Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45624Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林晃巖(Hoang-Yan Lin) | |
| dc.contributor.author | Yu-Ting Hsiao | en |
| dc.contributor.author | 蕭宇廷 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:31:06Z | - |
| dc.date.available | 2012-08-21 | |
| dc.date.copyright | 2009-08-21 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-19 | |
| dc.identifier.citation | 1. Ragde, H., A. Elgamal, P. Snow, J. Brandt, A. Bartolucci, B. Nadir, and L. Korb, Ten-year disease free survival after transperineal sonography-guided iodine-125 brachytherapy with or without 45-gray external beam irradiation in the treatment of patients with clinically localized, low to high Gleason grade prostate carcinoma. The Journal of Urology, 1999. 161(1): p. 357-358.
2. Tang, C. and S. VanSlyke, Organic electroluminescent diodes. Applied Physics Letters, 1987. 51: p. 913. 3. Gu, G., D. Garbuzov, P. Burrows, S. Venkatesh, S. Forrest, and M. Thompson, High-external-quantum-efficiency organic light-emitting devices. Optics letters, 1997. 22(6): p. 396-398. 4. Malliaras, G., J. Salem, P. Brock, and C. Scott, Electrical characteristics and efficiency of single-layer organic light-emitting diodes. Physical Review B, 1998. 58(20): p. 13411-13414. 5. Ganzorig, C. and M. Fujihira, A possible mechanism for enhanced electrofluorescence emission through triplet–triplet annihilation in organic electroluminescent devices. Applied Physics Letters, 2002. 81: p. 3137. 6. Wohlgenannt, M., K. Tandon, S. Mazumdar, S. Ramasesha, and Z. Vardeny, Formation cross-sections of singlet and triplet excitons in π-conjugated polymers. Nature, 2001. 409(6819): p. 494-497. 7. Adachi, C., M. Baldo, M. Thompson, and S. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. Journal of Applied Physics, 2001. 90: p. 5048. 8. Madigan, C., M. Lu, and J. Sturm, Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification. Applied Physics Letters, 2000. 76: p. 1650. 9. Bulovi , V., V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, Weak microcavity effects in organic light-emitting devices. Physical Review B, 1998. 58(7): p. 3730-3740. 10. Wei, M. and I. Su, Method to evaluate the enhancement of luminance efficiency in planar OLED light emitting devices for microlens array. Phys. Lett, 2001. 78: p. 1927-1929. 11. Peng, H., Y. Ho, C. Qiu, M. Wong, and H. Kwok. 11.4: Coupling Efficiency Enhancement of Organic Light Emitting Devices with Refractive Microlens Array on High Index Glass Substrate. 2004: Citeseer. 12. M ller, S. and S. Forrest, Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. Journal of Applied Physics, 2002. 91: p. 3324. 13. Yamasaki, T., K. Sumioka, and T. Tsutsui, Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium. Applied Physics Letters, 2000. 76: p. 1243. 14. Lee, Y., S. Kim, J. Huh, G. Kim, Y. Lee, S. Cho, Y. Kim, and Y. Do, A high-extraction-efficiency nanopatterned organic light-emitting diode. Applied Physics Letters, 2003. 82: p. 3779. 15. Do, Y., Y. Kim, Y. Song, and Y. Lee, Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure. Journal of Applied Physics, 2004. 96: p. 7629. 16. Tsutsui, T., M. Yahiro, H. Yokogawa, K. Kawano, and M. Yokoyama, Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer. Advanced Materials, 2001. 13(15). 17. Yang, H., M. Chou, A. Yang, C. Mu, and R. Shyu. Realization of fabricating microlens array in mass production. 1999. 18. Ho, Y., K. Chen, J. Lee, H. Lin, C. Lin, and M. Wei. Luminance Enhancement and Blur Effect of Microlens Array Film Attachment on Organic Light-Emitting Device. 2006. 19. Lin, C., S. Hsu, K. Chen, H. Lin, J. Lee, and M. Wei. Low blur effect and high light extraction efficiency enhancement of organic light emitting displays with novel microstructure attachment. 2007: SOCIETY FOR INFORMATION DISPLAY. 20. Lee, J., C. Liao, P. Hu, and Y. Chang, High contrast ratio organic light-emitting devices based on CuPc as electron transport material. Synthetic Metals, 2004. 144(3): p. 279-283. 21. Lee, S., M. Suh, T. Kang, Y. Kwon, J. Lee, H. Kim, and H. Chung. 53.1: Invited Paper: LITI (Laser Induced Thermal Imaging) Technology for High Resolution and Large Sized AMOLED. 2007: SID. 22. Calvert, P., Inkjet printing for materials and devices. Chem. Mater, 2001. 13(10): p. 3299-3305. 23. Piliego, C., M. Mazzeo, M. Salerno, R. Cingolani, G. Gigli, and A. Moro, Analysis and control of the active area scaling effect on white organic light emitting diodes towards lighting applications. Applied Physics Letters, 2006. 89: p. 103514. 24. Burrows, P., V. Bulovic, S. Forrest, L. Sapochak, D. McCarty, and M. Thompson, Reliability and degradation of organic light emitting devices. Applied Physics Letters, 1994. 65(23): p. 2922. 25. Kolosov, D., D. English, V. Bulovic, P. Barbara, S. Forrest, and M. Thompson, Direct observation of structural changes in organic light emitting devices during degradation. Journal of Applied Physics, 2001. 90: p. 3242. 26. Lim, S., L. Ke, W. Wang, and S. Chua, Correlation between dark spot growth and pinhole size in organic light-emitting diodes. Applied Physics Letters, 2001. 78: p. 2116. 27. Lin, H., Y. Ho, J. Lee, K. Chen, J. Fang, S. Hsu, M. Wei, J. Tsai, and T. Wu, Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices. J. Appl. Phys, 2007. 46: p. 4125-4137. 28. Cok, R. and P. It, OLED WITH PROTECTIVE BI-LAYER ELECTRODE. 2008. 29. Oh, S., Organic light emitting display with auxiliary electrode line and method of fabricating the same. 2005, Google Patents. 30. Pode, R., C. Lee, D. Moon, and J. Han, Transparent conducting metal electrode for top emission organic light-emitting devices: Ca–Ag double layer. Applied Physics Letters, 2004. 84: p. 4614. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45624 | - |
| dc.description.abstract | 本篇論文目的是為了增加有機發光元件的外部發光效率,採取貼附微透鏡陣列的方法,以破壞玻璃基板與空氣之間的全反射。我們提出使用中空式排列的新型微結構,並且結合畫素分區的方式,可應用在指向性照明用的面板上,例如桌燈;並可搭配使用補助電極以增進電流傳導特性。
我們是以數值模擬進行相關的研究,使用光學軟體 LightTools 進行光線追蹤模擬,並藉由系統性的進行參數調整,如子畫素面積、子畫素週期、以及微透鏡的高徑比,來探討其對於元件的功率以及正向亮度的影響。 從我們的模擬結果得知,在不加補助電極的情況下,畫素分區成子畫素面積 100 μm × 100 μm,使用中空式的微透鏡排列,將可以改善畫素未分區時的效率,使正向亮度達到 58.6 %;加上補助電極之後,為了避免畫素發光被補助電極擋住,使用畫素分區的方式分成子畫素面積 104 μm × 104 μm,並且用中空式的微透鏡排列,可以得到正向效率隨著補助電極覆蓋率增加而提升,補助電極覆蓋率53.76 % 時,正向效率提升 48 %。 | zh_TW |
| dc.description.abstract | We demonstrate a simulation model of OLED by utilizing ray-tracing with the optical software LightTools. Applying the microlens array film (MAF) is the way to reduce the total internal reflection (TIR) between air and glass interfaces. Furthermore, in order to improve optical characteristics of devices and also have the potential for longer lifetime, partitioning pixel incorporate hollow-arranged MAF with auxiliary electrodes was proposed. We modulate some parameters such as area and period of sub-pixel, and aspect ratio of MAF which to find out the effects on total power enhancement and 0° luminance enhancement compared to bare device.
In our simulation results, partitioned devices with hollow-arranged MAF can have vastly improvement to 58.6 % under the same total active area and optical power generated by the organic emitter. However, applying auxiliary electrodes could shield rays from the organic emitter, partitioning pixel assisted with hollow-arranged MAF seems to be a good choice and 0° luminance enhancement will be promoted to 48 %. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:31:06Z (GMT). No. of bitstreams: 1 ntu-98-R96941097-1.pdf: 2430907 bytes, checksum: a16f43d3d3af98b2bcb26a151ac826ee (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 第一章 簡介 1
1-1 有機發光二極體 1 1-2 外部量子效率 2 1-3 研究動機 7 1-4 論文架構 8 第二章 模擬條件 9 2-1 基本設定 9 2-2 環境參數 12 2-2-1 周圍吸收邊界條件 12 2-2-2 相鄰兩層介面間菲涅耳損耗(Fresnel loss) 13 2-2-3 Split Rays(Reflected and Transmitted) 13 2-2-4 陰極反射率reflective cathode 14 2-3 模擬與實驗結果驗證 15 2-3-1 模擬驗證一、微結構陣列 SR 與 SC 15 2-3-2 模擬驗證二、微透鏡中空面積與單點畫素面積的拉扯效應 26 第三章 畫素分區(Pixel Partition) 31 3-1 動機 31 3-2 微透鏡排列使用全佈滿與 hollow 形式 32 3-3 畫素分區的探討 36 3-3-1 子畫素面積 38 3-3-2 子畫素週期 41 3-3-3 高徑比(aspect ratio or height ratio) 45 3-4 總結 48 第四章 補助電極(Auxiliary Electrode) 52 4-1 補助電極平行排列(stripe) 52 4-2 補助電極網格狀排列(grid) 55 4-3 使用分區方式 57 第五章 結論 61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微透鏡陣列 | zh_TW |
| dc.subject | 畫素分區 | zh_TW |
| dc.subject | 效率 | zh_TW |
| dc.subject | 有機發光元件 | zh_TW |
| dc.subject | Efficiency | en |
| dc.subject | Pixel Partitioning | en |
| dc.subject | Hollow-Arranged Microlens Array | en |
| dc.subject | Organic Light-Emitting | en |
| dc.title | 以畫素分區與中空排列微透鏡陣列促進有機發光元件效率 | zh_TW |
| dc.title | Efficiency Improvement of Organic Light-Emitting Device by Pixel Partitioning and Hollow-Arranged Microlens Array Films | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李君浩(Jiun-Haw Lee),魏茂國(Mao-Kuo Wei) | |
| dc.subject.keyword | 畫素分區,微透鏡陣列,有機發光元件,效率, | zh_TW |
| dc.subject.keyword | Pixel Partitioning,Hollow-Arranged Microlens Array,Organic Light-Emitting,Efficiency, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| Appears in Collections: | 光電工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-98-1.pdf Restricted Access | 2.37 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
