請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45501完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林國峰(Gwo-Fong Lin) | |
| dc.contributor.author | Pei-Yu Huang | en |
| dc.contributor.author | 黃珮瑜 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:23:44Z | - |
| dc.date.available | 2009-09-25 | |
| dc.date.copyright | 2009-09-25 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-09-16 | |
| dc.identifier.citation | Abrahart R.J., See L.M., “Neural network modelling of non-linear hydrological relationships”, Hydrology and Earth System Science, 11(5): 1563-1579, 2007.
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, “Artificial neural networks in hydrology. I: preliminary concepts”, Journal of Hydrologic Engineering, 5(2): 115-123, 2000a. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, “Artificial neural networks in hydrology. II: hydrologic applications”, Journal of Hydrologic Engineering, 5(2): 124-137, 2000b. Bae, D.H., Jeong, D.M., Kim, G., “Monthly dam inflow forecasts using weather forecasting information and neuro-fuzzy technique”, Hydrological Sciences Journal, 52(1): 99-113, 2007. Cameron, D., Kneale P., See, L., “An evaluation of a traditional and a neural net modeling approach to flood forecasting for an upland catchment”, Hydrological Processes, 16(5): 1033–1046, 2002. Chang, L.C., Chang, F.J., Chiang, Y.M., “A two-step-ahead recurrent neural network for stream-flow forecasting”, Hydrological Processes, 18(1): 81–92, 2004. Chang, F.J., Chang, Y.T., “Adaptive neuro-fuzzy inference system for prediction of water level in reservoir”, Advances in Water Resources, 29(1): 1–10, 2006. Chaves, P., Kojiri, T., “Deriving reservoir operational strategies considering water quantity and quality objectives by stochastic fuzzy neural networks”, Advances in Water Resources 30 (5), 1329–1341, 2007a. Chaves, P., Kojiri, T., “Stochastic fuzzy neural network: Case study of optimal reservoir operation”, Journal of Water Resources Planning and Management-ASCE, 133: 509–518, 2007b. Coulibaly, P., Hache, M., Fortin, V., Bobee, B., “Improving daily reservoir inflow forecasts with model combination”, Journal of Hydrologic Engineering, 10(2): 91-99, 2005. Cristianini, N., Shaw-Taylor, J., An Introduction to Support vector machines and Other Kernel-Based Learning Methods, Cambridge University Press, New York, 2000. Firat, M., “Comparison of artificial intelligence techniques for river flow forecasting”, Hydrology and Earth System Sciences, 12(1): 123-139, 2008. Han, D., Chan, L., Zhu, N., “Flood forecasting using support vector machines”, Journal of Hydroinformatics, 9(4): 267-276, 2007. Huang, W.R., Xu, B., Chan-Hilton, A., “Forecasting flows in Apalachicola River using neural networks”, Hydrological Processes, 18(13): 2545–2564, 2004. Kim, G., Barros, A.P., “Quantitative flood forecasting using multisensor data and neural networks”, Journal of Hydrology, 246(1-4): 45-62, 2001. Kwok, T.Y., Yeung, D.Y., “Constructive algorithms for structure learning in feedforward neural networks for regression problems”, IEEE transactions on neural networks, 3: 630-645, 1997. Li, M.H., Yang, M.J., Soong, R., “Simulating typhoon floods with gauge data and mesoscale-modeled rainfall in a mountainous watershed”, Journal of Hydrometeorology, 6(3): 306-323, 2004. Lin, G.F., Chen, L.H., “A reliability-based selective index for regional flood frequency analysis methods”, Hydrological Processes, 17(3): 2653-2663, 2003. Lin, G.F., Chen L.H., “A non-linear rainfall-runoff model using radial basis function network”, Journal of Hydrology, 289 (1-4): 1-8, 2004. Lin, G.F., Chen L.H., “Application of artificial neural network to typhoon rainfall forecasting”, Hydrological Processes, 19(9): 1825–1837, 2005a. Lin, G.F., Chen, L.H., “Time series forecasting by combining the radial basis function network and the self-organizing map”, Hydrological Processes, 19(10): 1925-1937, 2005b. Lin, G.F.; Wang, C.M., “Performing cluster analysis and discrimination analysis of hydrological factors in one step”, Advances in Water Resources, 29(11): 1573-1585, 2006. Lin, G.F., Wang, C.M., “A nonlinear rainfall-runoff model embedded with an automated calibration method. Part 1: The model”, Journal of Hydrology, 341(3-4): 186-195, 2007a. Lin, G.F., Wang, C.M., “A nonlinear rainfall-runoff model embedded with an automated calibration method. Part 2: The automated calibration method”, Journal of Hydrology, 341(3-4): 196-206, 2007b. Lin, G.F.; Wu, M.C., “A SOM-based approach to estimating design hyetographs of ungauged sites”, Journal of Hydrology, 339(3-4): 216-226, 2007. Lin, G.F., Chen G.R., “A systematic approach to the input determination for neural network rainfall-runoff models”, Hydrological Processes, 22(14): 2524-2530, 2008. Lin, G.F., Chen, G.R., Huang, P.Y., Chou, Y.C., “Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods”, Journal of Hydrology, 372(1-4): 17-29, 2009. Liong, S.Y., Sivapragasam, C., “Flood stage forecasting with support vector machines”, Journal of the American Water Resources Association, 38(1): 173–186, 2002. Maier, H.R., Dandy, G.C., “Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications”, Environmental Modeling & Software, 15: 101-124, 2000. Moradkhani, H., Hsu, K.L., Gupta, H.V., Sorooshian, S., “Improved streamflow forecasting using self-organizing radial basis function artificial neural networks”, Journal of Hydrology, 295(1-4): 246–262, 2004. Pan, T.Y., Wang, R.Y., “State space neural networks for short term rainfall-runoff forecasting”, Journal of Hydrology, 297(1-4): 34–50, 2004. Sivapragasam, C., Liong, S.Y., “Flow categorization model for improving forecasting”, Nordic Hydrology, 36(1): 37–48, 2005. Toth, E., Brath, A., Montanari, A., “Comparison of short-term rainfall prediction models for real-time flood forecasting”, Journal of Hydrology, 239(1-4): 132–147, 2000. Vapnik, V., The Nature of Statistical Learning Theory, Springer, New York, 1995. Vapnik, V., Statistical Learning Theory. John Wiley, New York, 1998. Xu, Z.X., Li, J.Y., “Short-term inflow forecasting using an artificial neural network model”, Hydrological Processes, 16(12): 2423–2439, 2002. Yu, P.S., Chen, S.T., “Updating real-time flood forecasting using a fuzzy rule-based model”, Hydrological Sciences Journal, 50(2): 265-278, 2005. Yu, X.Y., Liong, S.Y., “Forecasting of hydrologic time series with ridge regression in feature space”, Journal of Hydrology, 332(3-4): 290–302, 2007. Yu XY, Liong SY, Babovic V., “EC-SVM approach for real-time hydrologic forecasting”, Journal of Hydroinformatics, 6(3): 209–223, 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45501 | - |
| dc.description.abstract | 於颱風襲台期間,流量預報模式是洪水預警工作中相當重要的一環,如何快速地建立一個準確且穩定的流量預報模式,以及如何增加較長延時預報的準確度以增加防汛的反應時間,一直以來都是研究的重點項目。為達到此一目標,本研究應用一種新的類神經網路—支持向量機(support vector machine, SVM)建立預報未來一至六小時的流量預報模式,並與一般研究中最常被應用的倒傳遞類神經網路(back-propagation network, BPN)進行比較。基於統計理論,SVM主要有三項優點,第一,SVM有較佳的歸納衍生(generalization)能力,一般能得到較好的結果;第二,SVM的參數及架構是以求解一個二次規劃問題而得,具唯一最佳解;第三,SVM的訓練速度快。
本研究藉由BPN與SVM於預報準確度、模式強健性以及架構模式的時間(即效率)等三個方面的比較,清楚呈現SVM的三項優點。結果顯示,在準確度部分,SVM不論預報時間長短,其預報準確度均高於BPN,顯示SVM的歸納衍生能力較佳;在強健性部分,BPN需使用試誤法挑選最佳的隱藏層神經元個數,且以迭代法求最佳解的方式會受初始權重影響而影響結果表現, SVM的參數及架構則具最佳且唯一性,沒有上述問題,因此SVM模式的強健性高於BPN;在效率的部分,經過實際測試,SVM架構最佳模式的時間僅有BPN所需時間的1/10000,大大提高了架構模式的效率。而經此三方面比較,證實SVM不論在模式強健性、效率或是預報準確度上,其表現均優於BPN。因此,本研究建議以SVM取代BPN,成為架構流量預報模式的一種更好選擇。 除了以SVM替代BPN之外,本研究進一步利用有效颱風因子作為模式輸入項,以提昇長期預報的效果。比較輸入項包含有效颱風因子與未包含有效颱風因子的模式,顯示BPN無法從有效颱風因子中萃取出對洪流預報有幫助的資訊,而SVM萃取資訊的能力較佳,能經由增加有效颱風因子提升預報準確度,且提昇的幅度有隨著預報延時越長,提昇越多的趨勢,證實有效颱風因子能幫助提昇較長延時預報準確度。此外,在缺少雨量資料的情況下,顯示於模式中加入有效颱風因子,能使提昇的幅度更大,說明當資料有所缺乏時,更需要有效颱風因子使替代模式維持一定的預報準確度。綜上所述,可使用SVM快速地建立一個準確且穩定的流量預報模式,並可利用有效颱風因子增加較長延時預報的準確度,使颱洪期間能有一個預報更準確,能提供更長的延時預報資訊的預報模式,以期提供防洪預警更多有利的訊息。 | zh_TW |
| dc.description.abstract | In this paper, effective flood forecasting models based on the support vector machine (SVM), which is a novel kind of neural networks, are proposed. Based on statistical learning theory, the SVM has three advantages over back-propagation network (BPN), which is the most frequently used neural network. Firstly, SVM has better generalization ability. Secondly, the architecture and the weights of the SVM are guaranteed to be unique and globally optimal. Finally, SVM is trained much more rapidly. An application is conducted to clearly demonstrate these three advantages. The results indicate that the proposed SVM-based models are more well-performed, robust and efficient than the existing BPN-based models. In addition to using SVM instead of BPN, typhoon characteristics, which are seldom regarded as key input for flood forecasting, are added to the proposed models to further improve the long lead-time forecasting during typhoons. A comparison between models with and without typhoon characteristics is also presented to confirm that the addition of typhoon characteristics significantly improves the forecasting performance and the improvement increases with increasing lead-time, especially when the rainfall data are not available. In conclusion, the typhoon characteristics should be used as input to the flood forecasting. The proposed SVM-based models are recommended as an alternative to the existing models because of their accuracy, robustness and efficiency. The proposed modeling technique is expected to be useful to improve the flood forecasting. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:23:44Z (GMT). No. of bitstreams: 1 ntu-98-D90521010-1.pdf: 1102852 bytes, checksum: 6951b716b54e2222a6c78075f111c61f (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 中文摘要 III Abstract V 目錄 VI 表目錄 IX 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 相關文獻回顧 2 第二章 理論與方法 5 2.1 倒傳遞類神經網路(BPN) 5 2.2 支持向量機(SVM) 9 第三章 研究案例 14 3.1 研究區域概況及資料 14 3.2 架構模式 19 3.2.1 模式輸入項 19 3.2.2 模式參數 24 3.3 交替驗證與評估指標 25 3.3.1 交替驗證 25 3.3.2 評估指標 26 3.4 預報結果 30 第四章 SVM與BPN之模式比較 35 4.1 模式預報準確度 35 4.1.1 比較輸入項為流量及雨量的BPN與SVM預報模式 35 4.1.2 比較輸入項為流量、雨量及有效颱風因子的BPN與SVM預報模式 42 4.2 模式強健性 48 4.3 模式效率 52 第五章 有效颱風因子與雨量因子對洪流預報之影響 54 5.1 有效颱風因子對BPN預報模式之影響 55 5.2 有效颱風因子對SVM預報模式之影響 61 5.3 有效颱風因子於缺少雨量資料情況下對SVM模式之影響 67 5.4 缺少雨量資料對最佳模式(SVM-QRTy)之影響 75 第六章 有效颱風因子的判定 81 6.1 颱風因子對流量預報的影響 81 6.2 確定有效颱風因子 83 第七章 結論與建議 85 7.1 結論 85 7.2 建議 88 參考文獻 89 附圖 92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 颱洪預報 | zh_TW |
| dc.subject | 支持向量機 | zh_TW |
| dc.subject | 颱風因子 | zh_TW |
| dc.subject | 交替驗證 | zh_TW |
| dc.subject | 強健性與效率 | zh_TW |
| dc.subject | cross-validation | en |
| dc.subject | flood forecasting | en |
| dc.subject | typhoon characteristics | en |
| dc.subject | robustness and efficiency | en |
| dc.subject | support vector machines | en |
| dc.title | 支持向量機於颱洪時期流量預報之研究 | zh_TW |
| dc.title | Flood Forecasting during Typhoon Periods Using Support Vector Machines | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鄭克聲(Ke-Sheng Cheng),張斐章(Fi-John Chang),陳明杰(Ming-Chieh Chen),林文欽(Wen-Ching Lin),賴進松(Jihn-Sung Lai) | |
| dc.subject.keyword | 颱洪預報,支持向量機,颱風因子,強健性與效率,交替驗證, | zh_TW |
| dc.subject.keyword | flood forecasting,support vector machines,typhoon characteristics,robustness and efficiency,cross-validation, | en |
| dc.relation.page | 108 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-09-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
