Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45506
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃建璋(Jian-Jang Huang)
dc.contributor.authorShih-Hua Hsiaoen
dc.contributor.author蕭世驊zh_TW
dc.date.accessioned2021-06-15T04:24:01Z-
dc.date.available2010-08-11
dc.date.copyright2010-08-11
dc.date.issued2009
dc.date.submitted2010-08-06
dc.identifier.citation[1] Q. J. Yao and D. J. Li, J. Non-Cryst. Solids, vol. 351, p. 3191, 2005.
[2] E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Goncalves, A. J. S. Marques, L. M. N. Pereira, and R. F. P. Martins, Adv. Mater., vol. 17, p. 590, 2005.
[3] R. L. Hoffman, B. J. Norris, and J. F. Wager, Appl. Phys. Lett., vol. 82, p. 733, 2003.
[4] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, J. Appl. Phys., vol. 36, pt. 2, p. 1453, 1997.
[5] H. C. Cheng, C. F. Chen, and C. Y. Tsay, Appl. Phys. Lett., vol. 90, p. 012113, 2007.
[6] R. L. Hoffman, J. Appl. Phys., Vol. 95, p. 5813, 2004.
[7] F.M. Hossain, J. Nishii, S. Takagi, A. Ohtomo, T. Fukumura, H. Fujioka, H. Ohno, H. Koinuma, M. Kawasaki, J. Appl. Phys., Vol. 94, p.7768, 2003.
[8] Donald A. Neamen, “Semiconductor Physics and Devices 3rd,” McGraw Hill, 2002.
[9] Y. P. Tsividis, “Operation and Modeling of the MOS Transistor 2nd,” McGraw Hill, 1999.
[10] A. C. Tickle, “Thin-Film Transistors,” John Wily and Sons, 1969.
[11] C.C. Liu, Y.S. Chen and J.J. Huang, Electronics letters, vol. 42, 2006.
[12] R. E. Presley, Master thesis, Oregon State University, 2006.
[13] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, vol. 432, p. 488, Nature, 2004.
[14] N. L. Dehuff, E. S. Kettenring, D. Hong, H. Q. Chiang, J. F. Wager, R. L. Hoffman, C.-H. Park, and D. A. Keszler, J. Appl. Phys., vol.97, p. 064505, 2005.
[15] G. F. Boesen and J. E. Jacobs, Proceeding Letters, IEEE, vol. 56, p. 2094, 1968.
[16] E.F.Schubert, A. Fischer, K. Ploog, IEEE Transactions on Electron Devices, vol. 33, p. 625, 1986
[17] E. Ozturk, Y. Ergum, H. Sari, I Sokmen, J. Appl. Phys., vol. 91, p.2118, 2002.
[18] H. Tian, K. W. Kim, M.A. Littlejohn, S.M. Bedair, L.C. Witkowski, IEEE Transactions on Electron Devices, vol. 39, p.1998, 1992
[19] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Crystal Growth, vol. 225, p. 110, 2001.
[20] F. S. Hickernell, IEEE Trans. Sonics Ultrason, vol. 32, p. 621, 1985.
[21] S. Basu and A. Dutta, Sens. Actuators, vol. B22, p.83, 1994.
[22] M. Wwraback, H. Shen, S. Liang, C. R. Gorla, Y. Lu, Appl. Phys. Lett, vol. 74, p. 507, 1999.
[23] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett, vol. 72, p. 3270, 1998.
[24] A. Mitra, R. K. Thareja, J. Appl. Phys, vol. 89, p. 2025, 2001.
[25] J. R. Chelikowsky, Solid State Communications, vol. 122, p. 351, 1997.
[26] J. E. Jaff, R. Pandey, and A. D. Kunz, J. Phys. Chem. Solids, vol. 52, p. 755, 1991. 89
[27] J. W. Tomm, B. Ullrich, X. G. Qiu, Y. Segawa, A. Ohtomo and H. Koinuma, J. Appl. Phys, vol. 87 p.1884, 2000.
[28] H. Kim, Y. Lee, Y. Roh, J. Jung, M. Lee and H. Kwon, IEEE Ultrasonic Symposium, vol. 1, p. 323, 1998.
[29] L. J. Meng and M. P. dos Santos, vol. 46, p. 1001, 1995.
[30] Y. Yoshino, T. Makino, Y. Katayama and T. Hata, Vacuum, vol. 59, p. 538, 2000.
[31] H. Ieki and M. Kaota, IEEE Ultrasonic Symposium, vol. 1, p. 281, 1999.
[32] M. S. Wu, W. C. Shin and W. H. Tsai, J. Phys. D: Appl. Phys. vol. 31, p. 943, 1998.
[33] M. Y. Han and J. H. Jou, Thin Solid Films, vol. 260, p. 58, 1995.
[34] G. J. Exarhos and S. K. Sharma, Thin Solid Films, vol. 270, p. 27, 1995.
[35] P. Nunes, E. Fortunato and R. Martins, Thin Solid Films, vol. 383, p. 277, 2001.
[36] P. F. Carcia, R. S. Mclean, and M. H. Reilly, Journal of SID, 2005.
[37] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, Superlattices and Microstructures, vol. 34 p. 3, 2003.
[38] A. Tsukazaki, A. Ohtomo, M. Kawasaki, Appl. Phys. Lett., vol. 88, p. 152106, 2006.
[39] D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, Physical Review Letters, vol.95, p. 225502, 2005.
[40] L. Schmidt-Mende, J. L. MacManus-Driscoll, Materials Today, vol.10, p.40, 2007.
[41] Yasuhiro Igasaki and Hiromi Saito, Thin Solid Films, vol. 199, p. 223, 1991.
[42] T. Komaru , Jpn. J. Appl. Phys. Part I, vol. 38, p. 5796, 1999.
[43] M.T. Young and S.D. Kenu, Thin Solid Films, vol. 410, p. 8, 2002.
[44] P. Lin, J. Guo, and C. Wu, IEEE Trans. Electron Devices, vol. 37, p. 666, 1990.
[45] C. A. Dimitriadis and D. H. Tassis, J. Appl. Phys. vol. 77, p. 2177, 1995.
[46] F V. Farmakis, J. Brini, G. Kamarinos, C. T. Angelis, C. A. Dimitriadis, and M. Miyasaka, IEEE Trans. Electron Devices, vol. 48, p. 701, 2001.
[47] G.Y. Yang, S. H. Hur, and C. H. Han, IEEE Trans. Electron Devices, Vol. 46, p. 165, 1999.
[48] R.B.M. Cross, M.M. De Souza, S.C. Deane, N.D. Young, IEEE Trans. Electronic Devices, vol. 55, p. 1109, 2008.
[49] J. W. Ma, J. Cao, X. Y. Jiang, Z. L. Zhang, Solid State Communications vol. 146, p. 387, 2008.
[50] S. K. Park, C. S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J. I. Lee, K. Lee, M. S. Oh, and S. Im, Adv. Mater. , vol. 21, p. 678, 2009.
[51] J. Jo, H. Choi, J. Yun, H. Kim, O. Seo, B. Lee, Thin Solid Films, 2009.
[52] Ved Prakash Verma, Do-Hyun Kim, Hoonha Jeon, Minhyon Jeon, Wonbong Choi, Thin Solid Films vol. 516 p. 8736, 2008.
[53] H. Ikeda, J. Appl. Phys. vol. 91, p. 4637, 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45506-
dc.description.abstract在本篇論文中,我們考慮氧化鋅薄膜電晶體操作於載子累積區域,以及氧化鋅薄 膜本身的奈米晶體特性,發展出一套完整的遷移率與電流模型。首先為了觀察氧 化鋅薄膜電晶體的實際特性,我們設計並製做了多種不同的元件,包括氧化鋅電 晶體、氧化鎵鋅電晶體,以及以氧化鎵鋅做為二維電子雲通道的 delta-doping 氧化 鋅薄膜電晶體。透過針對這些元件的量測與特性分析,我們推估出適合氧化鋅薄 膜電晶體的最佳設計,同時驗證薄膜的奈米晶體特性,並且發現在汲極電流對汲 極電壓的關係圖中,這些元件表現出在高溫製程下的電晶體不會發生的 overshoot 現象。我們接著考慮奈米晶粒之間的晶隙影響,發展氧化鋅薄膜電晶體的元件物 理模型。我們成功模擬了閘極電壓與汲極電壓對通道中各點的載子濃度與晶隙能 障的影響,並從載子濃度與晶隙能障在電晶體通道中的分佈,推導出通道整體的 遷移率以及電流的變化。由此模型,我們推論在實驗中發現的 overshoot 現象成因 即來自於奈米晶通道中晶隙能障的存在。從模型中我們發現,通道中的陷阱密度 與晶粒大小,會對 overshoot 的大小產生影響,同時也影響遷移率。我們由此驗證, 由於低溫製程中缺陷密度大,且晶粒較小,氧化鋅薄膜電晶體因而表現出我們所 量測到的特性。zh_TW
dc.description.abstractA comprehensive analytical current-voltage model as well as the mobility model of the ZnO-based thin film transistors considering both the carrier accumulation in the channel and the nanocrystalline properties are demonstrated in this work. To observe the device characteristics, various designs of ZnO-based TFTs including ZnO-TFTs, GZO TFTs and GZO delta-doped ZnO TFTs are fabricated and characterized, in which we have found the best design of ZnO-based TFT, verified the nanocrystalline characteristics of the ZnO thin films, as well as observed the overshoots in the ID-VD curves. With the understanding of the devices, the mobility and current-voltage model is then derived considering the carrier concentration and the grain boundary energy barriers throughout the channel modulated by both the vertical and the lateral electric fields in the channel. With the distribution of the carrier concentration and the grain boundaries in the channel, the mobility and current are derived. Utilizing this model, we investigate the influence of the grain boundary trap density and the grain size of the channel material on the ID-VD curves of ZnO-based TFTs, and explains the reasons of the the overshoots in the ID-VD curve, which have been observed in the experiment results.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:24:01Z (GMT). No. of bitstreams: 1
ntu-98-R96941010-1.pdf: 3417558 bytes, checksum: 4ad59adee3157be3f7695be8f4b932c1 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsChapter 1. Introduction........................... 1
1.1 Research Backgrounds ........................... 1
1.2 Research Motivations .............................. 3
1.3 Thesis Structure ................................... 6
Chapter 2. Theory and Literatures Review ................. 7
2.1 Thin film transistors.......................... 7
2.1-1 MOSFET .................................. 8
2.1-2 TFT .................................... 18
2.1-3 Oxide Semiconductor TFT.......................... 22
2.1-4 Delta-doped FETs............................... 23
2.2 ZnO-based material properties ........................... 25
2.3 Polycrystalline and nanocrystalline TFT modeling ................. 28
Chapter 3. Device Design, Fabrication and Characterization ........ 32
3.1Device Design .................................... 32
3.1-1 Layout Design ................................ 34
3.1-2 ZnO TFTs................................... 35
3.1-3 GZO TFTs .................................. 36
3.1-4 GZO Delta-doped ZnO TFTs .................. 37
3.2 Device Fabrication................................. 39
3.3 Device Characterization............................. 40
3.3-1 thin film crystallinity ............... 40
3.3-2 ZnO TFTs................................... 41
3.3-3 GZO TFTs .................................. 44
3.3-4 GZO Delta-doped ZnO TFTs ..................... 50
Chapter 4. Device Modeling......................... 55
4.1 The analytical Models............................. 56
4.1-1 Grain Boundary .............................. 56
4.1-2 Field Effect Mobility............................ 66
4.1-3 Current-Voltage Relationship.................. 68
4.2 Physical Analysis................................... 73
4.2-1 The Effect of trap density in the Grain Boundaries .............. 75
4.2-2 The Effect of grain size ......................... 80
Chapter 5. Conclusion and Future works ................. 86
5.1 Conclusions ................................... 86
5.2 Recommendations of Future works ............ 88
Appendix: References .......................... 89
dc.language.isoen
dc.subject軟性電子zh_TW
dc.subject氧化鋅zh_TW
dc.subject薄膜電晶體zh_TW
dc.subject奈米晶zh_TW
dc.subject物理模型zh_TW
dc.subjectphysical modelen
dc.subjectflexible electronicsen
dc.subjectZnOen
dc.subjectthin film transistoren
dc.subjectnanocrystallineen
dc.title奈米晶氧化鋅薄膜電晶體之元件物理模型與特性分析zh_TW
dc.titlePhysical Modeling and Device Characterization of Nanocrystalline ZnO-based Thin Film Transistorsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡振國,彭隆瀚,陳建彰,吳育任
dc.subject.keyword氧化鋅,薄膜電晶體,奈米晶,物理模型,軟性電子,zh_TW
dc.subject.keywordZnO,thin film transistor,nanocrystalline,physical model,flexible electronics,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2010-08-06
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
3.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved