Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45618
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何志浩(Jr-Hau He)
dc.contributor.authorYi-Jui Linen
dc.contributor.author林怡瑞zh_TW
dc.date.accessioned2021-06-15T04:30:44Z-
dc.date.available2012-08-20
dc.date.copyright2009-08-20
dc.date.issued2009
dc.date.submitted2009-08-19
dc.identifier.citationCH1 Reference
1. Bernhard, C. G., Structural and functional adaptation in a visual system. Endeavor 1967, 26 (98), 79.
2. Tsumita, N.; Melngailis, J.; Hawryluk, A. M., Fabrication of x-ray masks using anisotropic etching of (110) Si and shadowing techniques. Journal of Vacuum Science and Technology 1981, 19 (4), 1211-1213.
3. Ono, Y.; Kimura, Y.; Ohta, Y., Antireflection effect in ultrahigh spatial-frequency holographic relief gratings. Applied Optics 1987, 26 (6), 1142-1146.
4. Lalanne, P.; Morris, G. M., Antireflection behavior of silicon subwavelength periodic structures for visible light. Nanotechnology 1997b, 8 (2), 53-56.
5. Gombert, A.; Glaubitt, W.; Rose, K.; Dreibholzc, J.; Bläsia, B.; Heinzela, A.; Spornb, D.; Döllc, W.; Wittwera, V., Subwavelength-structured antireflective surfaces on glass. Thin Solid Films 1999, 351 (1-2), 73-78.
6. Kanamori, Y.; Sasaki, M.; Hane, K., Broadband antireflection gratings fabricated upon silicon substrates. Optics Letters 1999, 24 (20), 1422-1424.
7. Boden, S. A.; Bagnall, D. M., Tunable reflection minima of nanostructured antireflective surfaces. Applied Physics Letters 2008, 93 (13), 133108.
8. Yu, Z.; Gao, H.; Wu, W.; Ge, H.; Chou, S. Y., Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff. Journal of Vacuum Science &
Technology B: Microelectronics and Nanometer Structures 2003, 21 (6), 2874-2877.
9. Kaless, A.; Schulz, U.; Munzert, P., Nano-motheye antireflection pattern by plasma treatment of polymers. Coatings Technology 2005, 200 (1-4), 58-61.
10. Kanamori, Y.; Roy, E.; Chen, Y., Antireflection sub-wavelength gratings fabricated by spin-coating replication. Microelectronic Engineering 2005, 78-79, 287-293.
11. Yang, S. M.; Jang, S. G.; Choi, D. G.; Kim, S.; Yu, H. K., Nanomachining by Colloidal Lithography. Small 2006, 2 (4), 458-475.
12. Lyshevski, S. E., Nano- and Micro- Electromechanical Systems:Fundamentals of Nano- and Microengineering. CRC Press,Boca Raton, FL 2005.
13. Chen, Y.; Pepin, A., Electrophoresis. 2001; Vol. 22, p 187.
14. Wouters, D.; Schubert, U. S., 2004; Vol. 116, p 2534.
15. Barthlott, W.; Neinhuis, C., Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202 (1), 1-8.
16. Feng, S.; Li, Y.; Li, H.; Li, L.; Zhang, J.; Zhai, Y.; Song, B.; Liu, L.; Jiang , D., Super-hydrophobic surfaces: From natural to artificial. Advanced Materials 2002, 14 (24), 1857-1860.
17. Boys, C. V., Soap bubbles. London, 1902.
18. Wenzel, R. N., Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry Research 1936, 28, 988-994.
19. Cassie, A.; Baxter, S., Wettability of porous surfaces. Translations of the Faraday Society 1994, 40, 546-551.
20. Stavenga, D. G.; Foletti, S.; Palasantzas, G.; Arikawa, K., Light on the moth-eye corneal nipple array of butterflies. Proceedings of the Royal Society B: Biological Sciences 2006, 273 (1587), 661-667.
CH2 Reference
1. Hecht, E., Optics Communications. 4th Edition ed ed.; Addison Wesley: San Francisco, 2002.
2. Turunen, J.; Wyrowski, F., Diffraction gratings In Diffractive Optics for Industrial and Commercial Applications. Akademie Verlag: Berlin, 1997.
