Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45730
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李達源
dc.contributor.authorChun-Chun Hsuen
dc.contributor.author許淳淳zh_TW
dc.date.accessioned2021-06-15T04:45:13Z-
dc.date.available2013-08-17
dc.date.copyright2010-08-17
dc.date.issued2010
dc.date.submitted2010-08-06
dc.identifier.citation王明光。2000。高嶺石和蛇紋岩礦物。p. 199-236。土壤環境礦物學。藝軒圖書出  
  版社。
行政院環境保護署環境檢驗所。2002。土壤水分含量測定方法-重量法(NIEA
S280.61C)。
行政院環境保護署環境檢驗所。2002。超音波萃取法(NIEA M167.00C)。
行政院環境保護署環境檢驗所。2003。土壤中重金屬檢測方法-王水消化法(NIEA
S321.63B)。
行政院環境保護署環境檢驗所。2004。六價鉻鹼性消化檢測方法-比色法(NIEA
T303.11C)。
行政院環境保護署環境檢驗所。2009。水中六價鉻檢測方法-比色法(NIEA
W320.52A)。
林玉菁。2004。過量鎳對水稻幼苗生理作用影響之研究。國立臺灣大學農藝學研
究所碩士論文。
林哲昌、林淑滿、黃智。2003。地下水MTBE / BTEX油品污染之物理處理技術。
財團法人中興工程顧問社。
林財富、林佩雲、林競京、習良孝、潘時正、吳雪蘋、沈義富。2005。現地化學
氧化技術之限制與發展。第九屆土壤及地下水污染整治技術研討會論文集。
台北市。

林毓泠。2007。現址化學氧化法氧化劑過錳酸鹽、過氧化氫及過硫酸鹽對土壤氧
化劑需求量影響差異性之探討。國立中興大學環境工程學系碩士論文。
洪千媖。2008。加油站土壤中總石油碳氫化合物污染整治成效之研究:不同案例
之探討。國立中興大學環境工程學系碩士論文。
許伊含。2006。柴油分解細菌之分離鑑定與特性分析。國立中興大學土壤環境科
學系碩士論文。
陳呈芳。2007。土壤及地下水污染現地化學氧化整治技術及案例介紹。環保技術e
報。第45期。
陳瑤瓊。2008。不同因子影響具鐵錳結核之土壤對Cr(III)的氧化反應。國立臺灣大
學農業化學系碩士論文。
黃禎虹。2008。台灣東部超基性與酸性母岩土壤中巨量、微量與稀有元素濃度之
比較。國立屏東科技大學環境工程與科學系碩士論文。
潘柏岑。2006。應用土耕法配合生物添加促進法整治柴油污染土壤之研究。國立
成功大學環境工程學系碩士論文。
Alloway, B. J. 1995. Heavy metal in soils, 2nd ed. Blackie Academic and Professional.
Glasgow, UK.
Apte, A. D., V. Tare, and P. Bose. 2006. Extent of oxidation of Cr(III) to Cr(VI) under
various conditions pertaining to natural environment. J. Hazard. Mater. 128(2-3):
164-174.
Ball, D. F. 1964. Loss-on ignition as an estimate of organic matter and organic carbon in
non-calcareous soils. J. Soil Sci. 12(1): 84-92.
Bouyoucos, G. J. 1936. Directions for making mechanical analysis of soils by the
hydrometer method. Soil Sci. 42(3): 225-228.
Brito, F., J. Ascanio, S. Mateo, C. Hernández, L. Araujo, P. Gili, P. Martín-Zarza, S.
Domínguez, and A. Mederos. 1997. Equilibria of chromate(VI) species in acid
medium and ab initio studies of these species. Polyhedron 16(21): 3835-3846.
Brookins, D. G. 1987. Eh-pH diagrams for geochemistry. Springer-Verlag. New York.
Brooks, R. R., R. D. Reeves, and A. J. M. Baker. 1992. The serpentine vegetation of
Goias State, Brazil. p. 67-81. In A. J. M. Baker et al. (ed.) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, UK.
Calabrese, E. J. and P. T. Kostecki. 1988. Soils contaminated by petroleum:
environmental and public health effects. JOHN WILEY & SONS. New York.
Chen, C. T., A. N. Tafuri, M. Rahman, and M. B. Foerst. 1998. Chemical oxidation
treatment of petroleum contaminated soil using Fenton’s reagent. J. Environ. Sci.
Health A33(6): 987-1008.

Cole, M. M. 1992. The vegetation over mafic and ultramafic rocks in the Transvaal
Lowveld, South Africa. p. 333-342. In B. A. Roberts and J. Proctor (ed.) The ecology of areas with serpentinized rocks: A world view. Kluwer Academic Publishers, Dordrecht, Netherlands.

Dahmani, M. A., K. Huang, and G. E. Hoag. 2006. Sodium persulfate oxidation for the
remediation of chlorinated solvents (USEPA Superfund innovative technology
evaluation program). Water, Air, Soil Pollut. Focus 6(1-2): 127-141.
Davis, B. E. 1974. Loss-on ignition as an estimate of organic matter. Soil Sci. Soc. Am.
Proc. 38(1): 150-151.
Dijkshoorn, P. 2003. In-situ chemical oxidation of chlorinated solvents with potassium
permanganate on a site in Belgium. Proceedings of Consoil, 2003 – 8th International
FZK/TNO Conference on Contaminated Soil, 1686-1691, May 12-16, Gent,
Belgium.
Gambi, O. V. 1992. The distribution and ecology of the vegetation of ultramafic soils in
Italy. p. 217-247. In B. A. Roberts and J. Proctor (ed.) The ecology of areas with serpentinized rocks: A world view. Kluwer Academic Publishers, Dordrecht, Netherlands.
Gasser, U. G. and R. A. Dahlgren. 1994. Solid-phase speciation and surface association
of metals in serpentinitic soils. Soil Sci. 158(6): 409-420.
Green-Pedersen, H., B. T. Jasen, and N. Pind. 1997. Nickel adsorption on MnO2,
Fe(OH)3, montmorillonite, humic acid and calcite: A comparative study. Environ.
Technol.18(8): 807-815.
Haag, W. R. and C. C. D. Yao. 1992. Rate constants for reaction of hydroxyl radicals
with several drinking water contaminants. Environ. Sci. Technol. 26(5):
1005-1013.
Hoffman, M. A. and D. Walker. 1978. Textural and chemical variations of olivine and
chrome spinel in the East Dover ultramafic bodies, south-central Vermont. Geol.
Soc. Am. Bull. 89(5): 699-710.
House, D.A.. 1962. Kinetics and mechanism of oxidations by peroxydisulfate. Chem.
Rev. 62(3): 185-203.
International Technology and Regllatory Cooperation (ITRC). 2005. Technical and
regulatory guidance for in-situ chemical oxidation of contaminated soil and
groundwater. 2nd ed. Washington, D.C..
Jaffré, T. 1980. Etude ecologique du peuplement végétal des sols dérivés de roches
ultrabasiques en Nouvelle-Calédonie, ORSTOM, Paris, France.


Jeejeebhoy, K. N., R. C. Chu, E. B. Marliss, G. R. Greenberg, and A. Bruce-Robertson.
1977. Chromium deficiency, glucose intolerance, and neuropathy reversed by
chromium supplementation, in a patient receiving long-term total parenteral
nutrition. Am. J. Clin. Nutr. 30(4): 531-538.
Jeffrey, D. W. 1992. Is there a serpentine flora in Ireland. p. 243-252. In A. J. M. Baker
et al. (ed.) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, UK.
Joseph, G. L. and R. C. Rita. 1990. Microbial degradation of hydrocarbons in the
environmental. American Society for Microbiology.
Kabata-Pendias, A. and H. Pendias. 1984. Trace element in soils and plants. CRC Press.
Inc.
Kaupenjohann, M. and W. Wilcke. 1995. Heavy metal release from a serpentine soil
using a pH-stat technique. Soil Sci. Soc. Am. J. 59(4): 1027-1031.
Kolthoff, I. M., A. I. Medalia, and H. P. Raaen. 1951. The reaction between ferrous iron
and persulfate. IV. Reaction with potassium persulfate. J. Am. Chem. Soc. 73(4):
1733- 1739.
Lee, W. G. 1992. New Zealand ultramafic. p. 375-418. In B. A. Roberts and J. Proctor
(ed.) The ecology of areas with serpentinized rocks: A world view. Kluwer Academic Publishers, Dordrecht, Netherlands.
McLean, E. O. 1982. Soil pH and lime requirement. p. 119-224. In A. L. Page et al.
(ed.) Methods of soil analysis, Part 2. 2nd ed. ASA and SSSA. Madison, WI.
Mertz, W. 1969. Chromium occurrence and function in biological systems. Physiol.
Rev. 49(2): 163-239.
Nelson, D. W. and L. E. Sommers. 1982. Total carbon, organic carbon, and organic
matter. p. 539-579. In A. L. Page et al. (ed.) Methods of soil analysis, Part 2. 2nd
ed. ASA and SSSA, Madison, WI.
Oze, C., S. Fendorf, D. K. Bird, and R. G. Coleman. 2004. Chromium geochemistry in
serpentinized ultramafic rocks and serpentine soils from the Franciscan Complex
of California. Am. J. Sci. 304(1): 67-101.
Palmer, C. D. and P. R. Wittbrodt. 1991. Processes affecting the remediation of
chromium-contaminated sites. Environ. Health Perspect. 92: 25-40.
Peacoca, C. L. and D. M. Sherman. 2007. Sorption of Ni by birnessite: Equilibrium
controls on Ni in seawater. Chem. Geol. 238(1-2): 94-106.
Proctor, J. 1969. Studies in serpentine plant ecology. Unpubl. Ph.D. Thesis. University
of Oxford.
Proctor, J. and S. R. J. Woodell. 1971. The plant ecology of serpentine. I. Serpentine
vegetation of England and Scotland. J. Eco. 59(2): 375-396.
Proctor, J., J. Burrow, and G. C. Craig. 1980. Plant and soil chemical analyses from a
range of Zimbabwean serpentine sites. Kirkia 12: 127-139.
Qiu, Y. Q. , M. E. Zappi, C. H. Kuo, and E. C. Fleming. 1999. Kinetic and mechanistic
study of ozonation of three dichlorophenols in aqueous. J. Environ. Eng. 125(5):
441-450.
Rabenhorst, M. C.. J. E. Foss, and D. S. Fanning. 1982. Genesis of Maryland soils
formed from serpentinite. Soil Sci. Soc, Am. J. 46(3): 607-616.
Rabenhorst, M. C. 1988. Determination of organic and carbonate in calcareous soils
using dry combustion. Soil Sci. Soc. Am. J. 52(4): 956-959.
Roberts, B. A. 1992. Ecology of serpentinized areas, Newfoundland, Canada. p. 75-113.
In B. A. Roberts and J. Proctor (ed.) The ecology of areas with serpentinized rocks:
A world view. Kluwer Academic Publishers, Dordrecht, Netherlands.
Richard, J. Y. and T. M. Vogel. 1999. Characterization of a soil bacterial consortium
capable of degrading diesel fuel. Int. Biodeterior. Biodegrad. 44(2-3): 93-100.
Sarkar, D., M. Ferguson, R. Datta, and S. Birnbaum. 2005. Bioremediation of petroleum
hydrocarbons in contaminated soils: Comparison of biosolids addition, carbon
supplementation, and monitored natural attenuatuation. Environ. Pollut. 136(1):
187-195.
Shewry P. R. and P. J. Peterson. 1976. Distribution of chromium and nickel in plants and
soil from serpentine and other sites. J. Eco. 64(1): 195-212.
Siegrist, R. L., M. A. Urynowicz, O. R. West, M. L. Crimi, and K. S. Lowe. 2001.
Principles and practices of in situ chemical oxidation using permanganate. Battle
Press.
Soane, B. D. and D. M. Saunder. 1959. Nickel and chromium toxicity of serpentine soils
in southern Rhodesia. Soil Sci. 88(6): 322-330.
Soon, Y. K. and S. Abboud. 1991. A comparison of some methods for soil organic
carbon determination. Commun. Soil Sci. Plant Anal. 22(9-10): 943-954.
Viñas, M., M. Grifoll, J. Sabaté, and A. M. Solanas. 2002. Biodegradation of a crude oil
by three microbial consortia of different origins and metabolic capabilities. J. Ind.
Microbiol. Biotechnol. 28(5): 252-260.
White, C. D. 1971. Vegetation-soil chemical correlations in serpentine ecosystems.
Unpubl. Ph.D. Thesis. University of Oregon.
