請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45568完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何志浩(Jr-Hau He) | |
| dc.contributor.author | Yen-Te Chiang | en |
| dc.contributor.author | 江彥德 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:27:43Z | - |
| dc.date.available | 2010-08-21 | |
| dc.date.copyright | 2009-08-21 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-20 | |
| dc.identifier.citation | 1.5 References
[1] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生, 國研科技創刊號, (2004) [2] Gerhard Muller, Thomas Happ, Michael Kund, Gill Yong Lee, Nicolas Nagel, and Recai Sezi, IEDM, 04, 567 (2004). [3] Woo Lee, Hee Han, Andriy Lotnyk, Markus Andreas Schubert, Stephan Senz, Marin Alexe, Dietrich Hesse, Sunggi Baik and Ulrich Gösele, Nature Nanotechnology, 3, 402 - 407 (2008). [4] Johan Åkerman, Applied Physics, 308, 5721 (2005). [5] Stefan Lai, IEDM, 03, 255 (2003). [6] Hickmott, T. W., J. Appl. Phys., 33, 2669–2682 (1962). [7] Rainer Waser and Masakazu Aono, Nature Materials, 6, 833-840 (2007). [8] I. G. Baek et al., Technical Digest—International Electron Devices Meeting, San Francisco, CA, 12–14 December 2004 [9] L. P. Ma, J. Liu, and Y. Yang, Appl. Phys. Lett., 80, 2997, (2002). [10] Liping Ma, Jie Liu, Seungmoon Pyo, and Yang Yang, Appl. Phys. Lett., 80, 362, (2002) . [11] D. Tondelier, K. Lmimouni, D. Vuillaume, C. Fery and G. Haas, Appl. Phys. Lett., 85, 5763, (2004). [12] Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater., 200, 1 (1999). [13] A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura, Nature (London), 388, 50 (1997). [14] S.Q. Liu, N. J.Wu, and A. Ignatiev, Appl. Phys. Lett., 76, 2749 (2000). 26 [15] 吳文斌、黃迪靖, “強電子關聯材料的軌域物理” 國家同步輻射研究中心簡訊 (2004). [16] Yoshinori Tokura, “Colossal Magnetoresistive Oxide,” p3, Gordon and breach science publishers. [17] C. Zener, Phys. Rev., 81, 440 (1951). [18] S. Mori, C. H. Chen and S.W. Cheong, Nature(Londom), 392, 473 (1998). [19] J. M. Tranquada, B.J. Sternlieb, .D. Axe,Y. Nakamura and S. Uchida, Nature(London), 375, 561 (1995). [20] H. T. Jeng, G. Y. Guo, and D. J. Huang, Phys. Rev. Lett., 93, 156403 (2004). [21] A. Baikalov, Y. Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y. Y. Sun, Y. Y. Xue and C. W. Chu, Appl. Phys. Lett., 83,957(2003). [22] X. Chen, N. J. Wu, J. Strozier, and A. Ignatiev, Appl. Phys. Lett., 87, 233506, (2005). [23] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, and I. K. Yoo, Appl. Phys. Lett., 85, 5655 (2004). [24] G. DEARNALEY, A. M. STONEHAM, D. V. MORGANS, Rep. Prog. Phys., 33, 1129-1191 (1970). [25] LV Hang-Bing, ZHOU Peng, FU Xiu-Feng, YIN Ming, SONG Ya-Li, TANG Li, TANG Ting-Ao, LIN Yin-Yin, CHIN.PHYS.LETT., 25, 1087 (2008). [26] Wen-Yuan Chang, Yen-Chao Lai, Tai-Bor Wu, Sea-Fue Wang, Frederick Chen, and Ming-Jinn Tsai, Appl. Phys. Lett., 92, 022110, (2008). 27 [27] N. Xu, B. Gao, L.F. Liu, Bing Sun, X.Y. Liu, R.Q. Han, J.F. Kang, and B. Yu,Symposium on VLSI Technology Digest of Technical Papers, 100 (2008). [28] B. Gao, S. Yu, N. Xu, L.F. Liu, B. Sun, X.Y. Liu, R.Q. Han, J.F. Kang, B. Yu, Y.Y. Wang, IEEE, 563 (2008). [29] M. Arif, M. Yun, S. Gangopadhyay, K. Ghosh, L. Fadiga, F. Galbrecht, U. Scherf, and S. Guha, Phys. Rev. B, 75, 195202 (2007). [30] A. Alec Talin, Franc¸ois Le´onard, B. S. Swartzentruber, Xin Wang, and Stephen D. Hersee, Phys. Review Letts., 101, 076802 (2008). [31] C. M. Lieber, MRS Bull., 28, 486–491 (2003). [32] R. S. Friedman, M. C. McAlpine, D. S. Ricketts, D. Ham and C. M. Lieber, Nature, 434, 1085 (2005). [33] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, Adv. Mater., 13, 113–116 (2001). [34] Z. W. Pan, Z. R. Dai and Z. L. Wang, Science, 291, 1947–1949 (2001). [35] J. T. Hu, T. W. Odom and C. M. Lieber, Accounts of Chemical Research, 32, 435 (1999). [36] Y. Cui and C. M. Lieber, Science, 291, 851 (2001). [37] Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim and C. M. Lieber, Science, 294, 1313 (2001). [38] Z. L. Wang, Nanowires and Nanobelts: Materials, Properties and Devices. Metal and 28 Semiconductor Nanowires, Kluwer Academic Publishers, Norwell, MA, 2003. [39] X. D. Wang, J. Zhou, J. H. Song, J. Liu, N. S. Xu and Z. L. Wang, Nano Lett., 6, 2768–2772 (2006). [40] J. H. He, Y. H. Lin, M. E. McConney, V. V. Tsukruk, Z. L. Wang and G. Bao, Journal of Applied Physics, 102, 084303 (2007). [41] Z. L. Wang and J. H. Song, Science, 312, 242–246 (2006). [42] J. H. He, J. H. Hsu, C. W. Wang, H. N. Lin, L. J. Chen and Z. L. Wang, J. Phys. Chem. B, 110, 50 (2006). [43] X. Bai, E. G. Wang, P. Gao and Z. L. Wang, Nano Lett., 3, 1147 (2003). 2.7 References [1] J. H. He, C. H. Ho, C. W. Wang, Y. Ding, L. J. Chen, and Zhong L. Wang, Crys. Growth and Design, 9, p. 17 (2009). [2] Fernando Patolsky, Gengfeng Zheng, Charles M Lieber, Nature Protocols, 1, p. 1711 (2006). [3] K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, and F. Ren, Appl. Phys. Letts, 84, 544 (2004). [4] T. V. Blank and Yu. A. Gol’dberg, Semiconductor, 41, 1263 (2007). 3.4 Reference [1] B. Govoreanu, D. P. Brunco, and J. Van Houdt, “Scaling down the interpoly dielectric for next generation flash memory: challenges and opportunities,” Solid-St. Electronics, vol. 49, pp. 1841-1848, 2005 [2] Semiconductor Industry Asociation (SIA): International Technology Roadmap for Semiconductor (ITRS), online at http://public.itrs.net [3] B. Govoreanu, D. P. Brunco and J. Van Houdt, Solid-Stats Electronics, 49 (2005) 1841-1848. [4] W. J. Zhu, T. Tamagawa, M. Gibson, T. Furukawa, and T. P. Ma, IEEE Electron Device Lett, vol. 23, No. 11, Nov 2002. [5] G. Molas, H. Grampeix, J. Buckley, M. Bocquet, X. Garros, F. Martin, J. P. Colonna, P. Brianceau, V. Vidal, M. Gely, B. De Salvo, S. Deleonibus, C. Bongiorno and S. Lombardo, Proc. ESSDERC, 2006, p. 242. [6] Ching-Yuan Ho*, Chenhsin Lien, Y. Sakamoto, R.J. Yang, Hiro Fijita, C.H. Liu, Y.M. Lin, S. Pittikoun and S. Aritome, “Improvement of Inter-Poly Dielectric Characteristics by Plasma Nitridation and Oxidation for Future NAND Flash Memory”, IEEE Electron Device Letts., Vol. 29, No. 11, pp. 1199, 2008. (SCI Impact Factor: 2.486, 2007) [7] Y. Y Chen, and C. H. Chien, IEEE, Electron Device Lett, 28 (2007) 700 58 [8] J. R. Power, Y. Gong, G. Tempel, E. O. Andersen, W. Langheinrich, D. Shum, R. Strenz, L. Pescini, R. Kakoschke, K. van de Zanden, R. Allinger, Workshop. 21st. Non-Volatile Semiconductor Memory Workshop, 26-30 Aug. 2007, p. 27 [9] John Robertson, Ka Xiong, and Koon-Yiu Tse, ICICDT, 2007, 1-4 [10] D. C. Worledge, Appl. Phys. Lett, 2004, 84, 4559 [11] D. S. Chao, C. H. Lien, C. M. Lee, Y. C. Chen, J. T. Yeh, Fred Chen, M. J. Chen, Philip H, Yen, M. J. Kao, M. J. Tsai, Appl. Phys. Lett, 2008, 92, no. 6 [12] K.-F. Kao, C.-M. Lee, M.-J. Chen, M.-J. Tsai, and T.-S. Chin, Adv. Mater. 2009, 21, 1695. [13] J. H. Jung, J.-H. Kim, T. W. Kim, M. S. Song, Y.-H. Kim, and S. Jin, Appl. Phys. Lett, 2006, 89,122110. [14] S. H. Jo, K. H. Kim, Wei Lu, Nano Letts, 2009, 9, 870. [15] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D.-S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U.-In Chung, and J. T. Moon, 2004, IEDM, 587. [16] Heo, Y. W., Norton, D. P, Tien, L. C., Kwon, Y., Kang, B. S., Ren, F., Pearton, S. J., LaRoche, J. R., Mater. Sci. Eng., R. 2004, 47, 1. [17] S. Kim and Y.-Y Choi, Appl. Phys. Letts, 2008, 92, 223508. [18] K. Jung, J. Choi, Y. Kim, H. Lm, S. Seo, R. Jung, D. Kim, J.-S Kim, B. H. Park, and J. P. Hong, J. Appl. Phys, 2008, 103, 034504. 59 [19] B. J. Choi, D. S. Jeong, and S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, J. Appl. Phys, 2005, 98, 033715. [20] N. Xu, B. Gao, L. F. Liu, B. Sun, X. Y. Liu, R. Q. Han, J. F. Kang, and B. Yu, VLSI, 2008, 100. [21] B. Gao, S. Yu, N. Xu, L. F. Liu, B. Sun, X. Y. Liu, R. Q. Han, J. F. Kang, B. Yu, and Y. Y. Wang, [22] C. Cagli, D. Ielmini, F. Nardi, and A. L. Lacaita, [23] W.-Y. Chang, Y.-C. Lai, T.-B. Wu, S.-F. Wang, F. Chen, and M.-J. Tsai, Appl. Phys. Letts, 2008, 92, 022110. [24] J. H. He, C. H. Ho, C. W. Wang, Y. Ding, L. J. Chen, and Zhong L. Wang, Crys. Growth and Design, 2009, 9, 17. [25] J. H. He, P. H. Chang, C. Y. Chen, K. T. Tsai, Nanotechnology, 2009, 20, 135701. [26] Zhiyong Fan and Jia G. Lu, Journal of nanoscience and nanotechnology, 2005, 5, 1561 [27] K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, and F. Ren, Appl. Phys. Letts, 2004, 84, 544. [28] T. V. Blank and Yu. A. Gol’dberg, Semiconductor, 2007, 41, 1263 [29] D. R. Lide, CRC Handbook of Chemistry and Physics, 76th ed. [30] J.-J Chen, Soohwan Jang, T. J. Anderson, and F. Ren, Appl, Phys, Lett, 2006, 88, 122107. [31] G. N. Panin, A. N. Baranov, O. V. Kononenko, S. V. Dubonos and T. W. Kang, 2007, 60 Physics of Semiconductors, 28' International Conference, 743. [32] T. Ször´enyi, L.D. Laude, I. Bert´oti, Z. K´antor, Z. Geretovszky, J. Appl. Phys. 1995, 78, 6211 [33] p.-t. hsieh, y.-c. chen, k.-s. Kao, c.-m.wang, Appl. Phys A, 2008, 90, 317. [34] N. Xu, B. Gao, L.F. Liu*, Bing Sun, X.Y. Liu, R.Q. Han, J.F. Kang, and B. Yu, 2008 Symposium on VLSI Technology Digest of Technical Papers, 100. [35] B. Gao, S. Yu, N. Xu, L.F. Liu, B. Sun, X.Y. Liu, R.Q. Han, J.F. Kang*, B. Yu†, Y.Y. Wang. [36] N. F. Mott, Clarendon Press, Oxford 1979. [37] Z. Fan, and J. G. Lu, J. Nanosci Nanotechnol. 2005, 5, 1561. [38] P. Chang, Z. Fan, W. Tseng, D. Wang, W. Chiou, J. Hong, J. G. Lu, Chem. Mater. 2004, 16, 5133. [39] A. Alec Talin, Franc¸ois Le´onard, B. S. Swartzentruber, Xin Wang, and Stephen D. Hersee, Phys. Review Letts., 2008, 101, 076802. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45568 | - |
| dc.description.abstract | 本篇研究論文藉由汽相催化轉換再凝結之製程,沉積出單晶系的氧化鋅奈米帶(ZnO NB)探討其電阻轉換現象,藉由量測氧化鋅奈米帶的電流(I)-電壓(V)關係曲線,顯示出在以往體狀薄膜電容架構下的單極性電阻轉換器所無法顯現出的某些受關注且特殊的特性;首先觀察到的是,相較重置電壓而言,得到較小的置入電壓以及高電阻態(HRS)與低電阻態(LRS)的電阻轉換率為4~5 個階級,其中,高電阻態、低電阻態可藉由外加偏壓調節。我們以空間電荷極限電流理論與提供
載子傳輸位置的氧缺陷相結合,提出主要載子傳輸機制與電阻轉換的機制。藉由I-V 曲線中,線性區域( ∝V)與二次方區域( ∝V2)求得的交點電壓可知,體狀薄膜結構與長寬比例顯著的氧化鋅奈米帶結構差異極大。 | zh_TW |
| dc.description.abstract | The phenomenon of resistive switching in single crystal of zinc oxide nanobelt(ZnO NB) fabricated by catalytically activated vapor phase transport and condensation deposition process has been investigated. From measuring the current
(I)-voltage (V) curve, the ZnO NB reveals some interesting and distinctive characteristics not found in previous unipolar resistive switching behavior of bulk film capacitors. The smaller set voltage compared to reset voltage is first observedand the resistance ratio of HRS to LRS is in the range of 4-5 orders. Both high resistance state (HRS) and low resistance state (LRS) is tunable by means of applied voltage. The dominant carrier transport and resistive switching mechanism was elucidated using theory of space-charge-limited current incorporated with oxygen vacancy for carrier transport site. High aspect ratio factor of ZnO NB different from bulk film is obtained from crossover voltage between liner region and quadratic region of I-V curve. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:27:43Z (GMT). No. of bitstreams: 1 ntu-98-R96941092-1.pdf: 2022311 bytes, checksum: 561f36cc10fc74d85c198c0ee77953dd (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | CONTENT
摘要............................................................................................................................... i Abstract ........................................................................................................................ ii Acknowledgement ....................................................................................................... iii Contents ....................................................................................................................... iv List of figures ............................................................................................................... v List of tables ................................................................................................................... x Chapter 1 : Introduction ............................................................................................. 1 1.1 New Non-volatile Memory .................................................................................... 1 1.1-1 Ferroelectric Random Access Memory (FeRAM) ...................................... 2 1.1-2 Magnetoresistive Random Access Memory (MRAM) ............................... 3 1.1-3 Ovonic Unified Memory (OUM) ................................................................ 3 1.2 Resistance Random Access Memory (ReRAM) ................................................... 4 1.2-1 Perosikte ReRAM ....................................................................................... 5 1.2-2 Organic ReRAM ......................................................................................... 6 1.2-3 Transition Metal Oxide ReRAM ................................................................. 8 1.3 Models of resistive switching behaviors Coordination ......................................... 8 1.3-1 Filament Model........................................................................................... 9 1.3-2 Ion-Transport-Recombination Model ....................................................... 9 1.3-3 Space-Charged-Limited Current (SCLC) Transport Model ................... 10 1.4 The Characteristics of Zinc oxide (ZnO) Nanostructures ................................... 12 1.5 Reference ............................................................................................................. 25 Chapter 2 : Experimental .......................................................................................... 29 2.1 Growth of the ZnO Nanobelt ........................................................................... 29 2.2 The Fabrication of ZnO NB Device for Nonvolatile ReRAM ................................... 29 2.3 The Analysis of Resistance Switching Characteristic ............................................... 30 2.4 Morphological Investigation of Ti/ZnO Junction ..................................................... 31 2.5 High resolution X-ray Photoelectron Spectrometer (XPS) analysis ........................... 31 v 2.6 Photoluminescence (PL) analysis ....................................................................... 32 2.7 Reference ............................................................................................................ 40 Chapter 3: Investigation of Resistive Switching Characteristics in ZnO Nanobelt ..................................................................................................................................... 41 3.1 Introduction ........................................................................................................ 41 3.2 Experimental Section ......................................................................................... 43 3.3 Results and Discussion ....................................................................................... 44 3.4 Reference ............................................................................................................ 57 Chapter 4: Conclusions ............................................................................................. 61 | |
| dc.language.iso | en | |
| dc.subject | 長寬比 | zh_TW |
| dc.subject | 米帶 | zh_TW |
| dc.subject | 置入電壓 | zh_TW |
| dc.subject | 重置電壓 | zh_TW |
| dc.subject | 空間電荷極限電流 | zh_TW |
| dc.subject | aspect ratio | en |
| dc.subject | space-charge-limited current | en |
| dc.subject | reset voltage | en |
| dc.subject | set voltage | en |
| dc.subject | nanobelt | en |
| dc.title | 非揮發性記憶體應用-鈦/氧化鋅奈米帶/鈦架構下之電阻轉換特性研究 | zh_TW |
| dc.title | Investigation of Resistive Switching Behavior using
Ti/ZnO Nanobelt/Ti for Non-Volatile Memory Application | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳泰伯(Tai-Bor Wu),胡振國(Jenn-Gwo Hwu),陳敏璋(Miin-Jang Chen) | |
| dc.subject.keyword | 奈,米帶,置入電壓,重置電壓,空間電荷極限電流,長寬比, | zh_TW |
| dc.subject.keyword | nanobelt,set voltage,reset voltage,space-charge-limited current,aspect ratio, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
