碩士論文. 黃鈴如. 2003. 石蒜胚乳組織程序性凋零及其挽救培養與再生. 國立台灣大學園藝學研究所碩士論文. Baskin, I. T., G. T. S. Beemster, J. E. Judy-March, and F. Marga. 2004. Disorganization of cortical microtubules stimulates tangential expansion and reduces the uniformity of cellulose microfibril alignment among cells in the root of Arabidopsis. Plant Physiol. 135:2279-2290. Carvalho, J. F. R. P., C. R. Carvalho, and W. C. Otoni. 2005. In vitro induction of polyploidy in annatto (Bixa orellana). Plant Cell, Tiss. Org. Cult. 80:69-75. Chauvin, J. E., A. Label, and M. P. Kermarrec. 2005. In vitro chrosome-doubling in tulip (Tulipa gesneriana L.). J. Hort. Sci. Biotechnol. 80:693-698. Gianί, S., P. Campanoni, and D. Breviario. 2002. A dual effect on protein synthesis and degradation modulates the tubulin level in rice cells treated with oryzalin. Planta 214:837-847. Gomathi Devi, L. and B. Narasimha Murthy. 2009. Structural characterization of Th-doped TiO2 photocatalyst and its extension of response to solar light for photocatalytic oxidation of oryzalin pesticide: a comparative study. Cent. Eur. J. Chem. 7:118-192. Grandjean, O., T. Vernoux, P. Laufs, K. Belcram, Y. Mizukami, and J. Traas. 2003. In vivo analysis of cell division, cell growth, and differentiation at the shoot apical meristem in Arabidopsis. Plant Cell. 16:74-87. Grzebelus, E. and A. Adamus. 2004. Effect of anti-mitotic agents on development and genome doubling of gynogenic onion (Allium cepa L.) embryos. Plant Sci. 167:569-574. Han, D. S. and Y. Niimi. 2008. Fertility restoring of interspecific hybrids between Lilium nobilissimum and L. regale by chromosome doubling. Acta Hort. 766:421-426. Jordan, M. A. and K. Kamath. 2007. How do microtubule-targeted drugs work? An overview. Cur. Cancer Drug Tat. 7:730-742. Langhans, M., S. Niemes, P. Pimpl, and D. Robison. 2009. Oryzalin bodies: in addition to its anti-microtubule properties, the dinitroaniline herbicide oryzalin causes nodulation of the endoplasmic reticulum. Protoplasma. 236:73-84. Kermani, M. J., V. Sarasan, A. V. Roberts., K. Yokoya, J. Wentworth, and V. K. Sieber. 2003. Oryzalin-induced chromosome doubling in Rosa and its effect on plant morphology and pollen viability. Theo. Appl. Genet. 107:1195-1200. Lee, R. M. and D. A. Gewirtz. 2008. Colchicine site inhibitors of microtubule integrity as vascular disrupting agents. Drug. Dev. Res. 69:352-358. Ma, C., C. Li, L. Ganesan, J. Oak. S. Tsai, D. Sept, and N. S. Morrissette. 2007. Mutations in α-tubulin confer dinitroaniline resistance at a cost to microtubule function. Mol. Biol. Cell. 18:4711-4720. Morrissette, N. S. A. Mitra, D. Sept, and L. D. Sibley. 2004. Dinitroanilines bind α-tubulin to disrupt microtubules. Mol. Bio. Cell. 15:1960-1968. Ramanna, M.S. and E. Jacobsen. 2003. Relevance of sexual polyploidization for crop improvement – A review. Euphytica 133:3-18. Rhee, H. K. and H. R. Cho. 2005. Comparison of pollen morphology in interspecific hybrid lilies after in vitro chromosome doubling. Acta Hort. 673:-643. Takamura T., and I. Miyajima. 1996. Colchicine induced tetraploids in yellow-flowerd cyclamens and their characteristics. Scientia. Hort. 65: 305-312. Thao, N. T. P., K. Ureshino, I. Miyajima, Y. Ozaki and H. Okubo. 2003. Induction of tetraploids in ornamental Alocasia through colchicines and oryzalin treatments. Plant Cell, Tiss. Org. Cult. 72:19-25. Thion, L., C. Mazars, P. Nacry, D. Bouchez, M. Moreau, R. Ranjeva, and P. Thuleau. 1998. Plasma membrane depolarization-activated calcium channels, stimulated by microtubule-depolymerizing drugs in wild-type Arabidopsis thaliana protoplasts, display constitutively large activities and a longer half-life in ton 2 mutant cells affected in the organization of cortical microtubules. Plant J. 13:603-610. Yu, H. 2006. Structural activation of Mad 2 in the mitotic spindle checkpoint: the two-state Mad 2 model versus the Mad 2 template model. J. Cell. Biol. 173:153-157. Zhang, Z., H. Dai, M. Xiao, and X. Liu. 2008. In vitro induction of tetraploids in Phlox subulata L. Euphytica 159:59-65. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45743 | - |
| dc.description.abstract | 金花石蒜花型優美且切花品質佳,屬極具發展潛力之新興夏季球根花卉,且同時具有多種藥用鹼可供醫學方面應用,但石蒜幼年期長及自然分球效率低,為新品種育成與推廣栽培之極大限制主因,因此本論文除探討如何不犧牲母株進行繁殖外,並進一步利用不同培養方式針對以金花石蒜為親本之雜交選系與雙核型雜種回交至金花石蒜之後裔(試交代),進行加速大量繁殖。
本試驗參試材料為本實驗室育成之金花石蒜雙核型雜交種及其試交代,選系包含紅花石蒜×換錦石蒜、金花石蒜×紅花石蒜與金花石蒜×換錦石蒜。參試品系選用幼花序進行培養,均以幼花被培植體再生率最高,而生長調節劑組合試驗各品系再生誘導效果不同,但以2,4-D組合BA之處理誘導不定芽再生比例較高可達100%,而2 mg/L NAA組合10 mg/L BA處理於部分品系不定芽誘導效果也可達70%以上。雙核型雜種幼花被衍生芽塊經繼代培養8週後,增殖倍率均可達1倍以上,約可再生40至80個不定芽。 以再生之小鱗莖為二次培植體,進行十字分切後固體培養8週後,A核型群種間雜種以0.5 mg/L NAA組合5 mg/L BA之處理,平均每個小鱗莖可再生10.36個芽,MT-A核型種在0.5mg/L 2,4-D組合5 mg/L BA可再生9.08個芽;三種間雜種則以0.5 mg/L NAA組合5 mg/L BA可再13.88個芽最多。另以短暫浸漬系統進行鱗莖分切培養,A核型種內雜種(LRM8709 × LS)與MT-A雙核型種(LA × LRK2)於各試驗處理再生不定芽數均較固體培養多,其中A核型種以0.5 mg/L 2,4-D組合5 mg/L BA可再生108個芽,增殖倍率可達21.6倍。而MT-A核型種則以0.5 mg/L NAA組合5 mg/L 2-ip再生76個不定芽最多,其增殖倍率為16.89。 石蒜A核型種間雜種鱗莖直徑為1至2 mm之芽置於蔗糖濃度為90 g/L之液體培養基內,培養8週後鱗莖直徑可達10.2 mm,而MT-A雙核型雜種品系小鱗莖直徑則可至10.75 mm。將鱗莖直徑5至10 mm小鱗莖進行發根試驗,以培養基內有添加活性碳之處理,發根情形良好,且移植出瓶後存活率可達90%以上,出瓶6週後葉數達3至4枚,相當於實生苗栽培2到3年可達之葉片數。 針對MT-A雙核型雜種低落之稔實性,擬以人為方式進行多倍體誘導,以鱗莖鱗片培植體進行誘變試驗後,再生不定芽並進行單株培養取其根尖進行染色體倍數檢定,品系LA × LRK4經二次根尖染色體檢定之擬四倍體株,以流式細胞儀進行DNA含量檢定,除100 μM Oryzalin 72hr pH 5.7 -3單株為鑲崁體外,其餘各植株地上部均已回復為二倍體性狀。 | zh_TW |
| dc.description.abstract | Lycoris aurea Taiwanese native flower has been grown for cut flower trade. Lycoris species also have high economic value for their medicinal alkaloids. They require four to five cycles from seed to flower, and the propagation rate is restrained to nature. The purpose of this research was not only to develop a method for propagation of dikaryotype MT-A hybrids and testprogenies of Lycoris spp, but also to use different culture container for rapid mass propagation.
Experimental materials were dikaryotype MT-A hybrids and testprogenies of Lycoris spp. including of L.radiata × L.sprengeri, 2n = 22 (22A), L.aurea × L.radiata, 2n = 18 (4M+3T+11A) and L.aurea × L.sprengeri, 2n = 18 (4M+3T+11A). Immature inflorescenes segments were used for callus and adventitious buds initiation. The immature perianth produced the highest regeneration rate, and the adventitious bud inducing rates in the medium with 2 mg/L 2,4-D and 5 or 10 mg/L BA were more than other treatments. The medium with 2 mg/L NAA and 10 mg/L BA also showed good regeneration effect in some lines. After 8 weeks of subculture, the immature perianth-induced buds regenerated 40 to 80 buds, and the multiple rate was 1. In vitro grown bulblets with 5 mm diameters were cut into four segments for adventitious buds initiation. After 8 weeks of solid culture, the A specific karyotype and trispecific origin dikaryotype hybrid inoculated in medium with 0.5 mg/L NAA and 5 mg/L BA regenerated 10.36 and 13.88 buds, and the MT-A dikaryotype hybrids inoculated in medium with 0.5 mg/L 2,4-D and 5 mg/L BA regenerated 9.08 buds. By using TIS as culture container for segments adventitious buds initiation, the A specific karyotype (LRM8709 × LS) and MT-A dikaryotype hybrids (LA × LRK2) had much more adventitious buds regeneration than solid culture in all treatments. And the greatest result showed in the medium with 0.5 mg/L 2,4-D and 5 mg/L BA which induced 108 buds, and the multiple rate was 21.6 of A specific karyotype. MT-A dikaryotype hybrids had the greatest adventitious buds regeneration in the medium with 0.5 mg/L 2,4-D and 5 mg/L 2-ip which induced 76 buds, and the multiple rate was 16.89. The different karyotype buds with1 to 2 mm diameters in the medium with 90g/L sucrose after 8 weeks, the buds of A specific karyotype and MT-A dikaryotype grew 10.2 and 10.75 mm individually. After culturing in medium with activated charcoal , the bulblets formed root system. The survival rate of plantlets were more than 90%, and the leaf number grew to more than 3. For restoring the fertility of MT-A dikaryotype hybrids, the scale segments were used as explants for artificial polyploidy induction. The chromosome of root tips were tested after the adventitious buds formed plantlet. The regenerated leaves of pre-tetrapolyploidies were tested DNA content by flow cytometry. Besides the plantlet treated with 100 μM Oryzalin 72hr at pH 5.7 was chimera, the other were reverted to diploidy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:45:25Z (GMT). No. of bitstreams: 1 ntu-99-R97628106-1.pdf: 3505449 bytes, checksum: 33a2e4ad8b67f66c18995fdd6c6d5222 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 目 錄
致謝 III 摘要(Summary) IV Abstract VI 表目次 XII 圖目次 XIV 第一節 石蒜MT-A雙核型種花序培養與增殖試驗 1 前言(Introduction) 1 前人研究(Literature Review) 3 一、石蒜相關背景 3 (一)分布與生長發育習性 3 (二)石蒜屬作物之遺傳行為 3 (三)石蒜屬植物目前主要繁殖方法 4 二、石蒜屬植物微體繁殖與再生 4 (一)鱗片培養與再生 5 (二)花序培養與鱗片鱗莖再生 5 (三)體外結球之影響因子 6 三、短暫浸漬系統 9 材料與方法(Materials and Methods) 12 一、單株選系微體繁殖 12 二、二次培植體增殖試驗 13 三、小鱗莖加速生長試驗 15 四、瓶內小植株建立及移植出瓶 15 五、統計分析 16 結果(Results) 17 一、花序培養 17 (一)幼小花培養 17 (1)雙核型雜交種 17 (2)雙核型雜種之試交代選株 17 (二)繼代培養 19 (1)雙核型雜交種 19 (2)雙核型雜交種之試交代選株 19 二、二次培植體增殖試驗 20 (一)固體培養 20 (二)短暫浸漬系統試驗 22 (1)鱗莖鱗片培植體 22 (2)不定芽塊培植體 23 三、加速生長試驗 23 (一)液體試驗 23 (二)固體試驗 24 (三)短暫浸漬系統試驗 25 四、瓶內小植株建立與馴化出瓶 25 討論(Discussion) 83 一、花序培養之逆分化與形態發生 83 二、二次培植體增殖試驗 84 三、加速生長試驗 86 四、小植株建立及出瓶 87 參考文獻(References) 89 第二節 石蒜MT-A雙核型雜種多倍體誘導 94 前言(Introduction) 94 前人研究(Literature) 95 一、石蒜雙核型種稔性遺傳之機制 95 二、提高稔性之方法 95 (一)回交 95 (二)多倍體化 95 三、誘變劑之介紹 96 (一)秋水仙素(colchicine) 97 (二)氨磺靈(oryzalin) 97 四、多倍體化之檢定 100 (一)氣孔檢定 100 (二)花粉檢測 100 (三)核型檢定 100 (四) DNA含量檢定 101 材料與方法(Materials and Methods) 102 一、參試材料 102 二、試驗方法 102 (一)鱗莖鱗片培植體 102 (二)花序培植體 103 三、核型與植株檢定 103 (一)根尖檢定 103 (二)氣孔檢定 103 (三)流式細胞儀檢定流程 103 結果(Results) 105 一、鱗莖鱗片培植體 105 二、花序培植體 105 討論(Discussion) 116 一、鱗莖鱗片培植體 116 二、花序培植體 117 三、氣孔觀察 117 參考文獻(References) 119 表目次 表1-1-A.生長素與細胞分裂素組合對石蒜MT-A雙核型雜種選系LA × LRK2幼花器官培養再生之影響(培養12週) 27 表 1-1-B.金花與紅花石蒜雙核型雜種LA與LR正反交系幼花被癒合組織與不定芽再生情形(培養12週) 28 表 1-1-C.生長素與細胞分裂素組合對石蒜雙核型雜種選系(LA × LS與LA × LH)幼花被培養再生不定芽之影響(培養12週) 29 表 1-1-D.照光及暗處理對石蒜雙核型雜種(LA × LSM)幼花被及子房培養不定芽再生之影響(培養12週) 30 表 1-2-A.生長素與細胞分裂素組合對石蒜雙核型雜交種試交代選株(AAR213、AAR302及AAR306)幼花被及花梗培養之再生作用(培養12週) 31 表 1-2-B.石蒜雙核型種之試交代(LARS)幼花被及子房癒合組織與不定芽再生情形(培養12週) 32 表 1-3.石蒜雙核型雜種選系幼花被衍生芽塊經繼代培養後增生之情形(培養8週) 33 表 1-4.石蒜雙核型雜種之試交代株花被培養在兩代培養基累積再生不定芽數(培養8週) 34 表 1-5.石蒜A核型群種間雜種LRM8709 × LS小鱗莖十字分切培養不同生長調節劑組合再生之影響(培養8週) 35 表 1-6.石蒜MT-A雙核型雜種LA × LRK2小鱗莖十字分切培養於不同生長調節劑組合之生長情形(培養8週) 36 表 1-7.三種起源MT-A雙核型雜種(LA84-3-4-2 × (LHa × LRM3))鱗莖分切培養於不同生長調節劑組合之生長情形(培養8週) 37 表 1-8.生長素、細胞分裂素與活性碳對A核型群種間雜種(LRM8709 × LS)小鱗莖十字分切培養再生之影響。(培養8週) 38 表 1-9.生長素、細胞分裂素與活性碳對石蒜MT-A核型種(LA × LRK2)小鱗莖十字分切培養再生之影響。(培養8週) 39 表 1-10.生長素、細胞分裂素與活性碳對石蒜MT-A核型種(LA84-3-4-2 × (LH × LRM3))小鱗莖十字分切培養再生之影響。(培養8週) 40 表 1-11.石蒜MT-A核型種(LA × LSM)小鱗莖十字分切培養於NAA組合不同濃度BA與椰子水之再生情形。(培養8週) 41 表 1-12. NAA、BA、椰子水與活性碳對石蒜各選系小鱗莖十字分切培養再生之影響。(培養8週) 42 表 1-13.石蒜A核型種間雜種LRM8709 × LS選系小鱗莖分切培養在固體與短暫浸漬系統增殖效率之比較(培養8週) 43 表 1-14.石蒜MT-A雙核型雜種(LA × LRK2)小鱗莖分切培養在固體與短暫浸漬系統增殖效率之比較(培養8週) 44 表 1-15.石蒜A核型(LRM8709 × LS)與MT-A雙核型雜種(LA × LRK2)芽塊不同世代分切培養在短暫浸漬系統增殖效率之比較(培養8週) 45 表 1-16.石蒜雜種選系小鱗莖於不同蔗糖濃度下進行液體與固體培養生長速率之比較。(培養8週) 46 表 1-17.石蒜MT-A雙核型雜種(LA × LSM)選系小鱗莖於不同蔗糖濃度下進行液體培養生長速率之比較。(培養8週) 47 表 1-18.石蒜優良雜交選系於不同培養基配方下建立小植株(培養8週) 48 表 2-1.石蒜MT-A雙核型雜種(LA × LRK2)幼花被與花梗培植體經oryzalin與colchicine藥劑處理再生情形(培養12週) 105 表 2-2.石蒜MT-A雙核型雜種(LA × LRM)幼花被與花梗培植體經oryzalin與colchicine藥劑處理再生情形(培養12週) 105 圖目次 圖 1-1.石蒜種間雜種選系開花特性 49 圖1-2.石蒜雙核型雜交種幼花被及花絲培養癒合組織形成及不定芽再生之情形(培養後12週) 51 圖 1-3.石蒜雙核型雜種花梗子房培養不定芽生成之情形(培養後12週) 53 圖 1-4.石蒜雙核型雜種試交代株AAR213株幼花被及花絲培養逆分化及再生之情形(培養後12週) 55 圖 1-5.石蒜雙核型雜種試交代四選系子房及花梗培養癒合組織及不定芽生成之情形(培養後12週) 57 圖 1-6.椰子水、NAA、2,4-D及BA處理對石蒜A核型種內雜種LRM8709 × LS小鱗莖分切培養誘導不定芽之情形(培養後8週) 59 圖1-7.活性碳、NAA、2,4-D、BA及椰子水對石蒜A核型種(LRM8709 × LS)小鱗莖分切培養誘導不定芽再生之情形(培養後8週) 61 圖 1-8.椰子水、NAA及BA對石蒜MT-A核型種LA × LRK2選株小鱗莖分切培養誘導不定芽再生之情形(培養後8週) 63 圖 1-9.活性碳、NAA、2,4-D、BA及椰子水處理對石蒜MT-A雙核型雜種LA × LRK2選株小鱗莖分切培養誘導不定芽再生之情形(培養後8週) 65 圖1-10.椰子水、NAA及BA處理對石蒜MT-A雙核型雜種LA × LSM選株小鱗莖分切培養誘導不定芽再生之情形(培養後8週) 67 圖 1-11.石蒜MT-A雙核型雜種LA × LRK2與A核型種(LRM8709 × LS)鱗莖分切培養與不定芽塊分切培養在短暫浸漬系統之再生情形(培養8週) 69 圖 1-12. A核型種內雜種LRM8709 × LS固體培養與短暫浸漬系統在生長素與細胞分裂素組合下鱗莖分切培養芽體再生效率之比較(培養8週) 71 圖 1-13. MT-A核型種(LA× LRK2)固體培養與短暫浸漬系統在生長素與細胞分裂素組合下鱗莖分切培養芽體再生之比較(培養8週) 72 圖 1-14.石蒜種間雜種(LRM8709 × LS及LA × LRK2)兩選系小鱗莖分切培養於短暫浸漬系統三分切世代培養不定芽再生增殖效率之比較(培養8週) 73 圖 1-15. 不同蔗糖濃度對MT-A雙核型雜種小鱗莖發育之影響(培養8週) 74 圖 1-16. A核型種間雜種LRM8709 × LS選系小鱗莖於不同蔗糖濃度下固體培養與液體培養之生長速率比較(培養8週) 76 圖 1-17. MT-A雙核型雜種(LA × LRK2)選系小鱗莖於不同蔗糖濃度下固體培養與液體培養之生長速率比較(培養8週) 77 圖 1-18. NAA、IBA及活性碳處理對石蒜各雜交選系瓶內小鱗莖根系建立之影響 78 圖 1-19.石蒜雙核型雜種之幼花再生瓶內小植株出瓶之生長情形 80 圖 1-20.石蒜體外再生流程 82 圖 2-1. Oryzalin藥劑處理後培植體生長情形 106 圖 2-2. Oryzalin藥劑處理後幼花序再生芽體之生長情形 108 圖 2-3.石蒜MT-A雙核型雜種(LA × LRK4)鱗莖鱗片培植體再生小鱗莖多倍體檢定株根尖染色體形態 110 圖 2-4.石蒜MT-A雙核型雜種 LA × LRK4二倍體與鑲嵌體氣孔形態 112 圖 2-5.石蒜MT-A雙核型雜種(LA × LRK4)擬四倍體檢定株流式細胞儀分析DNA含量 114 | |
| dc.language.iso | zh-TW | |
| dc.subject | 多倍體誘導 | zh_TW |
| dc.subject | 微體繁殖 | zh_TW |
| dc.subject | 花序培養 | zh_TW |
| dc.subject | 增殖 | zh_TW |
| dc.subject | 短暫浸漬系統 | zh_TW |
| dc.subject | 石蒜 | zh_TW |
| dc.subject | polyploidization | en |
| dc.subject | Lycoris | en |
| dc.subject | in vitro propagation | en |
| dc.subject | inflorescene culture | en |
| dc.subject | proliferation | en |
| dc.subject | temporary immersion system | en |
| dc.title | 石蒜屬雙核型雜種花序體外培養及多倍體誘導 | zh_TW |
| dc.title | Inflorescence In Vitro Culture, and Polyploidization in Dikaryotype MT-A Hybrids of Spider Lily (Lycoris spp.) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葉德銘(Der-Ming Yeh),沈再木(Tsai-Mu Shen),張祖亮(Tsu-Liang Chang) | |
| dc.subject.keyword | 石蒜,微體繁殖,花序培養,增殖,短暫浸漬系統,多倍體誘導, | zh_TW |
| dc.subject.keyword | Lycoris,in vitro propagation,inflorescene culture,proliferation,temporary immersion system,polyploidization, | en |
| dc.relation.page | 121 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-06 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝學研究所 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
