請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45654完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 毛明華(Ming-Hua Mao) | |
| dc.contributor.author | Wei-Lin Cheng | en |
| dc.contributor.author | 鄭瑋霖 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:32:57Z | - |
| dc.date.available | 2011-08-20 | |
| dc.date.copyright | 2009-08-20 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-19 | |
| dc.identifier.citation | [1] G. P. Agrawal, and N. K. Dutta, “Semiconductor Lasers”, Van Nostrand Reinhold, 1993.
[2] L. A. Coldren, and S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits”, Wiley, 1995. [3] 《科學發展》期刊 2002年1月,349期,14∼21頁 [4] P. S. Zory, and Jr., “Quantum Well Lasers”, Academic Press, 1993 [5] Y. Arakawa, and H. Sakaki, “Multidimensional quantum well laser and temperature-dependence of its threshold current,” Appl. Phys. Lett., vol. 40, pp. 939-941, 1982. [6] Kirstaedter. N., N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, Electron. Lett., vol. 30, pp. 1416, 1994. [7] D. Bimberg, M. Grundmann, N. N. Ledentsov, “Quantum Dot Heterostructures”, Wiley, 1999. [8] D. Bimberg, M. Grundmann, N. N. Ledentsov, Ch. Ribbat, R. Sellin, Zh. I. Alferov, P. S. Kop’ev, M. V. Maximov, V. M. Ustinov, A. E. Zhukov, and J. A. Lott. “Quantum Dot Lasers: Theory and Experiment”, AIP Conference Proceedings, vol. 560, pp. 178-197, 2001. [9] 期刊 光電產業與技術情報 No.45, pp. 13-19, 2003 [10] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, Prentice-Hall, New Jersey, 2001. [11] C. Lingk, G. von Plessen, J. Feldmann, K. Stock, M. Arzberger, G. Bo¨hm, M.-C. Amann, and G. Abstreiter, “Dynamics of amplified spontaneous emission in InAsÕGaAs quantum dots”, Appl. Phys. Lett., vol. 76, pp. 3507-3509, 2000. [12] P. D. Buckle, P. Dawson, S. A. Hall, and X. Chen, M. J. Steer, D. J. Mowbray, and M. S. Skolnick, “Photoluminescence decay time measurements from self-organized InAs/GaAs quantum dots”,J. Appl. Phys. vol. 86, pp. 2555-2561 ,1999. [13]Marzin, J. Y., J. M. Gerard, A. Izrael, D. Barrier, and G. Bastard, “Photoluminescence of Single InAs Quantum Dots Obtained by Self- Organized Growth on GaAs,”Phys. Rev. Lett., Vol. 73, pp.716-719, 1994. [14]C. A. Parker, “Photoluminescence of solutions. With applications to photochemistry and analytical chemistry”, Amsterdam, New York, Elsevier Pub. Co., 1968. [15] Jia-Min Shieh, Yi-Fan Lai, Yong-Chang Lin, and Jr-Yau Fang, “Photoluminescence: Principles, Structure, Applications,” 奈米通訊第十二卷 第二期 [16] S. Martini, A. A. Quivy, A. Tabata, and J. R. Leite, “Influence of the temperature and excitation power on the optical properties of InGaAs/GaAs quantum wells grown on vicinal GaAs.001. surfaces,” J. Appl. Phys. vol. 50, pp. 2280-2289, 2001. [17] E. C. Le Ru, J. Fack, and R. Murray, “Temperature and excitation density dependence of the photoluminescence from annealed InAs/ GaAs quantum dots Phys. Rev. B, vol. 67, pp. 245318 -245318, 2003. [18] Boston Electronics Corporation, “ Time Correlated Single Photon Counting (TCSPC)” http://www.boselec.com/products/sigtcspc.html [19] Molecular Expressions- optical microscopy, “Avalanche Photo- diodes,” http://micro.magnet.fsu.edu [20] Olsson, N.A. Oberg, M.G. Tzeng, L.D. Cella, T. , “Ultra-low reflectivity 1.5 μm semiconductor laser preamplifier,” Electronic Lett., vol. 24, pp. 569-570, 1988. [21]Yen-Chih Lin, 'Influence of Carrier Distribution on Temperature-Dependent Characteristics in Quantum-Dot Lasers,' Master Thesis, Graduate Institute of Electronics Engineering, National Taiwan University, 2008. [22]Li-Chieh Su, Der-Chin Wu, Ming-Hua Mao, “Degenerate Pump–Probe Photoluminescence Study on Quantum Dots Operating in Linear Recombination Regime,” IEEE Photon. Tech. Lett., vol. 21, pp. 289-291, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45654 | - |
| dc.description.abstract | 在本論文中,我們同時使用光激發及電激發法來探討量子點中的載子動態。利用電激發的方式達成調控樣品中載子填滿率的目的,再同時輔以光激發進行動態實驗的量測,探討不同載子填滿率對載子動態所造成之影響。我們使用的樣品為五層量子點結構,利用黃光製程所製作的「傾斜型開窗光放大器結構」進行量測。
在高強度光激發時,由於瞬間載子數量太過龐大,造成瞬間打入高能階的載子數量相對提高,我們可以利用具時間解析之單光子計數(time correlated single photon counting, TCSPC)量測架構探討高低能態間的載子鬆弛效應,同時也在時間軸上觀察到載子的補充現象。 接著將會引入載子複合機制隨激發強度不同而有所差異的這項討論。藉由在電激發的情況下,由一連串改變灌注電流的實驗,觀察到載子複合發光機制的轉變。 在較弱的灌注電流下,基態及激發態的趨勢相同,衰減時間皆隨著灌注電流上升而下降。而在較強的灌注電流下,對基態而言,時間常數呈現定值;但對激發態而言,時間常數則會隨著電流上升而變長。 我們使用的樣品為DO1128五層量子點結構,利用黃光製程所製作的「傾斜型開窗雷射結構」進行量測。 | zh_TW |
| dc.description.abstract | In this thesis, simultaneous optical and electrical excitation is used to study the carrier behaviors of quantum dots. Electrical excitation, serving the purpose of controlling the carrier occupation probability, is used in conjunction with optical excitation to determine the relations between the occupation probability and carrier dynamics. The sample studied in this thesis is a five-layer quantum-dot optical amplifier with tilted facets and windowed stripe on top metal contact.
Under high excitation conditions, the instantaneous carrier injection results in a sudden increase in the number of excited carriers captured into higher energy states. Using the time correlated single photon counting (TCSPC) setup, carrier relaxation between energy states can be observed as well as the effect of carrier replenishing. Next, the dependence on excitation intensity that determines the recombination mechanisms of carriers is studied. Exploiting this dependence on excitation intensity, electrical excitation is used to investigate the change in carrier recombination mechanisms by varying injection current. Under low current injection, the ground state and excited states exhibit similar trends of decreasing decay time as injection current is increased. At a higher current injection, however, the ground state demonstrates an injection-independent time constant as opposed to the behavior of the excited state where its time constant increases as current injection increases. The sample studied for this thesis is a five-layer quantum dot (DO1128) “Tilted Windows Laser Structure”. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:32:57Z (GMT). No. of bitstreams: 1 ntu-98-R96941066-1.pdf: 1389387 bytes, checksum: 807a58c4c4a358063ac1b9b2b25536da (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 摘要 VIII
Abstract IX 第一章 序論 1 第一節 半導體雷射簡介 1 第二節 研究動機 7 第三節 論文架構 8 第二章 實驗原理概述 9 第一節 光激發螢光 9 第二節 光激發強度對載子複合機制之影響 11 第三節 時間解析光激發量測 15 第四節 時間相關單光子計數系統 18 第三章 元件製作與量測架構 21 第一節 磊晶材料與樣品結構 21 第二節 雷射元件製程簡介 22 第三節 元件製程 25 第四節 實驗量測架構 26 (1) 光激發螢光量測法 26 (2) 時間相關單光子計數系統 27 第四章 實驗量測結果與討論 28 第一節 能態阻滯效應 28 第二節 光激發強度對載子複合機制之影響 38 第三節 改變電流下的TCSPC量測 42 第四節 改變灌注電流對載子複合機制之影響 50 第五章 總結 77 參考文獻 79 | |
| dc.language.iso | zh-TW | |
| dc.subject | 載子填滿率 | zh_TW |
| dc.subject | 光激發 | zh_TW |
| dc.subject | 電激發 | zh_TW |
| dc.subject | 單光子計數 | zh_TW |
| dc.subject | 載子鬆弛 | zh_TW |
| dc.subject | 複合機制 | zh_TW |
| dc.subject | electrical excitation | en |
| dc.subject | occupation probability | en |
| dc.subject | recombination mechanisms | en |
| dc.subject | carrier relaxation | en |
| dc.subject | TCSPC | en |
| dc.subject | optical excitation | en |
| dc.title | 同時以光激發及電激發法研究量子點之載子動力學 | zh_TW |
| dc.title | Study of carrier dynamics in quantum dots under simultaneous optical and electrical excitation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王智祥(Jyh-Shyang Wang),林浩雄(Hao-Hsiung Lin),祁錦雲(Jim-Yong Chi) | |
| dc.subject.keyword | 光激發,電激發,單光子計數,載子鬆弛,複合機制,載子填滿率, | zh_TW |
| dc.subject.keyword | optical excitation,electrical excitation,TCSPC,carrier relaxation,recombination mechanisms,occupation probability, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