Woodell, S. R. J., H. A. Mooney, and H. Lewis. 1975. The adaptation to serpentine soils
in California of the annual species Linathus androsaceus (Polemoniaceae). Bull. Torrey Bot. Club 102(5): 232-238.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45730-
dc.description.abstract現地化學氧化法是用來處理油品污染的方法之一,但有許多研究指出可能造成土壤中之金屬溶出。本實驗使用台灣東部萬榮鄉(WR)與台東市(ST)富含鉻、鎳之蛇紋岩土壤,製備成柴油污染土壤,並利用過錳酸鉀、過錳酸鉀加酸及過硫酸鈉等氧化劑處理,探討是否會造成鉻及鎳之溶出污染。將土壤以氧化劑處理後,測定溶液相之鉻及鎳溶出量,並將土壤以1 N KCl抽出兩次後,分別測定土壤中殘餘之柴油量、0.01 M KH2PO4可抽出之有效性Cr(VI)含量以及利用鹼性消化法測定土壤中之總Cr(VI)含量。結果顯示柴油之移除效果為過錳酸鉀加酸(超過70 %)>過錳酸鉀(約50 %)>過硫酸鈉(小於30 %)。以過錳酸鉀處理下,兩種土壤於反應14天期間土壤溶液中皆未測得鎳,過錳酸鉀加酸處理則在溶液中測得高濃度鎳,於ST與WR土壤溶液中分別為13.8及0.34 mg L-1,而過硫酸鈉處理有最高量之鎳溶出,ST與WR土壤溶液中分別為34.0及2.05 mg L-1。在鉻溶出量部分,除WR土壤之過錳酸鉀處理無測得外,其餘處理下兩種土壤之鉻溶出量皆超過地下水管制標準,超過量由20倍至210倍不等。在氧化期間土壤中測得之總六價鉻含量依序為過錳酸鉀加酸(ST與WR分別為184與22.4 mg kg-1)> 過錳酸鉀(ST與WR分別為26.1與3.50 mg kg-1) > 過硫酸鈉 (ST與WR分別為5.38與6.72 mg kg-1)。而土壤中之有效性Cr(VI)除過錳酸鉀加酸處理外其餘皆很低。
  結果顯示以過錳酸鉀、過錳酸鉀加酸及過硫酸鈉處理本研究中之兩種柴油污染蛇紋岩土壤,除ST及WR土壤以過錳酸鉀處理外,皆會造成鉻及鎳之溶出,並產生高毒性及高移動性之Cr(VI),因此採用這些化學氧化法須審慎考量當地土壤之性質,以免造成鉻及鎳之溶出污染。
zh_TW
dc.description.abstractIn situ chemical oxidation is commonly used as a remediation method of contamination of petroleum hydrocarbons, but there have been reported in many literatures that chemical oxidation methods may cause dissolution of metals in soil. In this research, two serpentine soils in the east of Taiwan, ST and WR, which were rich in chromium (Cr) and nickel (Ni) were artificial diesel contaminated (10000 mg kg-1). Then the soils were remediated with potassium permanganate (KMnO4), acidified potassium permanganate (KMnO4+H+), and sodium persulfate (Na2S2O8) to investigated whether the dissolution of Cr and Ni occurred. After treating with oxidants, the concentrations of Cr and Ni in soil solutions were determined, and the remained soils were extracted with 1 N KCl twice. Next, the remained diesel concentration in soils were extracted by ultrasonic extraction and determined by GC/FID. Subsequently, available Cr(VI) and total Cr(VI) of the remained soils were analyzed by 0.01 M KH2PO4 extraction and alkaline digestion respectively. The results showed the efficiency of removal of diesel were in the order of KMnO4+H+ (> 70 %) > KMnO4 (~ 50 %) > Na2S2O8 (< 30 %). Except that Ni was not detected in the soil solution treated with KMnO4 during 14-day reaction, nickel concentration was respectively found to be 13.8 and 0.34 mg L-1 in ST and WR soil solution with KMnO4+H+ treatment. Na2S2O8 treatment resulted the highest Ni dissolution and the values were 34.0 and 2.05 mg L-1 in ST and WR soil solution respectively. As for the Cr dissolution, the Cr concentration in soil solutions of ST treated with the three oxidants and WR treated with KMnO4+H+ and Na2S2O8 were 20~210 times exceeding the groundwater pollution control standards (0.05 mg L-1). Total Cr(VI) concentration of the remained soils after oxidants treatment were in the order: KMnO4+H+ (184 and 22.4 mg kg-1 in ST and WR soil respectively ) > KMnO4 (26.1 and 3.50 mg kg-1 in ST and WR soil respectively) > Na2S2O8 (5.38 and 6.72 mg kg-1 in ST and WR soil respectively ). Available Cr(VI) in soils were low except the soils treated with KMnO4+H+ (54.4 and 10.0 mg kg-1 in ST and WR soil respectively). The results indicated that application of KMnO4, KMnO4+H+, and Na2S2O8 in remediation of diesel-contaminated serpentine soils in this research would cause Cr and Ni dissolution and produce Cr(VI) possessing higher toxicity and movement in soil. Therefore, to avoid dissolution of Cr and Ni, the soil properties should be carefully concerned when using these chemical oxidation methods to remediate the diesel contaminated soil.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:45:13Z (GMT). No. of bitstreams: 1
ntu-99-R97623021-1.pdf: 1972666 bytes, checksum: c43630a352337ad9e40cd87945dff977 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書........................................I
誌謝...................................................II
摘要...................................................IV
Abstract................................................V
目錄..................................................VII
圖次....................................................X
表次..................................................XII
第一章 緒論.............................................1
1.1 蛇紋岩土壤..........................................1
1.1.1 蛇紋石之構造......................................1
1.1.2 蛇紋岩土壤之特性..................................1
1.1.3 蛇紋岩土壤中鉻之來源..............................2
1.1.4 鉻................................................4
1.1.5 鎳................................................7
1.2 石油...............................................10
1.2.1 石油特性.........................................10
1.2.2 柴油成份及其性質.................................12
1.3 土壤受碳氫化合物污染之整治技術.....................15
1.3.1 物理處理.........................................15
1.3.1.1土壤氣體抽除法..................................15
1.3.1.2空氣曝氣法......................................15
1.3.2 生物處理.........................................15
1.3.3 化學處理.........................................18
1.3.3.1過氧化氫........................................18
1.3.3.2過硫酸鹽........................................20
1.3.3.3臭氧............................................20
1.3.3.4過錳酸鹽........................................20
1.4 研究目的...........................................22
第二章 材料與方法.....................................24
2.1 供試土壤之採集.....................................24
2.2 試驗土壤基本性質分析...............................24
2.2.1 土壤水分含量:重量法.............................24
2.2.2 土壤pH值.........................................24
2.2.3 土壤質地:比重計法...............................25
2.2.4 土壤有機質含量...................................25
2.2.4.1 濕式氧化法.....................................25
2.2.4.2 燒灼失重法.....................................26
2.2.5 土壤中總鐵、錳、鉻、鎳之含量:王水消化法.........27
2.3 人工製備柴油污染土壤...............................28
2.3.1柴油污染土壤之製備................................28
2.3.2 土壤中柴油濃度之分析.............................28
2.4 化學氧化法對土壤中之柴油移除能力...................31
2.5 化學氧化法對土壤中鉻及鎳溶出之影響.................32
2.5.1 KCl可抽出Cr、Ni含量..............................32
2.5.2 土壤總Cr(VI)含量測定.............................32
2.5.2.1 土壤總Cr(VI)抽出:鹼性消化法...................32
2.5.2.2 Cr(VI)濃度之測定...............................33
2.5.3 KH2PO4可抽出Cr(VI)含量之測定.....................33
2.6 實驗流程...........................................34
第三章 結果與討論......................................35
3.1 試驗土壤性質.......................................35
3.2 比較不同化學氧化法對土壤中柴油之移除效果...........38
3.2.1 萃取回收率測試...................................38
3.2.2 以化學氧化法處理後土壤中柴油濃度之變化...........38
3.3化學氧化法對土壤中鉻及鎳溶出之影響..................42
3.3.1 土壤中鎳之溶出...................................42
3.3.1.1 溶液相之鎳產生量...............................42
3.3.1.2 土壤中KCl可抽出鎳含量..........................50
3.3.2 土壤中鉻之溶出...................................54
3.3.2.1溶液相之鉻產生量................................54
3.3.2.2 土壤中總 Cr(VI)之產生..........................59
3.3.2.3 土壤中0.01 M KH2PO4可抽出Cr(VI)................63
3.4 化學氧化法所造成之鉻及鎳總溶出量...................66
第四章 結論............................................68
第五章 參考文獻.......................................69
dc.language.isozh-TW
dc.title各種化學氧化法處理柴油污染蛇紋岩土壤鉻及鎳之溶出zh_TW
dc.titleDissolution of Cr and Ni in diesel-contaminated serpentine soils treated with various chemical oxidation methodsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳尊賢,顏瑞泓,鄒裕民,許正一
dc.subject.keyword化學氧化法,柴油,蛇紋岩土壤,鉻,鎳,zh_TW
dc.subject.keywordchemical oxidation,diesel,serpentine soil,Cr,Ni,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2010-08-06
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
1.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved