請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45621完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張宏鈞(Hung-Chun Chang) | |
| dc.contributor.author | Chen-Yu Wang | en |
| dc.contributor.author | 王宸宇 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:30:55Z | - |
| dc.date.available | 2010-08-19 | |
| dc.date.copyright | 2009-08-21 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-19 | |
| dc.identifier.citation | Bibliography
[1] Abe, K. et al., Two-dimensional array of silver nanoparticles,' Thin Solid Films, vol. 327{329, pp. 524{527, 1997. [2] Berenger, J. P., A perfectly matched layer for the absorption of electromagnetic waves,' J. Comput. Phys., vol. 114, pp. 185{200, 1994. [3] Berenger, J. P., An e®ective PML for the absorption of evanescent waves in waveguides,' IEEE Microwave Guided Wave lett., vol. 8, pp. 188{190, 1998. [4] Bierwirth, K., N. Schulz, and F. Arndt, Finite-di®erence analysis of rectangu- lar dielectric waveguides structures,' IEEE Trans. Microw. Theory Tech., vol. 34, pp. 1104{1113, 1986. [5] Bohren, C. F., and D. R. Hu®man, Absorption and Scattering of Light by Small Particles, 2nd ed. New York: Wiley, 1983. [6] Brongersma, M. L., J. W. Hartman, and H. A. Atwater, Electromagnetic energy transfer and switching in nanoparticle chain arrays below the di®raction limit,' Phys. Rev. B, vol. 62, pp. 16356{16359, 2000. [7] Catrysse, P. B. et al., Guided modes supported by plasmonic ‾lms with a periodic arrangement of subwavelength slits,' Appl. Phys. Lett., vol. 88, 031101, 2006. [8] Cendes, Z. J., and P. Silvester, Numerical solution of dielectric loaded waveg- udes: I-Finite-element analysis,' IEEE Trans. Microw. Theory Tech., vol. MTT{18, pp. 1124{1131, 1970. [9] Chen, M. F., Electromagnetic Study of Surface Plasmon and Antire°ection Structures. Ph. D. Dissertation, National Taiwan Universion, 2009. [10] Chigrin, D., A. Lavrinenko, and C. Sotomayor Torres, Nanopillars photonic crystal waveguides,' Opt. Express, vol. 12, pp. 617{622, 2004. [11] Deinega, A., and I. Valuev, Subpixel smoothing for conductive and dispersive media in the ‾nite-di®erence time-domain method,' Opt. Lett., vol. 32, p. 3429, 2007. [12] Economou, E. N., Surface plasmons in thin ‾lms,' Phys. Rev., vol. 182, pp. 539{554, 1969. [13] Fan, S. et al., Guided and defect modes in periodic dielectric waveguides,' J. Opt. Soc. Am. B, vol. 12, pp. 1267{1272, 1995. [14] Fan, S., P. R. Villeneuve, and J. D. Joannopoulos, Large omnidirectional band gaps in metallodielectric photonic crystals,' Phys, Rev. B, vol. 54, pp. 11245{ 11251, 1996. [15] Garc¶³a-Vidal, F. J., and J. B. Pendry, Collective theory for surface enhanced Raman scattering,' Phys. Rev. Lett., vol. 77, pp. 1163{1166, 1996. [16] Garc¶³a-Vidal, F. J., and L. Martin-Moreno, Transmission and focusing of light in one-dimensional periodically nanostructured metals,' Phys. Rev. B, vol. 66, 155412, 2002. [17] Garc¶³a-Vidal, F. J., and L. Martin-Moreno, Transmission and focusing of light in one-dimensional periodically nanostructured metals,' Phys. Rev. B, vol. 66, 155412, 2002. [18] Hadley, G. R., and R. E. Smith, Full-vector waveguide modeling using an iterative ‾nite-di®erence method with transparent boundary conditions,' J. Lightwave Technol., vol. 13, pp. 465{469, 1995. [19] Hildebrand, F. B., Introduction to Numerical Analysis. New York: McGraw- Hill, 1956. [20] Holter, H., and H. Steyskal, In‾nite phased-array analysis using FDTD peri- odic boundary conditions-pulse scanning in oblique directions,' IEEE Trans. Antennas Propag., vol. 47, pp. 1508{1514, 1999. [21] Ito, T., and K. Sakoda, Photonic bands of metallic systems. II. Features of surface plasmon polaritons,' Phys. Rev. B, vol. 64, 045117, 2001. [22] Jackson, J. D., Classical Electrodynamics. New York: Wiley, 1975. [23] Ji, X., W. Cai, and P. Zhang, Higher-order DGTD methods for dispersive Maxwell's equations and modelling of silver nanowire coupling,' Int. J. Numer. Meth. Engng, vol. 69, pp. 308{325, 2007. [24] Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light. Princeton, NJ: Princeton Univ. Press, 1995. [25] Johnson, P. B., and R. W. Christy, Optical constants of the noble metals,' Phys. Rev. B, vol. 6, pp. 4370{4379, 1972. [26] Kottmann, J. P., O. J. F. Martin, D. R. Smith, and S. Schultz, Spectral response of silver nanoparticles,' Opt. Express, vol. 6, pp. 213{219, 2000. [27] Kottmann, J. P., and O. J. F. Martin, Plasmon resonant coupling in metallic nanowires,' Opt. Express, vol. 8, p. 655, 2001. [28] Kottmann, J. P., O. J. F. Martin, D. R. Smith, and S. Schultz, Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,' Chem. Phys. Lett., vol. 341, pp. 1{6, 2001. [29] Krenn, J. R. et al., Squeezing the optical near-‾eld by plasmon coupling of metallic nanoparticles,' Phys. Rev. Lett., vol. 82, pp. 2590{2593, 1999. [30] Lamprecht, B. et al., Surface plasmon propagation in microscale metal stripes,' Appl. Phys. Lett., vol. 79, pp. 51{53, 2001. [31] Li, A. P., F. MÄuller, and U. GÄosele, Polycrystalline and monocrystalline pore arrays with large interpore distance in anodic alumina,' Electrochem. Solid- State Lett., vol. 3, pp. 131{134, 2000. [32] LÄusse, P., P. Stuwe, J. SchÄule, and H. G. Unger, Analysis of vectorial mode ‾elds in optical waveguides by an new ‾nite di®erence method,' J. Lightwave Technol., vol. 12, pp. 487{493, 1994. [33] Lynch, D. W., and W. R. Hunter, Handbook of Optical Constants of Solids. Orlando, FL: Academic Press, 1985. [34] Maier, S. A., M. L. Brongersma, P. G. Kik, and H. A. Atwater, Observation of near-‾eld coupling in metal nanoparticle chains using far-‾eld polarization spectroscopy,' Phys. Rev. B, vol. 65, 193408, 2002. [35] Maier, S. A., P. G. Kik, and H. A. Atwater, Optical pulse propagation in metal nanoparticle chain waveguides,' Phys. Rev. B, vol. 67, p. 205402, 2003. [36] Mohammadi, A., H. Nadgaran, and M. Agio, COntour-path e®ective permit- tivities for the two-dimensional ‾nite-di®erence time-domain method,' Opt. Express, vol. 13, p.10367, 2005. [37] Mohammadi, A., T. Jalali, and M. Agio, Dispersive contour-path algorithm for the two-dimensional ‾nite-di®erence time-domain method,' Opt. Express, vol. 16, p. 7397, 2008. [38] Moskovits, M., Surface-enhanced spectroscopy,' Rev. of Modern Phys., vol. 57, pp. 783{826, 1985. [39] Ohtera, Y., Calculating the complex photonic band structure by the ‾nite- di®erence time-domain based method,' Jpn. J. Appl. Phys., vol. 47, pp. 4827{ 4834, 2008. [40] Porto, J. A., F. J. Garc¶³a-Vidal, and J. B. Pendry, Transmission Resonances on Metallic Gratings with Very Narrow Slits,' Phys. Rev. Lett., vol. 83, pp. 2845{2848, 1999. [41] Prescott, D. T., and N. V. Shuley, Extensions to the FDTD method for the analysis of innitely periodic arrays,' IEEE Microwave Guided Wave Lett., vol. 4, pp. 352{354, 1994. [42] Qiu, M., and S. He, A nonorthogonal ‾nite-di®erence time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions,' J. Appl. Phys., vol. 87, pp. 8268{8375, 2000. [43] Quinten, M., A. Leitner, J. R. Krenn, and F. R. Aussenegg, Electromagnetic energy transport via linear chains of silver nanoparticles,' Opt. Lett., vol. 23, pp. 1331{1333, 1998. [44] Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, A perfectly matched anisotropic absorber for use as an absorbing boundary condition,' IEEE Trans. Antennas Propagat., vol. 43, pp. 1460{1463, 1995. [45] Shen, J. T., and P. M. Platzman, Properties of a one-dimensional metallopho- tonic crystal,' Phys. Rev. B, vol. 70, 035101, 2004. [46] Shen, J. T., P. B. Catrysse, and S. H. Fan, Mechanism for designing metallic metamaterials with a high index of refraction,' Phys. Rev. Lett., vol. 94, 197401, 2005. [47] StÄockle, R. M., Y. D. Suh, V. Deckert, and R. Zenobi, Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,' Chem. Phys. Lett., vol. 318, pp. 131{136, 2000. [48] Takakura, Y., Optical Resonance in a Narrow Slit in a Thick Metallic Screen,' Phys. Rev. Lett., vol. 86, 5601, 2001. [49] Turner, M., and C. Christodoulou, FDTD analysis of phased array antennas,' IEEE Trans. Antennas Propag., vol. 47, pp. 661{667, 1999. [50] Viets, C., and W. Hill, Single-‾bre surface-enhanced Raman sensors with an- gled tips,' J. Raman Spectrosc., vol. 31, pp. 625{631, 2000. [51] Weeber, J. C., A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, Plas- mon polaritons of metallic nanowires for controlling submicron propagation of light,' Phys. Rev. B, vol. 60, pp. 9061{9068, 1999. [52] Yariv, A., Y. Xu, R. K. Lee, and A. Scherer, Coupled-resonator optical waveg- uide: A proposal and analysis,' Opt. Lett., vol. 24, pp. 711{713, 1999. [53] Yatsui, T., M. Kourogi, and M. Ohtsu, Plasmon waveguide for optical far/near-‾eld conversion,' Appl. Phys. Lett., vol. 79, pp. 4583{4585, 2001. [54] Yee, K. S. Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media,' IEEE Trans. Antennas Propagat., vol. 14, pp. 302{307, 1966. [55] Zhao, Y., and Y. Hao, Finite-di®erence time-domain study of guided modes in nano-plasmonic waveguides,' IEEE Trans. Antennas Propagat., vol. 55, pp. 3070{3077, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45621 | - |
| dc.description.abstract | 摘要
本篇論文採用二維有限時域差分法來研究奈米電漿子圓柱間的耦合現 象及一維的電漿子波導。我們使用Drude 色散模型模擬金屬,並使用 具有色散的單軸異向性完美匹配層作為相對應的計算空間吸收邊界。 首先,在色散材料的曲面模型中,我們比較了index-average scheme 和 conformal scheme 之間的差異。接著我們使用conformal scheme 來分析 奈米電漿子圓柱的散射截面積。近場強度和一維圓柱陣列的散射截面 積之間的關係也會在此做一些討論。此外,我們分別針對下列幾種不 同條件來計算散射截面積和近場強度: 1、不同的圓柱半徑 2、不同圓 柱間的距離 3、不同的入射波方向。最後,我們將有限時域差分法計 算出來的圓柱陣列結構色散關係圖與有限元素法得到的結果做比較; 另一方面,我們改變薄膜陣列的厚度並觀察色散關係和磁場分佈情形 的變化。 | zh_TW |
| dc.description.abstract | Abstract
In this research, a two-dimensional (2-D) finite-difference time-domain (FDTD) analysis method is applied to study the coupling between nano-plasmonic cylinders and mode characteristics 1-D nano-plasmonic waveguides. The Drude model for metallic material dispersion is implemented into the FDTD algorithm along with the dispersive uniaxial perfectly matched layer (UPML) as the absorbing boundary condition for the computational domain. For the modeling of the curved surfaces for the dispersive materials, we first compare the index-average scheme with the conformal scheme. We then apply the conformal scheme to analyze the total scattering cross section (TSCS) of the nano-plasmonic cylinders. The relation between the near field intensity and the TSCS of 1-D cylinder arrays are discussed. We calculate the TSCS and the near field intensity by changing the size of the cylinder radius, the distance between the neighboring cylinders, and the direction of the incidence wave. Rather than applying frequency-domain methods, we try to use the FDTD method to analyze the guiding conditions for 1-D nano-plasmonic cylinder and film arrays. For the cylinder arrays, we compare the results calculated by the FDTD method with those by the finite-element method (FEM) in our group. For the film arrays, we vary the thickness of the films and observe the change of the dispersion curves and magnetic field distributions of each guided mode. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:30:55Z (GMT). No. of bitstreams: 1 ntu-98-R96941087-1.pdf: 3937514 bytes, checksum: f0dcd99065f2a5c56bb36d406eb1dd8a (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Contents
1 Introduction 1 1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 The Finite-Difference Time-Domain Method 4 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Uniaxial Perfectly Matched Layer Absorbing-Boundary Conditions . . 6 2.3 Schemes for Curved Interface Treatment . . . . . . . . . . . . . . . . 11 2.3.1 The Index-Average Scheme . . . . . . . . . . . . . . . . . . . 12 2.3.2 The Conformal Scheme . . . . . . . . . . . . . . . . . . . . . . 14 3 Modeling of Curved Surface for Dispersive Materials with FDTD Lattice 22 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Comparison of the Index-Average Scheme and the Conformal Scheme 23 3.2.1 Near Field Scattered by a Single Nano-Plasmonic Cylinder . . 23 3.3 Modeling of Silver Nano-Cylinder Coupling . . . . . . . . . . . . . . . 25 3.3.1 Modeling of Scattering Cross Section . . . . . . . . . . . . . . 25 3.3.2 Cross Section for a Single Nano-Plasmonic Cylinder . . . . . . 26 3.3.3 Linear Arrays of Ag Nano-Cylinders . . . . . . . . . . . . . . 27 4 Modeling of One-Dimensional Nano-Plasmonic Waveguides 54 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2 Modeling of Guided Modes in Nano-Plasmonic Cylinder Waveguides . 55 i 4.2.1 Some Remarks for Simulation . . . . . . . . . . . . . . . . . . 56 4.2.2 A Single Row Array of Nano-Plasmonic Cylinders . . . . . . . 57 4.2.3 Nano-Plasmonic Cylinders with Finite Number of Periods . . 58 4.3 Guided Modes Supported by Plasmonic Films with a Periodic Ar- rangement of Subwavelength Slits . . . . . . . . . . . . . . . . . . . . 59 4.3.1 Dispersion Relations for Different Thicknesses of the Nano- Plasmonic Films . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3.2 Nano-Plasmonic Films with Finite Number of Periods . . . . . 62 5 Conclusion 90 | |
| dc.language.iso | en | |
| dc.subject | 奈米電漿子 | zh_TW |
| dc.subject | 王宸宇 | zh_TW |
| dc.subject | 有限差分時域法 | zh_TW |
| dc.subject | FDTD | en |
| dc.subject | Nano-Plasmonic | en |
| dc.subject | Cy Wang | en |
| dc.title | 以有限差分時域法分析二維奈米電漿子結構之光散射與導波問題 | zh_TW |
| dc.title | Finite-Difference Time-Domain Analysis of Light Scattering and Guiding in Two-Dimensional Nano-Plasmonic Structures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江衍偉(Yean-Woei Kiang),王俊凱(Juen-Kai Wang) | |
| dc.subject.keyword | 王宸宇,有限差分時域法,奈米電漿子, | zh_TW |
| dc.subject.keyword | Cy Wang,FDTD,Nano-Plasmonic, | en |
| dc.relation.page | 97 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 3.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
