請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45480完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳志毅(Chih-I Wu) | |
| dc.contributor.author | Yu-Hung Chen | en |
| dc.contributor.author | 陳裕宏 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:22:32Z | - |
| dc.date.available | 2014-10-28 | |
| dc.date.copyright | 2009-10-28 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-10-09 | |
| dc.identifier.citation | 1. Tang, C.W. and S.A. Vanslyke, Organic Electroluminescent Diodes. Applied Physics Letters,
1987. 51(12): p. 913‐915. 2. Kim, S.T., the 6th International Meeting on Information Display and the International Display Manufacturing Conference, 2006. 3. Burroughes, J., et al., Light‐emitting diodes based on conjugated polymers. Nature, 1990. 347(6293): p. 539‐541. 4. Kikuchi, N., et al. Effects of excess oxygen introduced during sputter deposition on carrier mobility in as‐deposited and postannealed indium‐‐tin‐‐oxide films. in The 47th international symposium: Vacuum, thin films, surfaces/interfaces, and processing NAN06. 2001. Boston, Massachusetts (USA): AVS. 5. Kim, J., et al., Indium–tin oxide treatments for single‐and double‐layer polymeric light‐emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance. Journal of Applied Physics, 1998. 84: p. 6859. 6. Blochwitz, J., et al., Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material. Applied Physics Letters, 1998. 73: p. 729. 7. Romero, D.B., et al., Effects of doping in polymer light‐emitting diodes. Applied Physics Letters, 1995. 67(12): p. 1659‐1661. 8. Huang, F., A.G. MacDiarmid, and B.R. Hsieh, An iodine‐doped polymer light‐emitting diode. Applied Physics Letters, 1997. 71(17): p. 2415‐2417. 9. Yi, Y., et al., The interface state assisted charge transport at the MoO3/metal interface. Journal of Chemical Physics, 2009. 130(9): p. 094704. 10. Wu, C.I., et al., Electronic and chemical properties of molybdenum oxide doped hole injection layers in organic light emitting diodes. Journal of Applied Physics, 2009. 105(3): p. 033717. 11. Leem, D.‐S., et al., Low driving voltage and high stability organic light‐emitting diodes with rhenium oxide‐doped hole transporting layer. Applied Physics Letters, 2007. 91(1): p. 011113. 12. VanSlyke, S., et al., Electroluminescent device with organic electroluminescent medium. 1991, Google Patents. 13. Shi, J. and C.W. Tang, Doped organic electroluminescent devices with improved stability. Applied Physics Letters, 1997. 70(13): p. 1665‐1667. 14. Borsenberger, P.M., Organic photoreceptors for imaging systems. 1993, New York :: M. Dekker. 15. Wakimoto, T., et al., Organic EL cells using alkaline metal compounds as electroninjection materials. Ieee Transactions on Electron Devices, 1997. 44(8): p. 1245‐1248. 16. St el, M., et al., Space‐charge‐limited electron currents in 8‐hydroxyquinoline aluminum. Applied Physics Letters, 2000. 76: p. 115. 17. Hasegawa, T., et al. 11.3: Novel Electron Injection Layers for Top Emission OLEDs. 2004: SID. 125 18. Harada, K., et al., Organic homojunction diodes with a high built‐in potential: interpretation of the current‐voltage characteristics by a generalized Einstein relation. Physical review letters, 2005. 94(3): p. 36601. 19. Bloom, C., et al., Low work function reduced metal complexes as cathodes in organic electroluminescent devices. Journal of Physical Chemistry B‐Condensed Phase, 2003. 107(13): p. 2933‐2938. 20. Horowitz, G., Organic field‐effect transistors. Advanced Materials, 1998. 10(5): p. 365‐377. 21. Pope, M. and C.E. Swenberg, Electronic processes in organic crystals and polymers. 2nd ed. 1999, New York: Oxford University Press. xxix, p. 1328 22. Jenekhe, S. and S. Yi, Efficient photovoltaic cells from semiconducting polymer heterojunctions. Applied Physics Letters, 2000. 77: p. 2635. 23. Zhang, X. and S. Jenekhe, Electroluminescence of multicomponent conjugated polymers. 1. Roles of polymer/polymer interfaces in emission enhancement and voltage‐tunable multicolor emission in semiconducting polymer/polymer heterojunctions. Macromolecules, 2000. 33(6): p. 2069‐2082. 24. Mott, N. Note on the contact between a metal and an insulator or semi‐conductor. 1938. 25. Schottky, W., Deviations from Ohm's law in semiconductors. Phys. Z, 1940. 41: p. 570‐573. 26. Salaneck, W.R., Conjugated polymer and molecular interfaces : science and technology for photonic and optoelectronic applications. 2002, New York: Marcel Dekker. xvi, p. 866. 27. Ishii, H., et al., Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Advanced Materials, 1999. 11(8): p. 605‐625. 28. Hill, I.G., A. Rajagopal, and A. Kahn, Energy‐level alignment at interfaces between metals and the organic semiconductor 4,4'‐N,N'‐dicarbazolyl‐biphenyl. Journal of Applied Physics, 1998. 84(6): p. 3236‐3241. 29. Lee, S.T., et al., Interfacial electronic structures in an organic light‐emitting diode. Applied Physics Letters, 1999. 74(5): p. 670‐672. 30. Nielsen, P., Photographic Science and Engineering, 1974. 18: p. 186. 31. Ishii, H., et al., Kelvin probe study of band bending at organic semiconductor/metal interfaces: examination of Fermi level alignment. physica status solidi (a), 2004. 201(6), p. 1075. 32. Gould, R., Structure and electrical conduction properties of phthalocyanine thin films. Coordination Chemistry Reviews, 1996. 156: p. 237‐274. 33. Dent, C.E., R.P. Linstead, and A.R. Lowe, J. Chem. Soc., 1934: p. 1033. 34. Heilmeier, G.H. and G. Warfield, Investigation of Bulk Currents in Metal‐Free Phthalocyanine Crystals. The Journal of Chemical Physics, 1963. 38(1): p. 163‐168. 35. Wilson, A. and R. Collins, Electrical characteristics of planar phthalocyanine thin film gas sensors. SENSORS ACTUATORS., 1987. 12(4): p. 389‐403. 36. Shafai, T. and R. Gould, Observations of Schottky and Poole‐Frenkel emission in lead phthalocyanine thin films using aluminium injecting electrodes. International Journal of 126 Electronics, 1992. 73(2): p. 307‐313. 37. VanSlyke, S., C. Tang, and L. Roberts, Electroluminescent device with organic luminescent medium. 1988, Google Patents. 38. Gu, G., V. Khalfin, and S.R. Forrest, High‐efficiency, low‐drive‐voltage, semitransparent stacked organic light‐emitting device. Applied Physics Letters, 1998. 73(17): p. 2399‐2401. 39. Kido, J. and Y. Iizumi, Fabrication of highly efficient organic electroluminescent devices. Applied Physics Letters, 1998. 73(19): p. 2721‐2723. 40. Yuan, Y.Y., et al., Fullerene‐organic nanocomposite: A flexible material platform for organic light‐emitting diodes. Applied Physics Letters, 2006. 88(9): p. 093503. 41. Hill, I., Combined photoemission/in vacuo transport study of the indium tin oxide/copper phthalocyanine/N,N'‐diphenyl‐N,N'‐bis(l‐naphthyl)‐1,1'biphenyl‐4,4'diamine molecular organic semiconductor system. Journal of Applied Physics, 1999. 86(4): p. 2116. 42. Lee, S., et al., Interfacial electronic structures in an organic light‐emitting diode. Applied Physics Letters, 1999. 74: p. 670. 43. Lai, S.L., et al., Copper hexadecafluorophthalocyanine and copper phthalocyanine as a pure organic connecting unit in blue tandem organic light‐emitting devices. Journal of Applied Physics, 2007. 101(1): p. 014509‐4. 44. Bao, Z., A. Lovinger, and A. Dodabalapur, Organic field effect transistors with high mobility based on copper phthalocyanine. Applied Physics Letters, 1996. 69: p. 3066. 45. Parthasarathy, G., et al., A metal‐free cathode for organic semiconductor devices. Applied Physics Letters, 1998. 72: p. 2138. 46. Parthasarathy, G., et al., Lithium doping of semiconducting organic charge transport materials. Journal of Applied Physics, 2001. 89(9): p. 4986‐4992. 47. Hung, L.S., Efficient and stable organic light‐emitting diodes with a sputter‐deposited cathode. Thin Solid Films, 2000. 363(1‐2): p. 47‐50. 48. Yan, L., et al., Direct observation of Fermi‐level pinning in Cs‐doped CuPc film. Applied Physics Letters, 2001. 79(25): p. 4148‐4150. 49. Ding, H. and Y. Gao, Evolution of the unoccupied states in Cs‐doped copper phthalocyanine. Applied Physics Letters, 2008. 92(5): p. 053309‐3. 50. Ding, H., et al., Electronic structure modification of copper phthalocyanine (CuPc) induced by intensive Na doping. Chemical Physics Letters, 2008. 454(4‐6): p. 229‐232. 51. Betti, M.G., et al., Insulating state of electron‐doped Cu‐phthalocyanine layers. Physical Review B (Condensed Matter and Materials Physics), 2007. 76(12): p. 125407‐4. 52. Ding, H. and Y. Gao, Alkali metal doping and energy level shift in organic semiconductors. Applied Surface Science, 2006. 252(11): p. 3943‐3947. 53. Ding, H. and Y. Gao, Reversal of doping‐induced energy level shift: Au on Cs‐doped tris(8‐hydroxyquinoline) aluminum. Applied Physics Letters, 2005. 87(5): p. 051918‐3. 54. Lu, H., C. Tsou, and M. Yokoyama, The Mechanism of the CuPc/ Metal/ Al Multilayer 127 Cathode in Organic Light Emitting Diodes. Electrochemical and Solid‐State Letters, 2008. 11: p. J31. 55. Kearns, D. and M. Calvin, Photovoltaic Effect and Photoconductivity in Laminated Organic Systems. The Journal of Chemical Physics, 1958. 29(4): p. 950‐951. 56. Tang, C.W., Two‐layer organic photovoltaic cell. Applied Physics Letters, 1986. 48(2): p. 183‐185. 57. Taima, T., et al., Effects of intrinsic layer thickness on solar cell parameters of organic p‐i‐n heterojunction photovoltaic cells. Applied Physics Letters, 2004. 85(26): p. 6412‐6414. 58. El‐Nahass, M., et al., Photovoltaic properties of NiPc/p‐Si (organic/inorganic) heterojunctions. Organic Electronics, 2005. 6(3): p. 129‐136. 59. Terao, Y., H. Sasabe, and C. Adachi, Correlation of hole mobility, exciton diffusion length, and solar cell characteristics in phthalocyanine/fullerene organic solar cells. Applied Physics Letters, 2007. 90(10): p. 103515‐3. 60. Suemori, K., et al., Three‐layered organic solar cells incorporating a nanostructure‐optimized phthalocyanine:fullerene codeposited interlayer. Applied Physics Letters, 2005. 86(6): p. 063509‐3. 61. Gadisa, A., et al., Correlation between oxidation potential and open‐circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative. Applied Physics Letters, 2004. 84(9): p. 1609‐1611. 62. Mutolo, K., et al., Enhanced open‐circuit voltage in subphthalocyanine/C60 organic photovoltaic cells. J. Am. Chem. Soc, 2006. 128(25): p. 8108‐8109. 63. VanSlyke, S.A., C.H. Chen, and C.W. Tang, Organic electroluminescent devices with improved stability. Applied Physics Letters, 1996. 69(15): p. 2160‐2162. 64. Bonzel, H.P. and C. Kleint, On the History of Photoemission. Progress in Surface Science, 1995. 49(2): p. 107‐153. 65. Watts, J.F. and J. Wolstenholme, An introduction to surface analysis by XPS and AES. 2003, J. Wiley: Chichester, West Sussex, England ; New York., p. 212. 66. Shirley, D.A., High‐Resolution X‐Ray Photoemission Spectrum of Valence Bands of Gold. Physical Review B, 1972. 5(12): p. 4709‐&. 67. Proctor, A. and P.M.A. Sherwood, Data‐Analysis Techniques in X‐Ray Photo‐Electron Spectroscopy. Analytical Chemistry, 1982. 54(1): p. 13‐19. 68. Tougaard, S., et al., Test of Algorithm for Background Correction in Xps under Variation of Xps Peak Energy. Surface and Interface Analysis, 1988. 13(4): p. 225‐227. 69. Tougaard, S. and B. Jorgensen, Absolute Background Determination in Xps. Surface and Interface Analysis, 1985. 7(1): p. 17‐21. 70. Zahn, D.R.T., G.N. Gavrila, and G. Salvan, Electronic and vibrational spectroscopies applied to organic/inorganic interfaces. Chemical Reviews, 2007. 107(4): p. 1161‐1232. 71. Vilan, A. and D. Cahen, How organic molecules can control electronic devices. Trends in 128 Biotechnology, 2002. 20(1): p. 22‐29. 72. Ashkenasy, G., et al., Molecular engineering of semiconductor surfaces and devices. Acc. Chem. Res, 2002. 35(2): p. 121‐128. 73. Evans, S., et al., Self‐assembled monolayers of alkanethiols containing a polar aromatic group: effects of the dipole position on molecular packing, orientation, and surface wetting properties. Journal of the American Chemical Society, 1991. 113(11): p. 4121‐4131. 74. Hill, I.G., et al., Charge‐separation energy in films of [pi]‐conjugated organic molecules. Chemical Physics Letters, 2000. 327(3‐4): p. 181‐188. 75. Hüfner, S., Photoelectron spectroscopy : principles and applications. 2nd ed. Springer series in solid‐state sciences. 1996, Berlin ; New York: Springer. xiv, p 516. 76. Cardona, M. and L. Ley, Photoemission in solids. 1978, Berlin ; New York: Springer‐Verlag. 77. Martinez‐Diaz, M.V., et al., Supramolecular organization of subphthalocyanines in Langmuir and Langmuir‐Blodgett films. Journal of Materials Chemistry, 1999. 9(7): p. 1521‐1526. 78. Tseng, P.C., et al., Current Status of the 6‐M Low‐Energy Spherical Grating Monochromator Beamline at Srrc. Review of Scientific Instruments, 1995. 66(2): p. 1658‐1660. 79. Crist, B.V., Handbook of monochromatic XPS spectra. 2000, Chichester ; New York: Wiley. 80. Ko, C.H., et al., The soft X‐ray scanning photoemission microscopy project at SRRC. Journal of Synchrotron Radiation, 1998. 5: p. 299‐304. 81. Briggs, D. and M.P. Seah, Practical surface analysis. 2nd ed. 1990, Chichester ; New York Aarau: Wiley ; Salle Sauerländer. 82. Kohiki, S., et al., Energy‐loss structure in core‐level photoemission satellites of SrTiO3, SrTiO3 : La, and SrTiO3 : Nb. Physical Review B, 2000. 62(12): p. 7964‐7969. 83. Available from: http://www.nsrrc.org.tw/ 84. Bredas, J.L., et al., A nonempirical effective Hamiltonian technique for polymers: Application to polyacetylene and polydiacetylene. The Journal of Chemical Physics, 1981. 75(1): p. 255‐267. 85. Libert, J., et al., From neutral oligoanilines to polyanilines: A theoretical investigation of the chain‐length dependence of the electronic and optical properties. Physical Review B, 1997. 56(14): p. 8638. 86. Fahlman, M., et al., Experimental and Theoretical Studies of the Electronic Structure of Poly(p‐phenylenevinylene) and Some Ring‐Substituted Derivatives. Macromolecules, 2002. 28(6): p. 1959‐1965. 87. Segal, G. and J. Pople, Approximate Self‐Consistent Molecular Orbital Theory. III. CNDO Results for AB [sub 2] and AB [sub 3] Systems. J. Chem. Phys, 1966. 44: p. 3289. 88. Pople, J.A., D.L. Beveridge, and P.A. Dobosh, Approximate Self‐Consistent Molecular‐Orbital Theory. V. Intermediate Neglect of Differential Overlap. The Journal of Chemical Physics, 1967. 47(6): p. 2026‐2033. 89. M. J. Frisch, G.W.T., H. B. Schlegel, G. E. Scuseria, , et al., Gaussian 03, Revision E.01. 2004. 129 90. Noel M. O'boyle, Adam L. Tenderholt, and Karol M. Langner, cclib: A library for package‐independent computational chemistry algorithms. Journal of Computational Chemistry, 2008. 29(5): p. 839‐845. 91. Thomas, L.H., The calculation of atomic fields. Proc. Camb. Phil. Soc., 1927. 23: p. 542‐548. 92. Fermi, E., Un metodo statistico per la determinazione di alcune priorieta dell’atome. Rend. Accad. Naz. Lincei, 1927. 6: p. 602‐607. 93. Kohn, W. and L.J. Sham, Self‐Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. 1133‐&. 94. Becke, A.D., Density‐functional exchange‐energy approximation with correct asymptotic behavior. Physical Review A, 1988. 38(6): p. 3098. 95. Colle, R. and O. Salvetti, Approximate Calculation of Correlation Energy for Closed Shells. Theoretica Chimica Acta, 1975. 37(4): p. 329‐334. 96. Lee, C.T., W.T. Yang, and R.G. Parr, Development of the Colle‐Salvetti Correlation‐Energy Formula into a Functional of the Electron‐Density. Physical Review B, 1988. 37(2): p. 785‐789. 97. Boese, A.D. and N.C. Handy, A new parametrization of exchange‐correlation generalized gradient approximation functionals. Journal of Chemical Physics, 2001. 114(13): p. 5497‐5503. 98. Becke, A.D., Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 1993. 98(7): p. 5648‐5652. 99. Hertwig, R.H. and W. Koch, On the parameterization of the local correlation functional. What is Becke‐3‐LYP? Chemical Physics Letters, 1997. 268(5‐6): p. 345‐351. 100. Adachi, C., T. Tsutsui, and S. Saito, Confinement of Charge‐Carriers and Molecular Excitons within 5‐Nm‐Thick Emitter Layer in Organic Electroluminescent Devices with a Double Heterostructure. Applied Physics Letters, 1990. 57(6): p. 531‐533. 101. You, H., et al., Improved performances of organic light‐emitting diodes with metal oxide as anode buffer. Journal of Applied Physics, 2007. 101(2): p. 026105. 102. Hung, L.S., C.W. Tang, and M.G. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Applied Physics Letters, 1997. 70(2): p. 152‐154. 103. Jabbour, G.E., et al., Highly efficient and bright organic electroluminescent devices with an aluminum cathode. Applied Physics Letters, 1997. 71(13): p. 1762‐1764. 104. Kido, J. and T. Matsumoto, Bright organic electroluminescent devices having a metal‐doped electron‐injecting layer. Applied Physics Letters, 1998. 73(20): p. 2866‐2868. 105. Hong, I.H., et al., Effective hole injection of organic light‐emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode. Applied Physics Letters, 2005. 87(6): p. 063502. 106. Ganzorig, C., et al., Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices. Applied Physics Letters, 2001. 130 79(2): p. 272‐274. 107. Campbell, I.H., et al., Controlling Schottky energy barriers in organic electronic devices using self‐assembled monolayers. Physical Review B, 1996. 54(20): p. 14321‐14324. 108. Gould, R.D., Structure and electrical conduction properties of phthalocyanine thin films. Coordination Chemistry Reviews, 1996. 156: p. 237‐274. 109. del Rey, B., et al., Synthesis and nonlinear optical, photophysical, and electrochemical properties of subphthalocyanines. Journal of the American Chemical Society, 1998. 120(49): p. 12808‐12817. 110. Claessens, C.G., D. Gonzalez‐Rodriguez, and T. Torres, Subphthalocyanines: Singular nonplanar aromatic compounds‐synthesis, reactivity, and physical properties. Chemical Reviews, 2002. 102(3): p. 835‐853. 111. Gommans, H., et al., Electro‐optical study of subphthalocyanine in a bilayer organic solar cell. Advanced Functional Materials, 2007. 17(15): p. 2653‐2658. 112. Mutolo, K.L., et al., Enhanced open‐circuit voltage in subphthalocyanine/C‐60 organic photovoltaic cells. Journal of the American Chemical Society, 2006. 128(25): p. 8108‐8109. 113. de Wild, M., et al., A novel route to molecular self‐assembly: Self‐intermixed monolayer phases. Chemphyschem, 2002. 3(10): p. 881‐885. 114. Berner, S., et al., Adsorption and two‐dimensional phases of a large polar molecule: Sub‐phthalocyanine on Ag(111). Physical Review B, 2003. 68(11): p. 115410. 115. Yanagi, H., et al., Site‐specific physisorption and chemical reaction of subphthalocyanine molecules on silicon(111)‐(7x7). Physical Review B, 2000. 61(3): p. 1959‐1964. 116. Mannsfeld, S., H. Relchhard, and T. Fritz, LEED and STM investigation of chloro(subphthalocyaninato)boron on Au(111). Surface Science, 2003. 525(1‐3): p. 215‐221. 117. Halls, J.J.M., et al., Efficient Photodiodes from Interpenetrating Polymer Networks. Nature, 1995. 376(6540): p. 498‐500. 118. Granstrom, M., et al., Laminated fabrication of polymeric photovoltaic diodes. Nature, 1998. 395(6699): p. 257‐260. 119. Tang, C.W., Two‐layer organic photovoltaic cell. Applied Physics Letters, 1986. 48(2): p. 183. 120. Xue, J.G., et al., 4.2% efficient organic photovoltaic cells with low series resistances. Applied Physics Letters, 2004. 84(16): p. 3013‐3015. 121. Koeppe, R., et al., Complexation of pyrrolidinofullerenes and zinc‐phthalocyanine in a bilayer organic solar cell structure. Applied Physics Letters, 2005. 87(24): p. 244102. 122. Brabec, C.J., N.S. Sariciftci, and J.C. Hummelen, Plastic solar cells. Advanced Functional Materials, 2001. 11(1): p. 15‐26. 123. Potscavage, W.J., S. Yoo, and B. Kippelen, Origin of the open‐circuit voltage in multilayer heterojunction organic solar cells. Applied Physics Letters, 2008. 93(19): p. 193308. 124. Reyes‐Reyes, M., K. Kim, and D.L. Carroll, High‐efficiency photovoltaic devices based on annealed poly(3‐hexylthiophene) and 1‐(3‐methoxycarbonyl)‐propyl‐1‐phenyl‐(6,6)C‐61 131 blends. Applied Physics Letters, 2005. 87(8): p. 083506. 125. Peumans, P., A. Yakimov, and S.R. Forrest, Small molecular weight organic thin‐film photodetectors and solar cells (vol 93, pg 3693, 2003). Journal of Applied Physics, 2004. 95(5): p. 2938‐2938. 126. Brabec, C.J., et al., Origin of the open circuit voltage of plastic solar cells. Advanced Functional Materials, 2001. 11(5): p. 374‐380. 127. Lozzi, L., S. Santucci, and S. La Rosa, Photoemission investigation on copper phthalocyanine : fullerene blend film. Applied Physics Letters, 2006. 88(13): p. 133505. 128. Schlebusch, C., et al., Organic photoconductors and C60. Synthetic Metals, 1996. 77(1‐3): p. 151‐154. 129. Rand, B.P., D.P. Burk, and S.R. Forrest, Offset energies at organic semiconductor heterojunctions and their influence on the open‐circuit voltage of thin‐film solar cells. Physical Review B, 2007. 75(11): p. 115327. 130. Kobayashi, N., et al., Synthesis, spectroscopy, and molecular orbital calculations of subazaporphyrins, subphthalocyanines, subnaphthalocyanines, and compounds derived therefrom by ring expansion. Journal of the American Chemical Society, 1999. 121(39): p. 9096‐9110. 131. Ferro, V.R., et al., A theoretical study of subphthalocyanine and its nitro‐ and tertbutyl‐derivatives. Journal of Molecular Structure‐Theochem, 2001. 537: p. 223‐234. 132. Ferro, V.R., et al., Density functional study of the redox processes in subphthalocyanines. International Journal of Quantum Chemistry, 2003. 91(3): p. 369‐375. 133. Ferro, V.R., et al., The axial coordination in subphthalocyanines. Geometrical and electronic aspects. Journal of Porphyrins and Phthalocyanines, 2001. 5(6): p. 491‐499. 134. Ishizaka, A. and Y. Shiraki, Low‐Temperature Surface Cleaning of Silicon and Its Application to Silicon Mbe. Journal of the Electrochemical Society, 1986. 133(4): p. 666‐671. 135. Tadayyon, S.M., et al., CuPc buffer layer role in OLED performance: a study of the interfacial band energies. Organic Electronics, 2004. 5(4): p. 157‐166. 136. Cho, S.W., et al., Interfacial electronic structure of N,N'‐bis(1‐naphthyl)‐N,N'‐diphenyl‐1,1'‐biphenyl‐4,4'‐diamine/copper phthalocyanine : C‐60 composite/Au studied by ultraviolet photoemission spectroscopy. Applied Physics Letters, 2007. 91(5): p. 052102. 137. Pi, T.W., et al., Electronic structure of tris(8‐hydroxyquinolato) aluminum at room temperature and during annealing. Physical Review B, 2005. 71(20): p. 205310. 138. Ahlund, J., et al., The electronic structure of iron phthalocyanine probed by photoelectron and x‐ray absorption spectroscopies and density functional theory calculations. Journal of Chemical Physics, 2006. 125(3): p. 034709. 139. Zhang, L., et al., Growth of zinc phthalocyanine onto ZnS film investigated by synchrotron radiation‐excited X‐ray photoelectron and near‐edge absorption spectroscopy. Surface 132 Science, 2005. 596(1‐3): p. 98‐107. 140. Nilson, K., et al., STM and XPS characterization of zinc phthalocyanine on InSb(001). Surface Science, 2008. 602(2): p. 452‐459. 141. Schwieger, T., et al., Electronic structure of the organic semiconductor copper phthalocyanine and K‐CuPc studied using photoemission spectroscopy. Physical Review B, 2002. 66(15): p. ‐. 142. Peisert, H., M. Knupfer, and J. Fink, Electronic structure of partially fluorinated copper phthalocyanine (CuPCF4) and its interface to Au(100). Surface Science, 2002. 515(2‐3): p. 491‐498. 143. Zhang, R., C. Lee, and S. Lee, Theory of the charge‐transport properties of naphthyl diamine used in organic light‐emitting devices. Applied Physics Letters, 1999. 75: p. 2418. 144. Zhang, R., C. Lee, and S. Lee, The electronic structures and properties of Alq3 and NPB molecules in organic light emitting devices: Decompositions of density of states. Journal of Chemical Physics, 2000. 112(19): p. 8614‐8620. 145. Pan, J., et al., Theoretical investigations of the molecular conformation and reorganization energies in the organic diamines as hole‐transporting materials. Journal of Physical Organic Chemistry, 2007. 20(10), p. 743. 146. Curioni, A. and W. Andreoni, Metal‐Alq3 Complexes: The Nature of the Chemical Bonding. Journal of the American Chemical Society, 1999. 121(36): p. 8216‐8220. 147. Zhang, R.Q., et al., Metal/Alq3 interactions in organic light emitting devices: The different roles of Mg, Al, and Li atoms. Journal of Chemical Physics, 2002. 116(20): p. 8827. 148. Endo, J., T. Matsumoto, and J. Kido, Organic Electroluminescent Devices with a Vacuum‐Deposited Lewis‐Acid‐Doped Hole‐Injecting Layer. Japanese Journal of Applied Physics, 2002. 41(3B): p. L358‐L360. 149. Zhang, R., C. Lee, and S. Lee, ARTICLES‐Surfaces, Interfaces, and Materials‐The electronic structures and properties of Alq3 and NPB molecules in organic light emitting devices: Decompositions of density of states. Journal of Chemical Physics, 2000. 112(19): p. 8614‐8620. 150. X. Zhou, et al., Real‐Time Observation of Temperature Rise and Thermal Breakdown Processes in Organic LEDs Using an IR Imaging and Analysis System. Advanced Materials, 2000. 12(4): p. 265‐269. 151. Aziz, H., et al., Degradation mechanism of small molecule‐based organic light‐emitting devices. Science, 1999. 283(5409): p. 1900‐1902. 152. Hung, L.S., et al., Application of an ultrathin LiF/Al bilayer in organic surface‐emitting diodes. Applied Physics Letters, 2001. 78(4): p. 544‐546. 153. Wu, C.I., G.R. Lee, and T.W. Pi, Energy structures and chemical reactions at the Al/LiF/Alq3 interfaces studied by synchrotron‐radiation photoemission spectroscopy. Applied Physics Letters, 2005. 87(21): p. 212108. 154. Choi, H.W., et al., Enhancement of electron injection in inverted top‐emitting organic 133 light‐emitting diodes using an insulating magnesium oxide buffer layer. Applied Physics Letters, 2005. 87(8): p. 082102. 155. Kim, S.H., J. Jang, and J.Y. Lee, Relationship between indium tin oxide surface treatment and hole injection in C60 modified devices. Applied Physics Letters, 2006. 89(25): p. 253501. 156. Feng, X.D., et al., Ohmic cathode for low‐voltage organic light‐emitting diodes. Applied Physics Letters, 2005. 86(14): p. 253501. 157. Zhao, Y.Q., et al., Transparent conducting C‐60 : LiF nanocomposite thin films for organic light‐emitting diodes. Applied Physics Letters, 2007. 91(10): p. 103109. 158. Cho, S., et al., Interfacial electronic structure of N, N‐bis (1‐naphthyl)‐N, N‐diphenyl‐1, 1‐biphenyl‐4, 4‐diamine/copper phthalocyanine: C composite/Au studied by ultraviolet photoemission spectroscopy. Applied Physics Letters, 2007. 91: p. 052102. 159. Yan, L., et al., Direct observation of fermi‐level pinning in Cs‐doped CuPc film. Applied Physics Letters, 2001. 79(25): p. 4148‐4150. 160. Chen, Y.H., et al., Enhancement of Current Efficiency in Organic Light Emitting Diodes with Incorporation of Subphthalocyanine. Applied Physics Letters, 2009. Accepted. 161. Ding, H.J. and Y.L. Gao, Evolution of the unoccupied states in Cs‐doped copper phthalocyanine. Applied Physics Letters, 2008. 92(5): p. 053309. 162. Ding, H. and Y. Gao, Electronic structure of Cs‐doped tris (8‐hydroxyquinoline) aluminum. Applied Physics Letters, 2005. 86: p. 213508. 163. Johansson, N., et al., Electronic structure of tris (8‐hydroxyquinoline) aluminum thin films in the pristine and reduced states. The Journal of Chemical Physics, 1999. 111: p. 2157. 164. Wertheim, G.K., P.T.T.M. Van Attekum, and S. Basu, Electronic structure of lithium graphite. Solid State Communications, 1980. 33(11): p. 1127‐1130. 165. Cahen, D. and G. Hodes, Molecules and electronic materials. Advanced Materials, 2002. 14(11): p. 789. 166. Wu, C., G. Lee, and T. Pi, Energy structures and chemical reactions at the Al/ LiF/ Alq3 interfaces studied by synchrotron‐radiation photoemission spectroscopy. Applied Physics Letters, 2005. 87: p. 212108. 167. Shen, C., A. Kahn, and J. Schwartz, Chemical and electrical properties of interfaces between magnesium and aluminum and tris‐(8‐hydroxy quinoline) aluminum. Journal of Applied Physics, 2001. 89: p. 449. 168. Ding, H. and Y. Gao, Au/ LiF/tris (8‐hydroxyquinoline) aluminum interfaces. Applied Physics Letters, 2007. 91: p. 172107. 169. Rohlfing, F., T. Yamada, and T. Tsutsui, Electroabsorption spectroscopy on tris‐(8‐hydroxyquinoline) aluminum‐based light emitting diodes. Journal of Applied Physics, 1999. 86: p. 4978. 170. Wu, C., et al., Electronic structures and electron‐injection mechanisms of cesium‐carbonate‐incorporated cathode structures for organic light‐emitting devices. Applied 134 Physics Letters, 2006. 88: p. 152104. 171. Yi, Y., et al., Origin of the improved luminance‐voltage characteristics and stability in organic light‐emitting device using CsCl electron injection layer. Applied Physics Letters, 2005. 86: p. 213502. 172. Yi, Y., et al., Evidence of gap state formed by the charge transfer in Alq/ NaCl/ Al interface studied by ultraviolet and x‐ray photoelectron spectroscopy. Applied Physics Letters, 2005. 86: p. 113503. 173. Mason, M., et al., Interfacial chemistry of Alq and LiF with reactive metals. Journal of Applied Physics, 2001. 89: p. 2756. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45480 | - |
| dc.description.abstract | 摘 要
酞菁衍生物(Phthalocyanine derivatives)因為其特殊的物理與化學性質,在化學工業與光 電產業中被廣泛的利用。本論文中, 首次將氯化硼亞酞菁 (chloro[subphthalocyaninato]boron(III), SubPc)成功的應用至有機發光二極體(OLEDs)內,並 探討SubPc 應用至有機半導體元件上所扮演的角色。首先,針對有機發光二極體的元件架 構做簡單介紹,並討論應用至各層時,有機材料所應該具備的相關物理與化學特性。介面 特性探討上,對於半導體介面上所適用的理論來簡單的介紹。最後,文獻探討部分將對於 酞菁衍生物的發展歷程有初步的介紹。並且對於應用至陽極注入時,酞菁衍生物在電洞注 入與傳輸介面上所扮演的角色跟運作原理做進一步的說明。本篇論文的研究動機與亟需探 討項目也會在第一章內提及。在進入實質內容討論前,先介紹實驗儀器與能譜分析所需的 公式。除此實驗探討之外,在第三章會提及運用第一原理(First principle)所需要的理論與方 法。 實驗部分,經由元件的製作,成功的實現了以SubPc 跟NPB 為電洞注入層的有機發光二 極體元件。光電子能譜的實驗上,SubPc 以極低蒸鍍速率鍍到NPB,蒸鍍過程中量測價帶 能譜(valence band spectrum)與核電子能譜(core-level spectrum)。經由能譜上的變化,推論出 NPB 與SubPc 兩者於介面上的反應方式。並且藉由前述的第一原理,先模擬分子結構至最 低能量,進而獲得模擬的價帶能譜與分子軌域圖樣(molecular orbital pattern)。藉由理論與實 驗能譜的對照,進一步佐證在實驗結果上所獲得的推論。陰極結構的應用上,將SubPc 與 LiF 以適當的比例運用至電子注入層,實現了元件電性的提升。個別的針對陰極結構的 Alq3SubPc 與SubPcLiFAl 的能譜來解釋元件電性提升的原因。除此之外,鹼金屬與有機 半導體材料在介面間的變化也是近年來相當有趣的課題。因此,本論文也會對鋰(lithium) 原子與SubPc 介面間,在價帶能譜與核電子能譜上的變化來討論。最後,本論文的實驗與 理論結果在第六章做總結,並提出未來可行的研究方向以建議後進學者。 | zh_TW |
| dc.description.abstract | Owing to their remarkable physical and chemical properties, phthalocyanine-derivatives are widely employed in chemical and optoelectronic industry. In this dissertation, we successfully apply the chloro[subphthalocyaninato]boron(III) (SubPc) as the carrier injection layer of OLEDs. Therefore, the main issue of this dissertation is discussed the roles of SubPc in organic semiconductor devices. First of this dissertation, we will briefly introduce the configuration of OLEDs, and the related characters of organic material which is employed at the each layer of OLEDs need to be contained. In the interfacial characteristics, we will discuss the working model of semiconductor interface. Then, the developed history of phthalocyanine-derivatives and research motivation will discuss in the final section of chapter 1. Before we start the discussion of experimental results of dissertation, spectral analysis and experimental instruments are studied in chapter 2. Then, the method of theoretical simulations and the first principle will mention in the chapter 3. Via the fabrication of OLED devices, we successively realized the OLEDs device with the hole injection layer of co-doping NPB and SubPc. As the results of photoemission spectra, we can measure the core-level spectrum and valence band spectrum, and then the chemical reaction between NPB and SubPc at extreme low evaporation rate can be deduced. Simulation results also provided another viewpoint to prove the inference which concluded from the experimental results. . Optimization of geometrical structure is completed at the lowest molecular energy, and then we applied that structure to simulate the valence spectrum and molecular orbital pattern at frontier energy state. At the cathode application, we realized the improvement of device performance with the co-evaporation of LiF and SubPc and explained it with photoemission spectrum. Interfacial chemical reaction of lithium and SubPc are also investigated in the chapter 5. Finally, the future work, theoretical and experimental results are summed at the final chapter. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:22:32Z (GMT). No. of bitstreams: 1 ntu-98-D93941015-1.pdf: 4641670 bytes, checksum: 8f3095ffc25a5c7bfbd2283be7bb8cdb (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 摘 要 I
Abstract II Content III List of Figures V List of Tables VII Charpter 1 Introduction 1 1.1 OLED structures 3 1.2 Carrier injection behavior at interfacial electronic structure 6 1.3 Literature Review 9 1.4 Motivation 12 Charpter 2 Experiments 18 2.1 Quantitative analysis in electron spectrum 20 2.1.1 Data definition in XPS 20 2.1.2 Date definition in UPS 26 2.2 Photoelectron spectroscopy 28 2.2.1 Ultraviolet photoelectron spectroscopy 29 2.2.2 Synchrotron radiation photoelectron spectroscopy 30 2.2.3 X-ray photoelectron spectroscopy 33 Charpter 3 Theoretical methodology 53 3.1 Estimated parameters by computational chemistry 53 Charpter 4 Application of SubPhthalocyanine at Anode Structure 61 4.1 Energy level alignment in the interfacial of SubPc and C60 64 4.2 Application in OLED devices 68 4.3 Discuss of interfacial electronic structure with ultra-violate photoelectron spectroscopy and calculation 69 4.3.1 Simulation in UPS spectrum and Molecular orbital evaluation 70 4.3.2 Interfacial electronic structure of SubPc and NPB 72 4.3.3 Core-level spectra of SubPc and NPB 74 4.4 Theoretical study in the chemical reaction of NPB and SubPc 76 4.5 Discussion and summary 79 Charpter 5 Application of SubPhthalocyanine at Cathode Structure 103 5.1 Evaluation of energy level alignment and core-level spectrum of Li-doped SubPc............. 104 5.2 Application of SubPc in OLED cathode structure 108 Charpter 6 Conclusion and Future Work 120 6.1 Conclusion in Dissertation 120 6.2 Future work 122 | |
| dc.language.iso | en | |
| dc.subject | 有機發光二極體元件 | zh_TW |
| dc.subject | 載子注入 | zh_TW |
| dc.subject | 光電子激發術 | zh_TW |
| dc.subject | carrier injection | en |
| dc.subject | OLEDs | en |
| dc.subject | photoelectron spectroscopy | en |
| dc.title | 氯化硼亞 | zh_TW |
| dc.title | Electronic Structures and Interfacial Characteristics at the Application of (Chloro[subphthalocyaninato]boron(III) in Organic Light-Emitting Diode Devices | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳忠幟(Chung-Chih Wu),陳奕君(I-Chun Cheng),汪根欉(Ken-Tsung Wong),皮敦文(Tun-Wen Pi) | |
| dc.subject.keyword | 載子注入,有機發光二極體元件,光電子激發術, | zh_TW |
| dc.subject.keyword | carrier injection,OLEDs,photoelectron spectroscopy, | en |
| dc.relation.page | 134 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-10-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 4.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
