請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45566
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊燿州 | |
dc.contributor.author | Hsin-Hong Shen | en |
dc.contributor.author | 沈信宏 | zh_TW |
dc.date.accessioned | 2021-06-15T04:27:35Z | - |
dc.date.available | 2012-08-20 | |
dc.date.copyright | 2009-08-20 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-20 | |
dc.identifier.citation | [1] U. Kemiktarak, T. Ndukum, K. C. Schwab, and K. L. Ekinci, 'Radio-frequency scanning tunnelling microscopy,' Nature, vol. 450, pp. 85-89, 2007.
[2] W. C. Tang, T. C. H. Nguyen, and R. T. Howe, 'Laterally driven polysilicon resonant microsturctures,' Sensors and Actuators, vol. 20, pp. 25-32, 1989. [3] J. C. Chiou, L. J. Shieh, and Y. J. Lin, 'CMOS-MEMS prestress vertical cantilever resonator with electrostatic driving and piezoresistive sensing,' Journal of Physics D-Applied Physics, vol. 41, pp. 8, 2008. [4] K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, 'A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,' Optics Express, vol. 16, pp. 14421-14428, 2008. [5] Z. F. Wang, W. Cao, X. C. Shan, J. F. Xu, S. P. Lim, W. Noell, and N. F. de Rooij, 'Development of 1x4 MEMS-based optical switch,' Sensors and Actuators A-Physical, vol. 114, pp. 80-87, 2004. [6] Y. J. Yang, W. C. Kuo, K. C. Fan, and W. L. Lin, 'A 1x2 optical fiber switch using a dual-thickness SOI process,' Journal of Micromechanics and Microengineering, vol. 17, pp. 1034-1041, 2007. [7] Z. F. Wang, W. Cao, X. C. Shan, J. F. Xu, S. P. Lim, W. Noell, and N. F. de Rooij, 'Development of 1x4 MEMS-based optical switch,' Sensors and Actuators A-Physical, vol. 114, pp. 80-87, 2004. [8] P. F. Indermuehle, C. Linder, J. Brugger, V. P. Jaecklin, and N. F. Derooij, 'Design and fabrication of an overhanging xy-microactuator with integrated tip for scanning surface profiling,' Sensors and Actuators A-Physical, vol. 43, pp. 346-350, 1994. [9] D. Lee and O. Solgaard, 'Pull-in analysis of torsional scanners actuated by electrostatic vertical combdrives,' Journal of Microelectromechanical Systems, vol. 17, pp. 1228-1238, 2008. [10] J. C. Tsai, L. C. Lu, W. C. Hsu, C. W. Sun, and M. C. Wu, 'Linearization of a two-axis MEMS scanner driven by vertical comb-drive actuators,' Journal of Micromechanics and Microengineering, vol. 18, pp. 8, 2008. [11] W. Geiger, B. Folkmer, U. Sobe, H. Sandmaier, and W. Lang, 'New designs of micromachined vibrating rate gyroscopes with decoupled oscillation modes,' Sensors and Actuators A-Physical, vol. 66, pp. 118-124, 1998. [12] K. Y. Park, C. W. Lee, Y. S. Oh, and Y. H. Cho, 'Laterally oscillated and force-balanced micro vibratory rate gyroscope supported by fish-hook-shaped springs,' Sensors and Actuators A-Physical, vol. 64, pp. 69-76, 1998. [13] H. K. Xie and G. K. Fedder, 'Vertical comb-finger capacitive actuation and sensing for CMOS-MEMS,' Sensors and Actuators A-Physical, vol. 95, pp. 212-221, 2002. [14] C. Lee, 'A MEMS VOA using electrothermal actuators,' Journal of Lightwave Technology, vol. 25, pp. 490-498, 2007. [15] B. Borovic, A. Q. Liu, D. Popa, H. Cai, and F. L. Lewis, 'Light-intensity-feedback-waveform generator based on MEMS variable optical attenuator,' IEEE Transactions on Industrial Electronics, vol. 55, pp. 417-426, 2008. [16] H. Cai, X. M. Zhang, C. Lu, A. Q. Liu, and E. H. Khoo, 'Linear MEMS variable optical attenuator using reflective elliptical mirror,' IEEE Photonics Technology Letters, vol. 17, pp. 402-404, 2005. [17] T. Harness and R. R. A. Syms, 'Characteristics modes of electrostatic comb-drive X-Y microactuators,' Journal of Micromechanics and Microengineering, vol. 10, pp. 7-14, 2000. [18] J. Dong and P. M. Ferreira, 'Electrostatically actuated cantilever with SOI-MEMS parallel kinematic xy stage,' Journal of Microelectromechanical Systems, vol. 18, pp. 641-651, 2009. [19] X. Liu, K. Kim, and Y. Sun, 'A MEMS stage for 3-axis nanopositioning,' Journal of Micromechanics and Microengineering, vol. 17, pp. 1796-1802, 2007. [20] J. J. Yao and M. F. Chang, 'Surface micromachined miniature switch for telecommunications applications with signal frequencies from DC up to 4 GHz,' In Proceedings of International Conference on Solid-State Sensors and Actuators(TRANSDUCERS 1995), Stockholm, Sweden, pp. 384-387, 1995. [21] C. Goldsmith, J. Randall, S. Eshelman, T. H. Lin, D. Denniston, S. Chen and B. Norvell, 'Characteristics of micromachined switched at microwave frequencies,' IEEE MTT-S International Microwave Symposium Digest, vol. 2, pp. 1141-1144, 1996. [22] Liwei. Lin, Roger T. Howe and Albert P. Pisano, 'Microelectromechanical filter for signal processing,' Journal of Microelectromechanical Systems, vol. 7, pp. 286-294, 1998. [23] D. Hyman, A. Schmitz, B. Warneke, T. Y. Hsu, J. Lam, J. Brown, J. Schaffer, A. Walston, R. Y. Loo, G. L. Tangonan, M. Mehregany and J. Lee, 'GaAs-compatible surface-micromachined RF MEMS switches,' Electronics Letters, vol. 35, pp. 224-226, 1999. [24] Stephen D. Senturia, Microsystem design, Kluwer Academic Press, 2000. [25] L. Paratte, G. A. Racine, N. F. de Rooij and E. Bornand, 'A novel comb-drive electrostatic stepper motor,' in proceeding of IEEE International Conference on Solid-State Sensors and Actuators(TRANSDUCERS 1991), San Francisco, USA, pp. 886-889, 1991. [26] C. T. Nguyen and R. T. Howe, 'Quality factor control for micromechanical resonators,' In Proceedings of IEEE International Electron Devices Meeting, San Francisco, USA, pp 174-177, 1992. [27] X. Zhang and W. C. Tang, 'Viscous air damping in laterally driven microresonators,' Sensors and Materials, vol. 7, pp. 415-430, 1995. [28] K. B. Lee and Y. H. Cho, 'Electrostatic control of mechanical quality factors for surface-micromachined lateral resonators,' Journal of Micromechanics and Microengineering, vol 6, pp. 426-430, 1996. [29] L. Ki Bang and C. Young-Ho, 'Frequency tuning of a laterally driven microresonator using an electrostatic comb array of linearly varied length,' in Proceeding of IEEE International Conference on Solid-State Sensors and Actuators(TRANSDUCERS 1997), Chicago, USA, pp. 113-116 vol.1, 1997. [30] Z. Xu, D. W. Greve, and G. K. Fedder, 'Characterization of silicon isotropic etch by inductively coupled plasma etch in post-CMOS processing,' in Proceeding of IEEE International Conference on Microelectromechanical Systems(MEMS 2000), Miyazaki, Japan, pp. 568-573, 2000. [31] L. J. Yang, T. W. Huang, and P. Z. Chang, 'CMOS microelectromechanical bandpass filters,' Sensors and Actuators A-Physical, vol. 90, pp. 148-152, 2001. [32] J. H. Lee, Y. C. Ko, H. M. Jeong, B. S. Choi, J. M. Kim, and D. Y. Jeon, 'SOI-based fabrication processes of the scanning mirror having vertical comb fingers,' Sensors and Actuators A-Physical, vol. 102, pp. 11-18, 2002. [33] G. Y. Zhou and P. Dowd, 'Tilted folded-beam suspension for extending the stable travel range of comb-drive actuators,' Journal of Micromechanics and Microengineering, vol. 13, pp. 178-183, 2003. [34] J. D. Grade, H. Jerman, and T. W. Kenny, 'Design of large deflection electrostatic actuators,' Journal of Microelectromechanical Systems, vol. 12, pp. 335-343, 2003. [35] W. J. Ye, X. Wang, W. Hemmert, D. Freeman and J. White, 'Air damping in laterally oscillating microresonators: A numerical and experimental study,' Journal of Microelectromechanical Systems, vol. 12, pp. 557-566, 2003. [36] C. S. Chen and W. J. Kuo, 'Squeeze and viscous dampings in micro electrostatic comb drives,' Sensors and Actuators A-Physical, vol. 107, pp. 193-203, 2003. [37] J. M. L. Tsai, H. Y. Chu, J. Hsieh, and W. L. Fang, 'The BELST II process for a silicon high-aspect-ratio micromaching vertical comb actuator and its applications,' Journal of Micromechanics and Microengineering, vol. 14, pp. 235-241, 2004. [38] R. R. A Syms, A. Lohmann, and W. Huang, 'Extended range tuning elements for a microelectromechanical systems external cavity laser,' Journal of Optics A-Pure and Applied Optics, vol.8, pp. S299-S304, 2006. [39] W. K. Wong and M. Palaniapan, 'Phonon-mediated characterization of microelectromechanical resonators,' Applied Physics Letters, vol. 89, pp. 3, 2006. [40] L. C. Shao, C. L. Wong, and M. Palaniapan, 'Study of the nonlinearities in micromechanical clamped-clamped beam resonators using stroboscopic SEM,' Journal of Micromechanics and Microengineering, vol. 18, pp. 7, 2008. [41] M. Yano, F. Yamagishi, and T. Tsuda, 'Optical MEMS for photonic switching-compact and stable optical cross-connect switches for simple, fast, and flexible wavelength applications in recent photonic networks,' IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, pp. 383-394, 2005. [42] Y. Fujii, 'Low-crosstalk 2x2 optical switch composed of twisted nematic liquid crystal cells,' IEEE Photonics Technology Letters, vol. 5, pp. 715-718, 1993. [43] H. Toshiyoshi and H. Fujita, 'Electrostatic micro torsion mirrors for an optical switch matrix,' Journal of Microelectromechanical Systems, vol. 5, pp. 231-237, 1996. [44] C. Marxer, C. Thio, M. A. Gretillat, N. F. deRooij, R. Battig, O. Anthamatten, B. Valk and P. Vogel, 'Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications,' Journal of Microelectromechanical Systems, vol. 6, pp. 277-285, 1997. [45] C. Vazquez, J. M. S. Pena, and A. L. Aranda, 'Broadband 1 x 2 polymer optical fiber switches using nematic liquid crystals,' Optics Communications, vol. 224, pp. 57-62, 2003. [46] K. C. Fan, W. L. Lin, T. T. Chung, H. Y. Wang and L. P. Wu, 'A miniature low cost and high reliability 1 x 2 mechanical optical switch,' Journal of Micromechanics and Microengineering, vol. 15, pp. 1565-1570, 2005. [47] K. R. Cochran, L. Fan and D. L. DeVoe, 'High-power optical microswitch based on direct fiber actuation,' Sensors and Actuators A-Physical, vol. 119, pp. 512-519, 2005. [48] A. Bashir, P. Katila, N. Ogier, B. Saadany, and D. A. Khalil, 'A MEMS-based VOA with very low PDL,' IEEE Photonics Technology Letters, vol. 16, pp. 1047-1049, 2004. [49] J. A. Yeh, J. Shiue-Shr, and L. Chengkuo, 'MOEMS variable optical attenuators using rotary comb drive actuators,' IEEE Photonics Technology Letters, vol. 18, pp. 1170-1172, 2006. [50] K. Isamoto, K. Kato, A. Morosawa, C. Changho, H. Fujita, and H. Toshiyoshi, 'A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,' IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, pp. 570-578, 2004. [51] C. Marxer, B. de Jong and N. de Rooif, 'Comparison of MEMS variable optical attenuator designs,' in Proceeding of IEEE/LEOS International Conference on Optical MEMS, Lugano, Switzerland, pp. 189-190, 2002 [52] H. N. Kwon, T. H. Kim, H. Toshiyoshi and J. H. Lee, 'Attenuation-controllable micromachined 2x2 optical switches using 45-deg micromirrors,' Optical Engineering, vol. 45, pp. 6, 2006. [53] Q. H. Chen, W. G. Wu, G. Z. Yan, Z. Q. Wang and Y. L. Hao, 'Novel multifunctional device for optical power splitting, switching, and a attenuating,' IEEE Photonics Technology Letters, vol. 20, pp. 632-634, 2008. [54] 黃榮山,“Comb drive的原理與應用”,國立台灣大學應用力學研究所,2001。 [55] Y. J. Yang, W. C. Kuo, K. C. Fan, and W. L. Lin, 'A 1x2 optical fiber switch using a dual-thickness SOI process,' Journal of Micromechanics and Microengineering, vol. 17, pp. 1034-1041, 2007. [56] P. B. Chu, P. R. Nelson, M. L. Tachiki and K. S. J. Pister, 'Dynamics of polysilicon parallel-plate electrostatic actuators,' in Proceeding of IEEE International Conference on Solid-State Sensors and Actuators(TRANSDUCER 1995), Stockholm, Sweden, pp. 356-359, 1995. [57] J. J. Blech, “On isothermal squeeze films”, Journal of Lubrication Technology, vol. 105, pp. 615-620, 1983. [58] Y. J. Yang, B. T. Liao, and W. C. Kuo, 'A novel 2x2 MEMS optical switch using the split cross-bar design,' Journal of Micromechanics and Microengineering, vol. 17, pp. 875-882, 2007. [59] J. Qiu, J. H. Lang, and A. H. Slocum, 'A curved-beam bistable mechanism,' Journal of Microelectromechanical Systems, vol. 13, pp. 137-146, 2004. [60] M. Vangbo, 'An analytical analysis of a compressed bistable buckled beam,' Sensors and Actuators A-Physical, vol. 69, pp. 212-216, 1998. [61] C. J. Glassbrenner and G. A. Slack, 'Thermal conductivity of silicon and germanium from 3°K to the melting point,' Physical Review A-General Physics, vol. 134, pp. 1058-1069, 1964. [62] R. B. Roberts, 'Thermal expansion reference data: silicon 300-850 K,' Journal of Physics D-Applied Physics, vol. 14, pp. L163-L166, 1981. [63] A. Goldsmith, T. E. Waterman, H. J. Hirschhorn, Handbook of thermo- physical properties of solid materials, Pergamon Press, 1961. [64] C. Lee and C. Y. Wu, 'Study of electrothermal V-beam actuators and latched mechanism for optical switch,' Journal of Micromechanics and Microengineering, vol. 15, pp. 11-19, 2005. [65] 廖柏亭,“微機電技術應用於光開關之研製”,國立台灣大學機械工程研究所博士論文,2009。 [66] Y. Mita, M. Sugiyama, M. Kubota, F. Marty, T. Bourouina and T. Shibata, 'Aspect ratio dependent scalloping attenuation in DRIE and an application to low-loss fiber-optical switches,' in Proceedings of IEEE International Conference on Microelectromechanical Systems (MEMS 2006), Istanbul, Turkey, pp. 114-117, 2006. [67] 郭文正,“高深寬比懸浮微結構之製程開發及在微機電式光開關的應用”,國立台灣大學機械工程研究所博士論文,2006。 [68] 楊勝安,“電磁驅動式聚合酶連鎖反應微晶片系統之開發”,國立台灣大學機械工程研究所碩士論文,2008。 [69] Product Information of Corning OptiFocusTM Collimating Lensed Fiber, Corning Inc., 2003. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45566 | - |
dc.description.abstract | 本研究利用SOI晶圓,配合微機電製程技術製作微致動器元件,並以微共振器和多功能光通訊元件為例。在微共振器方面,開發懸臂探針梳狀共振器,並具備有高共振頻率、大共振位移量,並可利用懸臂樑傳送射頻(Radio frequency)訊號之新型微致動器元件,以應用於快速掃描射頻穿隧探針顯微鏡(Fast-scanning radio-frequency scanning tunneling microscopy,RFSTM)之發展。懸臂探針梳狀共振器係由靜電式梳狀共振器、支撐樑與懸臂樑所組成,並可利用高頻電壓驅動時,產生共振位移量;在多功能光通訊元件方面,開發新型的雙功能光元件,亦即整合光開關與可調式光衰減器於同一晶片上,以此設計可降低元件尺寸與成本。此元件藉由V型樑電熱致動器配合雙穩態機構可移動鏡面,達成光開關功能;另外藉由電壓驅動V型樑電熱致動器與雙穩態機構,改變鏡面位置,達成光衰減之功能。上述兩元件皆可用單一光罩,並配合SOI(Silicon-on-insulator)晶圓、深反應離子蝕刻製程(Deep reactive ion etching,DRIE)製造。在懸臂探針梳狀共振器初步之實驗量測結果顯示,當輸入0與100伏特方波電壓且頻率為11.8kHz時,共振位移量可達3μm以上;在雙功能光元件量測上,光開關之插入損失在-1∼-1.1dB值之間,光衰減值可降至-30dB,串音小於-60dB,鏡面切換時間為4ms以內。 | zh_TW |
dc.description.abstract | In this work, two types of micromachined devices, a micro-resonator and a dual-functioned optical device, are developed by using MEMS techniques. The proposed resonator is used for the application of fast-scanning radio-frequency scanning tunneling microscopy (RFSTM), and the proposed optical device is utilized for the applications in optical communications. The resonator is composed of comb-drive actuators, folded-beam suspensions, and a cantilever. The device is able to generate a large displacement with a desired resonant frequency. On the other hands, the dual-functioned optical device, which consists of four movable mirrors, bi-stable mechanisms, and electrothermal V-beam actuators, can simultaneously perform the capabilities of optical switching and optical attenuating, and thus can reduce the system complexity and the cost. For optical switching, the movable mirrors are driven and latched by the bi-stable mechanisms integrated with electrothermal V-beam actuators. For optical attenuating, the movable mirrors are driven by using the electrothermal effect.
Both of the proposed micro-resonator and dual-functioned optical device can be easily realized by using the deep reactive ion etching (DRIE) on a SOI (Silicon-On-Insulator) wafer. The resonator is actuated by applying a square-wave driving voltage on the device. The amplitude and the frequency of the driving square-wave are 100V (zero-to-peak) and 11.8 kHz, respectively. The measured displacement of the resonator is larger than 3μm. The optical performance of the dual-functioned optical device is also investigated. The average of measured insertion losses of the device is -1 ~ -1.1 dB, and the cross-talk is less than -60dB. Also, the measured switching time is less than 4 ms. The measured attenuation ranges are about -30 dB with an applied voltage of less than 20V. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:27:35Z (GMT). No. of bitstreams: 1 ntu-98-R96522720-1.pdf: 5037073 bytes, checksum: 5eb3450a1b6566102c3aa471721c202b (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 致 謝 I
摘 要 III Abstract IV 目 錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 文獻回顧 2 1.3.1 梳狀共振器 2 1.3.2 光通訊元件 12 1.4 論文架構 19 第二章 理論、設計與分析 20 2.1 梳狀共振器 20 2.1.1 梳狀共振器設計與模擬 20 2.1.2 靜電力分析 22 2.1.3 支撐樑彎曲效應 23 2.1.4 阻尼效應 26 2.2 雙功能光元件 29 2.2.1 元件操作原理 29 2.2.2 微致動器設計與模擬 33 2.2.2.1 雙穩態機構設計與模擬 33 2.2.2.2 V型樑致動器設計與模擬 39 第三章 製程方法與系統設計 41 3.1 元件製作流程 41 3.1.1 光罩設計與製作 45 3.1.2 基材清洗 46 3.1.3 微影製程 47 3.1.4 反應式離子蝕刻 50 3.1.5 晶圓切割 51 3.1.6 氫氟酸蝕刻懸浮 51 3.1.7 金屬蒸鍍 52 3.2 元件製作成果 54 第四章 實驗量測與討論 60 4.1 梳狀共振器量測 60 4.1.1 量測設備架設 61 4.1.2 量測結果 62 4.1.3 實驗量測誤差探討 63 4.2 雙功能光元件量測 63 4.2.1 量測設備架設 65 4.2.2 實驗量測儀器 65 4.2.2.1 FLS-300光源 65 4.2.2.2 光二極體 66 4.2.3 光纖組裝與對位 66 4.2.4 V型樑與雙穩態致動器量測結果 68 4.2.5 光學特性量測 71 第五章 結論與未來展望 73 5.1 結論 73 5.2 未來展望 73 參考文獻 75 | |
dc.language.iso | zh-TW | |
dc.title | 以DRIE技術及SOI晶圓發展體型加工之微機電元件:
以微共振器和多功能光通訊元件為例 | zh_TW |
dc.title | Development of Micro-resonator and Dual-function Optical Device Using the DRIE/SOI Process | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳國聲,蘇裕軒 | |
dc.subject.keyword | 共振器,射頻穿隧探針顯微鏡,光開關,可調式光衰減器, | zh_TW |
dc.subject.keyword | Resonator,RFSTM,optical switch,VOA, | en |
dc.relation.page | 83 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 4.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。