3. Chang, Y. C. Design and Preliminary Fabrication of Nanostructured Surface for Anti-refelctive and Hydrophobic Effect. 2008.
4. Haus, H. A., Waves and Fields in Optoelectronics. New Jersey, 1984.
5. Goodman, J. W., Introduction to Fourier Optics. New York, 1996.
6. Griffiths, D. J., Introduction to Electrodynamics. New Jercy, 1999.
7. Lalanne, P.; Lemercier-Lalanne, D., On the effective medium theory of subwavelength periodic structures. Journal of Modern Optics 1996, 43, 2063-2086.
8. Lalanne, P.; Lemercier-Lalanne, D., Depth dependence of the effective properties of subwavelength gratings. Journal of the Optical Society of America A 1997, 14 (2), 450-458.
9. Wilson, S. J.; Hutley, M. C., The Optical Properties of 'Moth Eye' Antireflection Surfaces. Journal of Modern Optics 1982, 29 (7), 993 - 1009.
10. Wenzel, R. N., Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry Research 1936, 28, 988-994.
11. Bico, J.; Marzolin, C.; Quere, D., Pearl drops. Europhysics Letters 1999, 47 (6), 743-744.
12. Raguin, D. H.; Morris, G. M., Antireflection structured surfaces for the infrared spectral region. Applied Optics 1993, 32 (7), 1154-1167.
CH3 Reference
1. Huang, Y.-F.; Chattopadhyay, S.; Jen, Y.-J.; Peng, C.-Y.; Liu, T.-A.; Hsu, Y.-K.; Pan, C.-L.; Lo, H.-C.; Hsu, C.-H.; Chang, Y.-H.; Lee, C.-S.; Chen, K.-H.; Chen, L.-C., Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Natute Nanotechnology 2007, 2 (12), 770-774.
2. Potyrailo, R. A.; Ghiradella, H.; Vertiatchikh, A.; Dovidenko, K.; Cournoyer, J. R.; Olson, E., Morpho butterfly wing scales demonstrate highly selective vapour response. Nat Photon 2007, 1 (2), 123-128.
3. Parker, A. R.; Townley, H. E., Biomimetics of photonic nanostructures. Natute Nanotechnology 2007, 2 (6), 347-353.
4. Huang, J. Y.; Wang, X.; Wang, Z.-L., Controlled Replication of Butterfly Wings for Achieving Tunable Photonic Properties. Nano Letters 2006, 6 (10), 2325-2331.
5. Huang, J. Y.; Wang, X. D.; Wang, Z. L., Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes. Nanotechnology 2008, 19 (2), 025602.
6. Xu, H.; Lu, N.; Qi, D.; Hao, J.; Gao, L.; Zhang, B.; Chi, L., Biomimetic Antireflective Si Nanopillar Arrays. Small 2008, 4 (11), 1972-1975.
7. Xi, J. Q.; Schubert, M. F.; Kim, J. K.; Schubert, E. F.; Chen, M.; Lin, S.-Y.; LiuW; Smart, J. A., Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat Photon 2007, 1 (3), 176-179.
8. Stavenga, D. G.; Foletti, S.; Palasantzas, G.; Arikawa, K., Light on the moth-eye corneal nipple array of butterflies. Proceedings. Biological sciences 2006, 273, 661-667.
9. Silke, L. D.; Vecchi, G.; Algra, R. E.; Hartsuiker, A.; Muskens, O. L.; Immink, G.; Bakkers, E.; Vos, E. W.; Rivas, J. E., Broad-band and Omnidirectional Antireflection Coatings Based on Semiconductor Nanorods. Advanced Materials 2009, 21 (9), 973-978.
10. Macdonald, D. H.; Cuevas, A.; Kerr, M. J.; Samundsett, C.; Ruby, D.; Winderbaum, S.; Leo, A., Texturing industrial multicrystalline silicon solar cells. Solar Energy 76 (1-3), 277-283.
11. Chen, H. L.; Chuang, S. Y.; Lin, C. H.; Lin, Y. H., Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells. Optics Express 2007, 15 (22), 14793-14803.
12. Zaidi, S. H.; Ruby, D. S.; Gee, J. M., Characterization of random reactive ion etched-textured silicon solar cells. Electron Devices, IEEE Transactions on 2001, 48 (6), 1200-1206.
13. Zhao, J.; Wang, A.; Green, M.; Ferrazza, F., 19.8% efficient ``honeycomb' textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters 1998, 73 (14), 1991-1993.
14. Kanamori, Y.; Sasaki, M.; Hane, K., Broadband antireflection gratings fabricated upon silicon substrates. Optics Letters 1999, 24 (20), 1422-1424.
15. Boden, S. A.; Bagnall, D. M., Tunable reflection minima of nanostructured antireflective surfaces. Applied Physics Letters 2008, 93 (13), 133108-3.
16. Hadobas, K.; Kirsch, S.; Carl, A.; Acet, M.; Wassermann, E. F., Reflection properties of nanostructure-arrayed silicon surfaces. Nanotechnology 2000, 11, 161.
17. Yu, Z.; Gao, H.; Wu, W.; Ge, H.; Chou, S. Y., Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff. Journal of Vacuum Science &
Technology B: Microelectronics and Nanometer Structures 2003, 21 (6), 2874-2877.
18. Montanari, I.; Nogueira, A.; Nelson, J.; Durrant, J. R.; Winder, C.; Loi, M. A.; Sariciftci, N. S.; Brabec, C., Transient optical studies of charge recombination dynamics in a polymer/fullerene composite at room
temperature. Applied Physics Letters 2002, 81 (16), 3001-3003.
19. Yang, S. M.; Jang, S. G.; Choi, D. G.; Kim, S.; Yu, H. K., Nanomachining by Colloidal Lithography. Small 2006, 2 (4), 458-475.
20. Boden, S. A.; Bagnall, D. M., Tunable reflection minima of nanostructured antireflective surfaces. Applied Physics Letters 2008, 93 (13), 133108.
21. Sai, H.; Kanamori, Y.; Arafune, K.; Ohshita, Y.; Yamaguchi, M., Light trapping effect of submicron surface textures in crystalline Si solar cells. Progress in Photovoltaics: Research and Applications 2007, 15 (5), 415-423.
22. Ting, C.-J.; Huang, M.-C.; Tsai, H.-Y.; Chou, C.-P.; Fu, C.-C., Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology. Nanotechnology 2008, 19 (20), 205301.
23. Kanamori, Y.; Roy, E.; Chen, Y., Antireflection sub-wavelength gratings fabricated by spin-coating replication. Microelectronic Engineering 2005, 78-79, 287-293.
24. Hadobás, K.; Kirsch, S.; Carl, A.; Acet, M.; Wassermann, E. F., Reflection properties of nanostructure-arrayed silicon surfaces Nanotechnology 2000, 11, 161-164.
25. Chen, W.; Fadeev, A. Y.; Hsieh, M. C.; Oner, D.; Youngblood, J.; McCarthy, T. J., Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples. Langmuir 1999, 15 (10), 3395-3399.
26. Barthlott, W.; Neinhuis, C., Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202 (1), 1-8.
27. Neiehuis, C.; Barthlott, W., Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces. Ann Bot 1997, 79 (6), 667-677.
28. Min, W.-L.; Jiang, B.; Jiang, P., Bioinspired Self-Cleaning Antireflection Coatings. Advanced Materials 2008, 20 (20), 3914-3918.
29. Min, W.-L.; Jiang, B.; Jiang, P., Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength. Nanotechnology 2008, 19 (475604), 1-7.
30. Sun, T.; Feng, L.; Gao, X.; Jiang, L., Bioinspired Surfaces with Special Wettability. Accounts of Chemical Research 2005, 38 (8), 644-652.
31. Legtenberg, R.; Jansen, H.; de Boer, M.; Elwenspoek, M., Anisotropic Reactive Ion Etching of Silicon Using SF6/O2/CHF3 Gas Mixtures. Journal of the Electrochemical Society 1995, 142 (6), 2020-2028.
32. Kanamori, Y.; Hane, K.; Sai, H.; Yugami, H., 100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask. Applied Physics Letters 2001, 78 (2), 142-143.
33. Adachi, S., Optical dispersion relations for Si and Ge. Journal of Applied Physics 1989, 66 (7), 3224-3231.
34. Layadi, N.; Donnelly, V. M.; Lee, J. T. C.; Klemens, F. P., Cl2 plasma etching of Si(100): Damaged surface layer studied by in situ spectroscopic ellipsometry. The Journal of Vacuum Science and Technology A 1997, 15, 604-609.
35. Jahns, J., J. Turunen and F. Wyrowski (eds.), Diffractive Optics for Industrial and Commercial Applications, Akademie Verlag, Berlin, Germany, 1997. 426 pp. Laser and Particle Beams 1999, 17 (01), 139-141.
36. Poruba, A.; Fejfar, A.; Remes, Z.; Springer, J.; Vanecek, M.; Kocka, J.; Meier, J.; Torres, P.; Shah, A., Optical absorption and light scattering in microcrystalline silicon thin films and solar cells. Journal of Applied Physics 2000, 88 (1), 148-160.
37. Ohlidal, I.; Lukes, F.; Navratil, K., Rough silicon surfaces studied by optical methods. Surface Science 1974, 45 (1), 91-116.
38. Beckman, P.; Spizzichno, A., The Scattering of Electromagnetic Waves from Rough Surfaces. Pergamon Press, Oxford 1963, chapter 5.
39. Yoshida, H.; Terada, Y.; Miyake, H.; Hiramatsu, K., Antireflection Effect of Self-Organized GaN Nanotip Structure from Ultraviolet to Visible Region. Japanese Journal of Applied Physics 2002, 41 (10B), L1134-L1136.
40. Hu, L.; Chen, G., Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications. Nano Letters 2007, 7 (11), 3249-3252.
41. Kattawar, G. W.; Eisner, M., Radiation from a Homogeneous Isothermal Sphere. Applied Optics 1970, 9 (12), 2685-2690.
42. Jonathan G. C. Veinot; Tobin J. Marks, Toward the Ideal Organic Light-Emitting Diode. The Versatility and Utility of Interfacial Tailoring by Cross-Linked Siloxane Interlayers. ChemInform 2005, 36 (44).
43. Bico, J.; Marzolin, C.; Quere, D., Pearl drops. Europhysics Letters 1999, 47 (6), 743-744.
44. Wenzel, R. N., Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry Research 1936, 28, 988-994.
CH4 Reference
1. Parag, D.; Gerald, E. J.; Ajeet, R., Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics. Applied Optics 1997, 36 (30), 7826-7837.
2. Walheim, S.; Schaffer, E.; Mlynek, J.; Steiner, U., Nanophase-separated polymer films as high-performance antireflection coatings. Science 1999, 283 (5401), 520-522.
3. Kanamori, Y.; Sasaki, M.; Hane, K., Broadband antireflection gratings fabricated upon silicon substrates. Optics Letters 1999, 24 (20), 1422-1424.
4. Chen, H. L.; Chuang, S. Y.; Lin, C. H.; Lin, Y. H., Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells. Optics Express 2007, 15 (22), 14793-14803.
5. Hadobás, K.; Kirsch, S.; Carl, A.; Acet, M.; Wassermann, E. F., Reflection properties of nanostructure-arrayed silicon surfaces Nanotechnology 2000, 11, 161-164.
6. Lin, G. R.; Chang, Y. C.; Liu, E. S.; Kuo, H. C.; Lin, H. S., Low refractive index Si nanopillars on Si substrate. Applied Physics Letters 2007, 90, 181923.
7. Hsu, C.-M.; Connor, S. T.; Tang, M. X.; Cui, Y., Wafer-scale silicon nanopillars and nanocones by Langmuir--Blodgett assembly and etching. Applied Physics Letters 2008, 93 (13), 133109-3.
8. Heine, C.; Morf, R. H., Submicron gratings for solar applications. Applied Optics 1995, 34, 2476-2482.
9. Nikolajeff, F.; Lofving, B.; Johansson, M.; Bengtsson, J.; Hard, S.; Heine, C., Fabrication and Simulation of Diffractive Optical Elements with Superimposed Antireflection Subwavelength Gratings. Applied Optics 2000, 39 (26), 4842-4846.
10. Guha, S.; Gusev, E. P.; Okorn-Schmidt, H.; Copel, M.; Ragnarsson, L.; Bojarczuk, N. A.; Ronsheim, P., High temperature stability of Al2O3 dielectrics on Si: Interfacial metal diffusion and mobility degradation.
Applied Physics Letters 2002, 81 (16), 2956-2958.
11. Xiao, L.; Chen, Z.; Feng, C.; Liu, L.; Bai, Z. Q.; Wang, Y.; Qian, L.; Zhang, Y.; Li, Q.; Jiang, K.; Fan, S., Flexible, Stretchable, Transparent Carbon Nanotube Thin Film Loudspeakers. Nano Letters 2008, 8 (12), 4539-4545.
12. Sun, T.; Feng, L.; Gao, X.; Jiang, L., Bioinspired Surfaces with Special Wettability. Accounts of Chemical Research 2005, 38 (8), 644-652.
13. Extrand, C. W., Criteria for Ultralyophobic Surfaces. Langmuir 2004, 20 (12), 5013-5018.
14. Wu, H.-M.; Lai, C.-M.; Peng, L.-H., Optical response from lenslike semiconductor nipple arrays. Applied Physics Letters 2008, 93, 211903.
15. Wilson, S. J.; Hutley, M. C., The Optical Properties of 'Moth Eye' Antireflection Surfaces. Journal of Modern Optics 1982, 29 (7), 993 - 1009.
16. Sun, C.-H.; Jiang, P.; Jiang, B., Broadband moth-eye antireflection coatings on silicon. Applied Physics Letters 2008, 92 (6), 061112-3.
17. Wei, H.-L.; Huang, H.; Woo, C.-H.; Zheng, R.-K.; Wen, G.-H.; Zhang, X.-X., Development of 110 texture in copper thin films. Applied Physics Letters 2002, 80 (1), 2290.
18. Raguin, D. H.; Morris, G. M., Antireflection structured surfaces for the infrared spectral region. Applied Optics 1993, 32 (7), 1154-1167.
19. Boden, S. A.; Bagnall, D. M., Tunable reflection minima of nanostructured antireflective surfaces. Applied Physics Letters 2008, 93 (13), 133108.
20. Sai, H.; Kanamori, Y.; Arafune, K.; Ohshita, Y.; Yamaguchi, M., Light trapping effect of submicron surface textures in crystalline Si solar cells. Progress in Photovoltaics: Research and Applications 2007, 15 (5), 415-423.
21. Ting, C.-J.; Huang, M.-C.; Tsai, H.-Y.; Chou, C.-P.; Fu, C.-C., Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology. Nanotechnology 2008, 19 (20), 205301.
22. Kanamori, Y.; Roy, E.; Chen, Y., Antireflection sub-wavelength gratings fabricated by spin-coating replication. Microelectronic Engineering 2005, 78-79, 287-293.
23. Chen, W.; Fadeev, A. Y.; Hsieh, M. C.; Oner, D.; Youngblood, J.; McCarthy, T. J., Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples. Langmuir 1999, 15 (10), 3395-3399.
24. Buyanova, I. A.; Henry, A.; Monemar, B.; Lindstrom, J. L.; Oehrlein, G. S., Photoluminescence characterization of SF6---O2 plasma etching of silicon. Materials Science and Engineering B 1996, 36 (1-3), 100-103.
25. Oehrlein, G. S., Dry etching damage of silicon: A review. Materials Science and Engineering: B 1989, 4 (1-4), 441-450.
26. Oehrlein, G. S.; Robey, S. W.; Lindstrom, J. L.; Chan, K. K.; Jaso, M. A.; Scilla, G. J., Surface Modifications of Electronic Materials Induced by Plasma Etching. Journal of the Electrochemical Society 1989, 136 (7), 2050-2057.
27. Legtenberg, R.; Jansen, H.; Boer de, M.; Elwenspoek, M., Anisotropic reactive ion etching of silicon using SF6/02/CHF3 gas mixtures. Journal of the Electrochemical Society 1995, 142 (6), 2020-2028.
28. Garcia-Vidal, F. J.; Pitarke, J. M.; Pendry, J. B., Effective Medium Theory of the Optical Properties of Aligned Carbon Nanotubes. Physical Review Letters 1997, 78 (22), 4289.
29. Stavenga, D. G.; Foletti, S.; Palasantzas, G.; Arikawa, K., Light on the moth-eye corneal nipple array of butterflies. Proceedings. Biological sciences 2006, 273, 661-667.
30. Hadobas, K.; Kirsch, S.; Carl, A.; Acet, M.; Wassermann, E. F., Reflection properties of nanostructure-arrayed silicon surfaces. Nanotechnology 2000, 11, 161.
31. Kawanishi, T., The shift of Brewster's scattering angle. Optics Communications 2000, 186 (4-6), 251-258.
32. Guo, C.; Feng, L.; Zhai, J.; Wang, G.; Song, Y.; Jiang, L.; Zhu, D., Large-Area Fabrication of a Nanostructure-Induced Hydrophobic Surface from a Hydrophilic Polymer. ChemPhysChem 2004, 5 (5), 750-753.
33. Hideo, N.; Ryuichi, I.; Yosuke, H.; Hiroyuki, S., Effects of surface roughness on wettability. Acta Materialia 1998, 46 (7), 2313-2318.
CH6 Reference
1. Cui, Y.; Lieber, C. M., Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks. Science 2001, 291 (5505), 851-853.
2. Ma, D. D. D.; Lee, C. S.; Au, F. C. K.; Tong, S. Y.; Lee, S. T., Small-Diameter Silicon Nanowire Surfaces. Science 2003, 299 (5614), 1874-1877.
3. Duan, X.; Niu, C.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L., High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425 (6955), 274-278.
4. Shao, M.-W.; Yao, H.; Zhang, M.-L.; Wong, N.-B.; Shan, Y.-Y.; Lee, S.-T., Fabrication and application of long strands of silicon nanowires as sensors for bovine serum albumin detection. Applied Physics Letters 2005, 87 (18), 183106.
5. Wang, Q.; et al., Field emission properties of carbon coated Si nanocone arrays on porous silicon. Nanotechnology 2005, 16 (12), 2919.
6. Li, Y.; Zhang, J.; Zhu, S.; Dong, H.; Wang, Z.; Sun, Z.; Guo, J.; Yang, B., Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings. Journal of Materials Chemistry 2009, 19, 1806 - 1810.
7. Huang, Z.; Fang, H.; Zhu, J., Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density. Advanced Materials 2007, 19 (5), 744-748.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45618-
dc.description.abstract從近幾十年以來,抗反射模的概念已經普遍地落實於光學的應用上,用以抑制多餘的反射光,由其是現今發展蓬勃的太陽能產業與面板產業。例如,多層膜結構,並且廣泛地利用在光電元件中,但是卻存在黏著性較差、熱穩定性不好以及晶格不匹配...等問題。相比較之下,週期性次波長表面結構,比起傳統的鍍膜技術,具有更好的抗反射效果,像是抑制波段與角度範圍較寬、優異的疏水性和不受材料選擇限制...等優點;在製作上亦不很困難,具有相當高的發展性。到目前為止,次波長結構已經藉由各種的方法被製作在矽基板上。另外,透過加強光電元件的表面疏水性將可使元件具有自我清潔的能力,將會更具有吸引力。
本文中將會利用週期性次波長結構以結合抗反射與疏水性的特性。透過奈米米球膠體顯影技術,可以迅速地獲得奈米週期性的圖案,避免其它複雜且昂貴的奈米顯影技術,較傳統製程具備有更好的成本優勢,再配合反應離子蝕刻的過程,得到具有高度可調性的抗反射奈米柱陣列。最後,配合反射光譜儀的量測,我們成功地製作出寬波段與廣角度的抗反射結構。同時,在不同外表形貌(直徑、高度和邊壁斜度)下的奈米柱陣列,會有著接觸角與反射率的變化表現,在本文中會有更進一步的討論與分析。
zh_TW
dc.description.abstractThe antireflection (AR) coatings are utilized to suppress undesired reflection between different optical media for various optical applications. For example, Multilayered coatings are widely used on the surface of optical and optoelectronic devices. However, it is suffered from the problems, such as poor adhesion, thermal instability, and lattice mismatch. An alternative to multilayered coatings is to pattern the surface with a periodically structured array with the periodicity smaller than the wavelength of the incident light. Compared with multilayered AR coatings, subwavelength structure (SWS) surfaces show several advantages over the conventional dielectric AR coating, including broad spectral and angular response, hydrophobicity, and durable, because the AR structures are directly etched in the surface and there are no other materials involved. So far SWSs has been fabricated on silicon have been fabricated by various methods. Moreover, enhance-hydrophobic effect on surfaces of optoelectronic devices has attracted attention because of their self-cleaning effect.
In the present work, the SWSs combining AR and enhanced hydrophobic effects was reported. A simple method, which combines sub-wavelength-scale monolayer nanospheres (Colloidal lithography) with a reactive ion etching process, to fabricate AR structures of Si nanorod arrays (NRAs) was used. Spectral reflectance measurements of Si substrates with NRA SWSs showed drastic reduction in reflection over a broad range of wavelengths and a wide range of angle of incidence, demonstrating its ability to broadband and omnidirectional antireflection. The reflectivity and the contact angle as a function of diameter, height, slope of Si NWAs were discussed.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:30:44Z (GMT). No. of bitstreams: 1
ntu-98-R96941089-1.pdf: 2434685 bytes, checksum: 9b2cd6e1441f545bfe675788d9e4448d (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘要 i
Abstract ii
Acknowledgement iv
Contents v
List of figures vii
Chapter 1 : Introduction 1
1.1 Preface 1
1.2 Review of Existed Technologies 3
1.2.1 Anti-reflective (AR) Effect 3
1.2.2 Colloidal Lithography 6
1.2.3 Self-Cleaning Effect 9
1.3 List of Figures 10
1.4 Reference 11
Chapter 2 : Theory 14
2.1 The Diffraction Grating 14
2.2 AR Sub-Wavelength Gratings 16
2.2.1 Optical Approaches to Different Scales 16
2.2.2 Effective Medium Theory (EMT) 18
2.2.3 Gratings with Anti-Reflective Behaviors 19
2.3 Hydrophobic Surfaces 21
2.3.1 Contact angle on material surface 21
2.3.2 Enhanced self-cleaning effect for multi-scaled structure 23
2.4 List of Figures 24
2.5 Reference 24
Chapter 3 : Fabrication of Dimension-tunable Si Nanorod Arrays with Antireflection and Self-Cleaning Properties 26
3.1 Introduction 26
3.2 Experiments 29
3.3 Results and Discussion 29
3.4 Summary 37
3.5 List of Figures 38
3.6 Reference 39
Chapter 4 : Fabrication of Slope-Tunable Si Nanorod Arrays with Antireflection and Self-Cleaning Properties 46
4.1 Introduction 46
4.2 Experiments 48
4.3 Results and Discussion 49
4.4 Summary 55
4.5 List of Figures 56
4.6 Reference 57
Chapter 5: Conclusions 63
Chapter 6: Future Work-Fabrication of Silicon Nanowire Arrays by Catalytic Etching 65
6.1 Introduction 65
6.2 Approach 66
6.3 List of Figures 67
6.4 Reference 67
dc.language.isoen
dc.title以矽奈米柱陣列作為具疏水性質之次波長抗反射結構zh_TW
dc.titleFabrication and Characterization of Si Nanorod Arrays as Subwavelength Self-cleaning Antireflection Coatingsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林清富(Ching-Fuh Lin),林恭如(Gong-Ru Lin),陳玉彬(Yu-Bin Chen)
dc.subject.keyword抗反射,次波長,膠體顯影術,反應離子蝕刻,奈米柱,接觸角,zh_TW
dc.subject.keywordAnti-reflection,Subwavelength,Colloidal lithography,Reactive ion etching,Nanorod,Contact angle,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2009-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
2.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved