請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45537
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐春田 | |
dc.contributor.author | Wen-Lin Lou | en |
dc.contributor.author | 樓文琳 | zh_TW |
dc.date.accessioned | 2021-06-15T04:25:51Z | - |
dc.date.available | 2009-08-21 | |
dc.date.copyright | 2009-08-21 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-20 | |
dc.identifier.citation | Bullard, E. C. (1954) The flow of heat through the floor of the Atlantic Ocean. Proceedings of the Royal Society of London, A, 222, 408-429.
Bullard, E. C., A. E. Maxwell, and R. Revelle, (1956). Heat flow through the deep sea floor. Advanced Geophysics, 3, 153-81. Dickens, G. R., and M. S. Quinby-Hunt,(1997) Methane hydrate stability in pore water: a simple theoretical approach for geophysical applications. J.Geophys.Res.,102:773-783. Handa, Y. P., and D. Stupin ,(1992) Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-A-radius silica-gel pores, Jour. Phys. Chem.,96:8599-8603. Hyndman, R. D., G. D. Spence, R.Chapman , M. Riedel, and R. N. Edwards , (2001) Geophysical studies of matine gas hydrates in Northern Cascadia, In Natural Gas Hydrates-Occurrence Distribution and Detection, Edited by Charles K. Paull and William P. Dillon,pp. 273-295, Geophysical Monograph Series 124. Katz, H. R. (1982) Evidence for gas hydrate beneath the continental slope , East coast, North Island, New Zealand, N. Z. J. Geol. Geophys., 25:193-199. Kewis, K. B., and. J. A Pettinga, (1993) The emerging imbricate frontal wedge of the Hikurangi margin, in:Balance, P. E. (Ed.), South Pacific Sedimentary Basins, Elsevier, Amsterdam, pp. 225-250. Lin, S., W. C. Hsieh, Y. C. Lim, T. F. Yang, C. S. Liu, and Y. Wang (2006) Methane migration and its influence on sulfate reduction in the Good Weather Ridge region, South China Sea continental margin sediments. Terr. Atmos. Ocean. Sci., 17:883-902 Liu, C. S., P. Schnurle, Y. Wang, S. H. Chung, S. C. Chen, and T. H. Hsiuan (2006) Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terr. Atmos. Ocean. Sci., 17:615-644. Lees, C. H. (1910). On the shapes of the isogeotherms under mountain ranges in radio-active districts. Proceedings of the Royal Society of London, A, 83, 339-46. Matsumoto, R., H. Tomaru, and H. Lu (2004) Detection and evaluation of gas hydrates in the eastern Nankai Trough by geochemical and geophysical methods, Resource Geology, 54:53-67. Courant R.(1943), Variational Method for the Solutions of Problem of Equilbrium and Vibrations Bull, Am. Math. Soc, vol.49,58-62。 Reed, D.L., N. Lundberg, C.-S. Liu, B.-Y. Kuo, (1992) Structural relations along the margins of the offshore Taiwan accretionary wedge; implication for accretion and crustal kinematics: Acta Geologica Taiwanica, 30, 105- 122. Silver, E. A., N. A. Breen and H. Prasetyo (1986) Multibeam study of the Flores Backarc thrust belt, Indonesia, J. Geophys. Res., 91:3489-3500. Stoll, R. D., J. Ewing, G. M. Bryan (1971) Anomalous wave velocities in sediments containing gas hydrates. J. Geophys. Res.76(8) 2090-2094 Von Herzen, R. P. and S. Uyeda, (1963) Heat flow through the eastern Pacific Ocean floor. Journal of Geophysical Research, 68, 4219-4250. 林殿順 (2009)台灣西南海域新興能源-天然氣水合物資源調查與評估:震測及地熱調查報告(1/4)含天然氣水合物地層的構造與沉積特徵研究。 李信宏 (2008) 臺灣西南海域之天然氣水合物穩定帶底部沉積物熱導係數異常之討論。國立臺灣大學海洋研究所碩士論文。 林書晢 (2007) 使用附著式小型溫度探針量測海底沉積物之溫度梯度並推估天然氣水合物底部之研究。國立臺灣大學海洋研究所碩士論文。 徐春田 (2007) 臺灣西南海域天然氣水合物存賦區地質調查研究地球物理調查報告(4/4)天然氣水合物存賦區之地熱調查。經濟部中央地質調查所。 劉家瑄 (2007) 臺灣西南海域天然氣水合物存賦區地質調查研究地球物理調查報告(4/4)反射震測與海床聲納迴聲剖面調查研究。經濟部中央地質調查所。 吳書恒 (2006) 大屯火山群井下溫度監測研究。國立臺灣大學海洋研究所碩士論文。 林哲銓 (2005) 臺灣西南海域含天然氣水合物地層之構造架構與沈積特徵。國立中央大學地球物理研究所碩士論文。 劉家瑄 (2003)台灣西南海域天然氣水合物賦存區地質資料庫海底聲納剖面資料庫暨網頁建置專案。經濟部中央地質調查所。 陳育鐘 (2001)臺灣西南海域之海床溫度推估甲烷氣水包合物的深度研究。國立臺灣大學海洋研究所碩士論文。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45537 | - |
dc.description.abstract | 受到表面地形的影響,熱流在靠近海床表面時會產生發散與匯聚的效果,使地層淺部的地溫梯度隨深度而產生變化,測量到的梯度值也無法推算較深處的溫度值。為了能更有效的掌握地層的溫度變化,我們使用ANSYS軟體進行有限元素法來修正這種地形效應,並推算在地形修正後天然氣水合物穩定態底部( Base of Gas Hydrate Stability Zone;BGHS)所在的深度。
經過初步測試後,我們發現西南海域的地形起伏對地層溫度分佈有高達超過一百公尺的影響,表示西南海域的確有進行地形修正的必要,因此我們嘗試將海研一號786航次的海床溫度實測值來計算地形效應對地溫梯度的影響。 作法是以天然氣水合物蘊藏區的一個地熱測站為基準點,使用有限元素法計算其附近測站的地溫梯度經修正地形效應後的資料,顯示同樣位於山谷沉積處的此一測站,ANSYS計算結果與實測值近似。但同樣經過地形效應修正後的另一測站之地溫梯度,就與實測值有相當大的差距。推測造成差距的原因應是後者之測站下方為隆起構造,基盤構造的突起造成其沉積厚度與先前的兩個測站有所差異,可見地形修正應配合沉積物效應修正才能掌握更準確的地溫梯度變化與推估天然氣水合物穩定態的底部位置。另外我們也利用此法修正中央地質調查所預定鑽井位置kp-4、kp-5-1及kp-5-2之地形效應,修正後各位置所推估的天然氣水合物底部位置(BGHSt)深度分別為311mbsf、298mbsf、350mbsf,此結果可做為天然氣水合物鑽井之參考。 本研究的模型因受限於沉積資料的缺乏,因此並未考量基盤起伏的影響,但實際上地層淺部溫度的變化除了受地形影響外,地層構造與基盤地形、沉積物厚度也是重要的因素,未來若能取得更詳盡的地層構造與各層之熱導係數,修正效果必定會更好。 | zh_TW |
dc.description.abstract | By the effect of rough topography, heat flow will tend to be preferentially convergent towards valleys or low areas, and divergent from ridges or peaks on the sea floor. Hence, the measured result of the seafloor gradient cannot correctly estimate the real thermal gradient of the sub-bottom. In order to calculate the variation in temperature more efficiently, we use ANSYS software using the finite element method to correct such effects and compute the Base of Gas Hydrate Stability Zone; BGHS.
During the preliminary test, we found that the temperature of the sub-bottom deviated for more than one hundred meters due to topography effects in the offshore of southwestern Taiwan. This means that it is necessary to correct for the topography effects. To achieve this, we try to remove the topographic effects on the temperature gradients from cruise No. 786 of the R/V Ocean Researcher I. When applying ANSYS to calculate the temperature gradients, we adopted the data collected from one site as the boundary condition, and corrected the errors that resulted from the topography effect in this area. The calculated seafloor thermal gradient of the other site, situated on a similar sediment deposited depression, is close to the measured value; but, on the third site, the result is significantly different from the measured value. We believe the difference is due to the third site being located on the ridge, thus causing heat to be refracted away from depressions deposited with thick sediments. This example emphasizes that not only the topographic effects, but also the sedimentation is important to the temperature gradient calculation, and therefore the estimate of BGHS. For the application, we use ANSYS to correct the topographic effects on sites KP-4, KP-5-1, and KP-5-2 which are drilling sites for gas-hydrate investigation proposed by the Central Geological Survey. After the correction we obtained, the BGHSt (corrected BGHS) for the three sites are 311, 298, and 350 mbsf, respectively. The results are useful information for borehole drilling reference. The model proposed in this study is limited by the lack of sedimentary data and excludes the basement relief effect. Actually, the sub-bottom thermal gradient variation is affected by the topography, the thickness of the sediments, the basement relief, and the structure of the rock. It will be better if we can get more information about the structures, the thickness of the sediments, and thermal conductivities for each layer. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:25:51Z (GMT). No. of bitstreams: 1 ntu-98-R94241317-1.pdf: 10832543 bytes, checksum: e1919a4ca6fee020fb7cc1af14df2ede (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員會審定書……………………………………………………I
摘要…………………………………………………………………Ⅱ ABSTRACT………………………………………………………………Ⅲ目錄……………………………………………………………………Ⅴ 圖目錄…………………………………………………………………Ⅵ 表目錄…………………………………………………………………Ⅶ 第1章序論………………………………………………………………1 1.1 研究動機……………………………………………………….1 1.2 影響地溫變化的因素………………………………………….1 1.3 地形修正對探測天然氣水合物之重要性…………………….3 1.3.1 天然氣水合物的經濟價值與台灣賦存狀況……………….3 1.3.2 地溫測量推估天然氣水合物底部深度之原理及誤差原因.4 1.4 研究目的與方法……………………………………………….7 1.5 論文安排內容………………………………………………….7 第2章 有限元素法的介紹……………………………………………………….8 2.1 有限元素法理論與計算熱流之原理……………………………………….8 2.2 軟體程式ANSYS之介紹…………………………………………………….9 2.3 ANSYS運用於地熱公式的邊界條件控制………………………………… 10 第3章 ANSYS計算軟體之測試………………………………………………….12 3.1 以ANSYS軟體測試二維沉積物模型之結果……………………………… 12 3.2 以ANSYS軟體測試三維沉積物模型之結果……………………………… 15 3.3 結果討論……………………………………………………………………19 第4章 ANSYS計算地形修正的影響………………………………………………21 4.1 地形起伏對熱流路徑方向的影響…………………………………………21 4.2 鄰近地形彼此間地溫梯度的影響…………………………………………24 4.2.1 地形之對計算結果之討論……………………………………………26 4.3 結果與討論…………………………………………………………………28 第5章 台灣西南海域的地形修正與BGHS推估…………………………………30 5.1 西南海域的地形……………………………………………………………30 5.2 西南海域地形對地層溫度的影響…………………………………………33 5.3 西南海域BGHS的深度修正……………………………………………….43 5.3.1 比較底部等溫與等熱流兩種邊界條件………………………………43 5.3.2 地溫經地形修正後對推估BHGS的影響…………………………… 45 5.4 西南海域預定鑽井點之BGHS…………………………………………55 第6章 資料討論………………………………………………………………… 64 參考文獻…………………………………………………………….66 附 錄…………………………………………………………….68 | |
dc.language.iso | zh-TW | |
dc.title | 使用有限元素法修正淺層地溫梯度之地形效應並推估天然氣水合物的底部深度 | zh_TW |
dc.title | Using Finite Elemente Method to Correct Topography Effect of Sub-bottom Thermal gradient and Estimate the Base of Gas Hydrate Stability Zone | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李昭興,喬凌雲,劉家瑄 | |
dc.subject.keyword | 地溫梯度,地形修正,有限元素法,天然氣水合物穩定帶底部, | zh_TW |
dc.subject.keyword | Thermal gradient,Topography correction,Finite Element,Base of Gas Hydrate Stability Zone, | en |
dc.relation.page | 87 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-21 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 10.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。