Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45621
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張宏鈞(Hung-Chun Chang)
dc.contributor.authorChen-Yu Wangen
dc.contributor.author王宸宇zh_TW
dc.date.accessioned2021-06-15T04:30:55Z-
dc.date.available2010-08-19
dc.date.copyright2009-08-21
dc.date.issued2009
dc.date.submitted2009-08-19
dc.identifier.citationBibliography
[1] Abe, K. et al., Two-dimensional array of silver nanoparticles,' Thin Solid
Films, vol. 327{329, pp. 524{527, 1997.
[2] Berenger, J. P., A perfectly matched layer for the absorption of electromagnetic
waves,' J. Comput. Phys., vol. 114, pp. 185{200, 1994.
[3] Berenger, J. P., An e®ective PML for the absorption of evanescent waves in
waveguides,' IEEE Microwave Guided Wave lett., vol. 8, pp. 188{190, 1998.
[4] Bierwirth, K., N. Schulz, and F. Arndt, Finite-di®erence analysis of rectangu-
lar dielectric waveguides structures,' IEEE Trans. Microw. Theory Tech., vol.
34, pp. 1104{1113, 1986.
[5] Bohren, C. F., and D. R. Hu®man, Absorption and Scattering of Light by Small
Particles, 2nd ed. New York: Wiley, 1983.
[6] Brongersma, M. L., J. W. Hartman, and H. A. Atwater, Electromagnetic
energy transfer and switching in nanoparticle chain arrays below the di®raction
limit,' Phys. Rev. B, vol. 62, pp. 16356{16359, 2000.
[7] Catrysse, P. B. et al., Guided modes supported by plasmonic ‾lms with a
periodic arrangement of subwavelength slits,' Appl. Phys. Lett., vol. 88, 031101,
2006.
[8] Cendes, Z. J., and P. Silvester, Numerical solution of dielectric loaded waveg-
udes: I-Finite-element analysis,' IEEE Trans. Microw. Theory Tech., vol.
MTT{18, pp. 1124{1131, 1970.
[9] Chen, M. F., Electromagnetic Study of Surface Plasmon and Antire°ection
Structures. Ph. D. Dissertation, National Taiwan Universion, 2009.
[10] Chigrin, D., A. Lavrinenko, and C. Sotomayor Torres, Nanopillars photonic
crystal waveguides,' Opt. Express, vol. 12, pp. 617{622, 2004.
[11] Deinega, A., and I. Valuev, Subpixel smoothing for conductive and dispersive
media in the ‾nite-di®erence time-domain method,' Opt. Lett., vol. 32, p. 3429,
2007.
[12] Economou, E. N., Surface plasmons in thin ‾lms,' Phys. Rev., vol. 182, pp.
539{554, 1969.
[13] Fan, S. et al., Guided and defect modes in periodic dielectric waveguides,' J.
Opt. Soc. Am. B, vol. 12, pp. 1267{1272, 1995.
[14] Fan, S., P. R. Villeneuve, and J. D. Joannopoulos, Large omnidirectional band
gaps in metallodielectric photonic crystals,' Phys, Rev. B, vol. 54, pp. 11245{
11251, 1996.
[15] Garc¶³a-Vidal, F. J., and J. B. Pendry, Collective theory for surface enhanced
Raman scattering,' Phys. Rev. Lett., vol. 77, pp. 1163{1166, 1996.
[16] Garc¶³a-Vidal, F. J., and L. Martin-Moreno, Transmission and focusing of light
in one-dimensional periodically nanostructured metals,' Phys. Rev. B, vol. 66,
155412, 2002.
[17] Garc¶³a-Vidal, F. J., and L. Martin-Moreno, Transmission and focusing of light
in one-dimensional periodically nanostructured metals,' Phys. Rev. B, vol. 66,
155412, 2002.
[18] Hadley, G. R., and R. E. Smith, Full-vector waveguide modeling using an
iterative ‾nite-di®erence method with transparent boundary conditions,' J.
Lightwave Technol., vol. 13, pp. 465{469, 1995.
[19] Hildebrand, F. B., Introduction to Numerical Analysis. New York: McGraw-
Hill, 1956.
[20] Holter, H., and H. Steyskal, In‾nite phased-array analysis using FDTD peri-
odic boundary conditions-pulse scanning in oblique directions,' IEEE Trans.
Antennas Propag., vol. 47, pp. 1508{1514, 1999.
[21] Ito, T., and K. Sakoda, Photonic bands of metallic systems. II. Features of
surface plasmon polaritons,' Phys. Rev. B, vol. 64, 045117, 2001.
[22] Jackson, J. D., Classical Electrodynamics. New York: Wiley, 1975.
[23] Ji, X., W. Cai, and P. Zhang, Higher-order DGTD methods for dispersive
Maxwell's equations and modelling of silver nanowire coupling,' Int. J. Numer.
Meth. Engng, vol. 69, pp. 308{325, 2007.
[24] Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding
the Flow of Light. Princeton, NJ: Princeton Univ. Press, 1995.
[25] Johnson, P. B., and R. W. Christy, Optical constants of the noble metals,'
Phys. Rev. B, vol. 6, pp. 4370{4379, 1972.
[26] Kottmann, J. P., O. J. F. Martin, D. R. Smith, and S. Schultz, Spectral
response of silver nanoparticles,' Opt. Express, vol. 6, pp. 213{219, 2000.
[27] Kottmann, J. P., and O. J. F. Martin, Plasmon resonant coupling in metallic
nanowires,' Opt. Express, vol. 8, p. 655, 2001.
[28] Kottmann, J. P., O. J. F. Martin, D. R. Smith, and S. Schultz, Dramatic
localized electromagnetic enhancement in plasmon resonant nanowires,' Chem.
Phys. Lett., vol. 341, pp. 1{6, 2001.
[29] Krenn, J. R. et al., Squeezing the optical near-‾eld by plasmon coupling of
metallic nanoparticles,' Phys. Rev. Lett., vol. 82, pp. 2590{2593, 1999.
[30] Lamprecht, B. et al., Surface plasmon propagation in microscale metal
stripes,' Appl. Phys. Lett., vol. 79, pp. 51{53, 2001.
[31] Li, A. P., F. MÄuller, and U. GÄosele, Polycrystalline and monocrystalline pore
arrays with large interpore distance in anodic alumina,' Electrochem. Solid-
State Lett., vol. 3, pp. 131{134, 2000.
[32] LÄusse, P., P. Stuwe, J. SchÄule, and H. G. Unger, Analysis of vectorial mode
‾elds in optical waveguides by an new ‾nite di®erence method,' J. Lightwave
Technol., vol. 12, pp. 487{493, 1994.
[33] Lynch, D. W., and W. R. Hunter, Handbook of Optical Constants of Solids.
Orlando, FL: Academic Press, 1985.
[34] Maier, S. A., M. L. Brongersma, P. G. Kik, and H. A. Atwater, Observation
of near-‾eld coupling in metal nanoparticle chains using far-‾eld polarization
spectroscopy,' Phys. Rev. B, vol. 65, 193408, 2002.
[35] Maier, S. A., P. G. Kik, and H. A. Atwater, Optical pulse propagation in metal
nanoparticle chain waveguides,' Phys. Rev. B, vol. 67, p. 205402, 2003.
[36] Mohammadi, A., H. Nadgaran, and M. Agio, COntour-path e®ective permit-
tivities for the two-dimensional ‾nite-di®erence time-domain method,' Opt.
Express, vol. 13, p.10367, 2005.
[37] Mohammadi, A., T. Jalali, and M. Agio, Dispersive contour-path algorithm
for the two-dimensional ‾nite-di®erence time-domain method,' Opt. Express,
vol. 16, p. 7397, 2008.
[38] Moskovits, M., Surface-enhanced spectroscopy,' Rev. of Modern Phys., vol.
57, pp. 783{826, 1985.
[39] Ohtera, Y., Calculating the complex photonic band structure by the ‾nite-
di®erence time-domain based method,' Jpn. J. Appl. Phys., vol. 47, pp. 4827{
4834, 2008.
[40] Porto, J. A., F. J. Garc¶³a-Vidal, and J. B. Pendry, Transmission Resonances
on Metallic Gratings with Very Narrow Slits,' Phys. Rev. Lett., vol. 83, pp.
2845{2848, 1999.
[41] Prescott, D. T., and N. V. Shuley, Extensions to the FDTD method for the
analysis of innitely periodic arrays,' IEEE Microwave Guided Wave Lett., vol.
4, pp. 352{354, 1994.
[42] Qiu, M., and S. He, A nonorthogonal ‾nite-di®erence time-domain method
for computing the band structure of a two-dimensional photonic crystal with
dielectric and metallic inclusions,' J. Appl. Phys., vol. 87, pp. 8268{8375, 2000.
[43] Quinten, M., A. Leitner, J. R. Krenn, and F. R. Aussenegg, Electromagnetic
energy transport via linear chains of silver nanoparticles,' Opt. Lett., vol. 23,
pp. 1331{1333, 1998.
[44] Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, A perfectly matched
anisotropic absorber for use as an absorbing boundary condition,' IEEE Trans.
Antennas Propagat., vol. 43, pp. 1460{1463, 1995.
[45] Shen, J. T., and P. M. Platzman, Properties of a one-dimensional metallopho-
tonic crystal,' Phys. Rev. B, vol. 70, 035101, 2004.
[46] Shen, J. T., P. B. Catrysse, and S. H. Fan, Mechanism for designing metallic
metamaterials with a high index of refraction,' Phys. Rev. Lett., vol. 94, 197401,
2005.
[47] StÄockle, R. M., Y. D. Suh, V. Deckert, and R. Zenobi, Nanoscale chemical
analysis by tip-enhanced Raman spectroscopy,' Chem. Phys. Lett., vol. 318,
pp. 131{136, 2000.
[48] Takakura, Y., Optical Resonance in a Narrow Slit in a Thick Metallic Screen,'
Phys. Rev. Lett., vol. 86, 5601, 2001.
[49] Turner, M., and C. Christodoulou, FDTD analysis of phased array antennas,'
IEEE Trans. Antennas Propag., vol. 47, pp. 661{667, 1999.
[50] Viets, C., and W. Hill, Single-‾bre surface-enhanced Raman sensors with an-
gled tips,' J. Raman Spectrosc., vol. 31, pp. 625{631, 2000.
[51] Weeber, J. C., A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, Plas-
mon polaritons of metallic nanowires for controlling submicron propagation of
light,' Phys. Rev. B, vol. 60, pp. 9061{9068, 1999.
[52] Yariv, A., Y. Xu, R. K. Lee, and A. Scherer, Coupled-resonator optical waveg-
uide: A proposal and analysis,' Opt. Lett., vol. 24, pp. 711{713, 1999.
[53] Yatsui, T., M. Kourogi, and M. Ohtsu, Plasmon waveguide for optical
far/near-‾eld conversion,' Appl. Phys. Lett., vol. 79, pp. 4583{4585, 2001.
[54] Yee, K. S. Numerical solution of initial boundary value problems involving
Maxwells equations in isotropic media,' IEEE Trans. Antennas Propagat., vol.
14, pp. 302{307, 1966.
[55] Zhao, Y., and Y. Hao, Finite-di®erence time-domain study of guided modes
in nano-plasmonic waveguides,' IEEE Trans. Antennas Propagat., vol. 55, pp.
3070{3077, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45621-
dc.description.abstract摘要
本篇論文採用二維有限時域差分法來研究奈米電漿子圓柱間的耦合現
象及一維的電漿子波導。我們使用Drude 色散模型模擬金屬,並使用
具有色散的單軸異向性完美匹配層作為相對應的計算空間吸收邊界。
首先,在色散材料的曲面模型中,我們比較了index-average scheme 和
conformal scheme 之間的差異。接著我們使用conformal scheme 來分析
奈米電漿子圓柱的散射截面積。近場強度和一維圓柱陣列的散射截面
積之間的關係也會在此做一些討論。此外,我們分別針對下列幾種不
同條件來計算散射截面積和近場強度: 1、不同的圓柱半徑 2、不同圓
柱間的距離 3、不同的入射波方向。最後,我們將有限時域差分法計
算出來的圓柱陣列結構色散關係圖與有限元素法得到的結果做比較;
另一方面,我們改變薄膜陣列的厚度並觀察色散關係和磁場分佈情形
的變化。
zh_TW
dc.description.abstractAbstract
In this research, a two-dimensional (2-D) finite-difference time-domain (FDTD)
analysis method is applied to study the coupling between nano-plasmonic cylinders
and mode characteristics 1-D nano-plasmonic waveguides. The Drude model for
metallic material dispersion is implemented into the FDTD algorithm along with
the dispersive uniaxial perfectly matched layer (UPML) as the absorbing boundary
condition for the computational domain. For the modeling of the curved surfaces for
the dispersive materials, we first compare the index-average scheme with the conformal scheme. We then apply the conformal scheme to analyze the total scattering
cross section (TSCS) of the nano-plasmonic cylinders. The relation between the
near field intensity and the TSCS of 1-D cylinder arrays are discussed. We calculate
the TSCS and the near field intensity by changing the size of the cylinder radius,
the distance between the neighboring cylinders, and the direction of the incidence
wave. Rather than applying frequency-domain methods, we try to use the FDTD
method to analyze the guiding conditions for 1-D nano-plasmonic cylinder and film
arrays. For the cylinder arrays, we compare the results calculated by the FDTD
method with those by the finite-element method (FEM) in our group. For the film
arrays, we vary the thickness of the films and observe the change of the dispersion
curves and magnetic field distributions of each guided mode.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:30:55Z (GMT). No. of bitstreams: 1
ntu-98-R96941087-1.pdf: 3937514 bytes, checksum: f0dcd99065f2a5c56bb36d406eb1dd8a (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsContents
1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 The Finite-Difference Time-Domain Method 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Uniaxial Perfectly Matched Layer Absorbing-Boundary Conditions . . 6
2.3 Schemes for Curved Interface Treatment . . . . . . . . . . . . . . . . 11
2.3.1 The Index-Average Scheme . . . . . . . . . . . . . . . . . . . 12
2.3.2 The Conformal Scheme . . . . . . . . . . . . . . . . . . . . . . 14
3 Modeling of Curved Surface for Dispersive Materials with FDTD
Lattice 22
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Comparison of the Index-Average Scheme and the Conformal Scheme 23
3.2.1 Near Field Scattered by a Single Nano-Plasmonic Cylinder . . 23
3.3 Modeling of Silver Nano-Cylinder Coupling . . . . . . . . . . . . . . . 25
3.3.1 Modeling of Scattering Cross Section . . . . . . . . . . . . . . 25
3.3.2 Cross Section for a Single Nano-Plasmonic Cylinder . . . . . . 26
3.3.3 Linear Arrays of Ag Nano-Cylinders . . . . . . . . . . . . . . 27
4 Modeling of One-Dimensional Nano-Plasmonic Waveguides 54
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Modeling of Guided Modes in Nano-Plasmonic Cylinder Waveguides . 55
i
4.2.1 Some Remarks for Simulation . . . . . . . . . . . . . . . . . . 56
4.2.2 A Single Row Array of Nano-Plasmonic Cylinders . . . . . . . 57
4.2.3 Nano-Plasmonic Cylinders with Finite Number of Periods . . 58
4.3 Guided Modes Supported by Plasmonic Films with a Periodic Ar-
rangement of Subwavelength Slits . . . . . . . . . . . . . . . . . . . . 59
4.3.1 Dispersion Relations for Different Thicknesses of the Nano-
Plasmonic Films . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Nano-Plasmonic Films with Finite Number of Periods . . . . . 62
5 Conclusion 90
dc.language.isoen
dc.subject奈米電漿子zh_TW
dc.subject王宸宇zh_TW
dc.subject有限差分時域法zh_TW
dc.subjectFDTDen
dc.subjectNano-Plasmonicen
dc.subjectCy Wangen
dc.title以有限差分時域法分析二維奈米電漿子結構之光散射與導波問題zh_TW
dc.titleFinite-Difference Time-Domain Analysis of Light Scattering and Guiding in Two-Dimensional Nano-Plasmonic Structuresen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江衍偉(Yean-Woei Kiang),王俊凱(Juen-Kai Wang)
dc.subject.keyword王宸宇,有限差分時域法,奈米電漿子,zh_TW
dc.subject.keywordCy Wang,FDTD,Nano-Plasmonic,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2009-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
3.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved