Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45480
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳志毅(Chih-I Wu)
dc.contributor.authorYu-Hung Chenen
dc.contributor.author陳裕宏zh_TW
dc.date.accessioned2021-06-15T04:22:32Z-
dc.date.available2014-10-28
dc.date.copyright2009-10-28
dc.date.issued2009
dc.date.submitted2009-10-09
dc.identifier.citation1. Tang, C.W. and S.A. Vanslyke, Organic Electroluminescent Diodes. Applied Physics Letters,
1987. 51(12): p. 913‐915.
2. Kim, S.T., the 6th International Meeting on Information Display and the International Display
Manufacturing Conference, 2006.
3. Burroughes, J., et al., Light‐emitting diodes based on conjugated polymers. Nature, 1990.
347(6293): p. 539‐541.
4. Kikuchi, N., et al. Effects of excess oxygen introduced during sputter deposition on carrier
mobility in as‐deposited and postannealed indium‐‐tin‐‐oxide films. in The 47th international
symposium: Vacuum, thin films, surfaces/interfaces, and processing NAN06. 2001. Boston,
Massachusetts (USA): AVS.
5. Kim, J., et al., Indium–tin oxide treatments for single‐and double‐layer polymeric
light‐emitting diodes: The relation between the anode physical, chemical, and morphological
properties and the device performance. Journal of Applied Physics, 1998. 84: p. 6859.
6. Blochwitz, J., et al., Low voltage organic light emitting diodes featuring doped
phthalocyanine as hole transport material. Applied Physics Letters, 1998. 73: p. 729.
7. Romero, D.B., et al., Effects of doping in polymer light‐emitting diodes. Applied Physics
Letters, 1995. 67(12): p. 1659‐1661.
8. Huang, F., A.G. MacDiarmid, and B.R. Hsieh, An iodine‐doped polymer light‐emitting diode.
Applied Physics Letters, 1997. 71(17): p. 2415‐2417.
9. Yi, Y., et al., The interface state assisted charge transport at the MoO3/metal interface.
Journal of Chemical Physics, 2009. 130(9): p. 094704.
10. Wu, C.I., et al., Electronic and chemical properties of molybdenum oxide doped hole injection
layers in organic light emitting diodes. Journal of Applied Physics, 2009. 105(3): p. 033717.
11. Leem, D.‐S., et al., Low driving voltage and high stability organic light‐emitting diodes with
rhenium oxide‐doped hole transporting layer. Applied Physics Letters, 2007. 91(1): p. 011113.
12. VanSlyke, S., et al., Electroluminescent device with organic electroluminescent medium. 1991,
Google Patents.
13. Shi, J. and C.W. Tang, Doped organic electroluminescent devices with improved stability.
Applied Physics Letters, 1997. 70(13): p. 1665‐1667.
14. Borsenberger, P.M., Organic photoreceptors for imaging systems. 1993, New York :: M.
Dekker.
15. Wakimoto, T., et al., Organic EL cells using alkaline metal compounds as electroninjection
materials. Ieee Transactions on Electron Devices, 1997. 44(8): p. 1245‐1248.
16. St el, M., et al., Space‐charge‐limited electron currents in 8‐hydroxyquinoline aluminum.
Applied Physics Letters, 2000. 76: p. 115.
17. Hasegawa, T., et al. 11.3: Novel Electron Injection Layers for Top Emission OLEDs. 2004: SID.
125
18. Harada, K., et al., Organic homojunction diodes with a high built‐in potential: interpretation
of the current‐voltage characteristics by a generalized Einstein relation. Physical review
letters, 2005. 94(3): p. 36601.
19. Bloom, C., et al., Low work function reduced metal complexes as cathodes in organic
electroluminescent devices. Journal of Physical Chemistry B‐Condensed Phase, 2003. 107(13):
p. 2933‐2938.
20. Horowitz, G., Organic field‐effect transistors. Advanced Materials, 1998. 10(5): p. 365‐377.
21. Pope, M. and C.E. Swenberg, Electronic processes in organic crystals and polymers. 2nd ed.
1999, New York: Oxford University Press. xxix, p. 1328
22. Jenekhe, S. and S. Yi, Efficient photovoltaic cells from semiconducting polymer
heterojunctions. Applied Physics Letters, 2000. 77: p. 2635.
23. Zhang, X. and S. Jenekhe, Electroluminescence of multicomponent conjugated polymers. 1.
Roles of polymer/polymer interfaces in emission enhancement and voltage‐tunable
multicolor emission in semiconducting polymer/polymer heterojunctions. Macromolecules,
2000. 33(6): p. 2069‐2082.
24. Mott, N. Note on the contact between a metal and an insulator or semi‐conductor. 1938.
25. Schottky, W., Deviations from Ohm's law in semiconductors. Phys. Z, 1940. 41: p. 570‐573.
26. Salaneck, W.R., Conjugated polymer and molecular interfaces : science and technology for
photonic and optoelectronic applications. 2002, New York: Marcel Dekker. xvi, p. 866.
27. Ishii, H., et al., Energy level alignment and interfacial electronic structures at organic/metal
and organic/organic interfaces. Advanced Materials, 1999. 11(8): p. 605‐625.
28. Hill, I.G., A. Rajagopal, and A. Kahn, Energy‐level alignment at interfaces between metals and
the organic semiconductor 4,4'‐N,N'‐dicarbazolyl‐biphenyl. Journal of Applied Physics, 1998.
84(6): p. 3236‐3241.
29. Lee, S.T., et al., Interfacial electronic structures in an organic light‐emitting diode. Applied
Physics Letters, 1999. 74(5): p. 670‐672.
30. Nielsen, P., Photographic Science and Engineering, 1974. 18: p. 186.
31. Ishii, H., et al., Kelvin probe study of band bending at organic semiconductor/metal interfaces:
examination of Fermi level alignment. physica status solidi (a), 2004. 201(6), p. 1075.
32. Gould, R., Structure and electrical conduction properties of phthalocyanine thin films.
Coordination Chemistry Reviews, 1996. 156: p. 237‐274.
33. Dent, C.E., R.P. Linstead, and A.R. Lowe, J. Chem. Soc., 1934: p. 1033.
34. Heilmeier, G.H. and G. Warfield, Investigation of Bulk Currents in Metal‐Free Phthalocyanine
Crystals. The Journal of Chemical Physics, 1963. 38(1): p. 163‐168.
35. Wilson, A. and R. Collins, Electrical characteristics of planar phthalocyanine thin film gas
sensors. SENSORS ACTUATORS., 1987. 12(4): p. 389‐403.
36. Shafai, T. and R. Gould, Observations of Schottky and Poole‐Frenkel emission in lead
phthalocyanine thin films using aluminium injecting electrodes. International Journal of
126
Electronics, 1992. 73(2): p. 307‐313.
37. VanSlyke, S., C. Tang, and L. Roberts, Electroluminescent device with organic luminescent
medium. 1988, Google Patents.
38. Gu, G., V. Khalfin, and S.R. Forrest, High‐efficiency, low‐drive‐voltage, semitransparent
stacked organic light‐emitting device. Applied Physics Letters, 1998. 73(17): p. 2399‐2401.
39. Kido, J. and Y. Iizumi, Fabrication of highly efficient organic electroluminescent devices.
Applied Physics Letters, 1998. 73(19): p. 2721‐2723.
40. Yuan, Y.Y., et al., Fullerene‐organic nanocomposite: A flexible material platform for organic
light‐emitting diodes. Applied Physics Letters, 2006. 88(9): p. 093503.
41. Hill, I., Combined photoemission/in vacuo transport study of the indium tin oxide/copper
phthalocyanine/N,N'‐diphenyl‐N,N'‐bis(l‐naphthyl)‐1,1'biphenyl‐4,4'diamine molecular
organic semiconductor system. Journal of Applied Physics, 1999. 86(4): p. 2116.
42. Lee, S., et al., Interfacial electronic structures in an organic light‐emitting diode. Applied
Physics Letters, 1999. 74: p. 670.
43. Lai, S.L., et al., Copper hexadecafluorophthalocyanine and copper phthalocyanine as a pure
organic connecting unit in blue tandem organic light‐emitting devices. Journal of Applied
Physics, 2007. 101(1): p. 014509‐4.
44. Bao, Z., A. Lovinger, and A. Dodabalapur, Organic field effect transistors with high mobility
based on copper phthalocyanine. Applied Physics Letters, 1996. 69: p. 3066.
45. Parthasarathy, G., et al., A metal‐free cathode for organic semiconductor devices. Applied
Physics Letters, 1998. 72: p. 2138.
46. Parthasarathy, G., et al., Lithium doping of semiconducting organic charge transport
materials. Journal of Applied Physics, 2001. 89(9): p. 4986‐4992.
47. Hung, L.S., Efficient and stable organic light‐emitting diodes with a sputter‐deposited
cathode. Thin Solid Films, 2000. 363(1‐2): p. 47‐50.
48. Yan, L., et al., Direct observation of Fermi‐level pinning in Cs‐doped CuPc film. Applied Physics
Letters, 2001. 79(25): p. 4148‐4150.
49. Ding, H. and Y. Gao, Evolution of the unoccupied states in Cs‐doped copper phthalocyanine.
Applied Physics Letters, 2008. 92(5): p. 053309‐3.
50. Ding, H., et al., Electronic structure modification of copper phthalocyanine (CuPc) induced by
intensive Na doping. Chemical Physics Letters, 2008. 454(4‐6): p. 229‐232.
51. Betti, M.G., et al., Insulating state of electron‐doped Cu‐phthalocyanine layers. Physical
Review B (Condensed Matter and Materials Physics), 2007. 76(12): p. 125407‐4.
52. Ding, H. and Y. Gao, Alkali metal doping and energy level shift in organic semiconductors.
Applied Surface Science, 2006. 252(11): p. 3943‐3947.
53. Ding, H. and Y. Gao, Reversal of doping‐induced energy level shift: Au on Cs‐doped
tris(8‐hydroxyquinoline) aluminum. Applied Physics Letters, 2005. 87(5): p. 051918‐3.
54. Lu, H., C. Tsou, and M. Yokoyama, The Mechanism of the CuPc/ Metal/ Al Multilayer
127
Cathode in Organic Light Emitting Diodes. Electrochemical and Solid‐State Letters, 2008. 11:
p. J31.
55. Kearns, D. and M. Calvin, Photovoltaic Effect and Photoconductivity in Laminated Organic
Systems. The Journal of Chemical Physics, 1958. 29(4): p. 950‐951.
56. Tang, C.W., Two‐layer organic photovoltaic cell. Applied Physics Letters, 1986. 48(2): p.
183‐185.
57. Taima, T., et al., Effects of intrinsic layer thickness on solar cell parameters of organic p‐i‐n
heterojunction photovoltaic cells. Applied Physics Letters, 2004. 85(26): p. 6412‐6414.
58. El‐Nahass, M., et al., Photovoltaic properties of NiPc/p‐Si (organic/inorganic) heterojunctions.
Organic Electronics, 2005. 6(3): p. 129‐136.
59. Terao, Y., H. Sasabe, and C. Adachi, Correlation of hole mobility, exciton diffusion length, and
solar cell characteristics in phthalocyanine/fullerene organic solar cells. Applied Physics
Letters, 2007. 90(10): p. 103515‐3.
60. Suemori, K., et al., Three‐layered organic solar cells incorporating a nanostructure‐optimized
phthalocyanine:fullerene codeposited interlayer. Applied Physics Letters, 2005. 86(6): p.
063509‐3.
61. Gadisa, A., et al., Correlation between oxidation potential and open‐circuit voltage of
composite solar cells based on blends of polythiophenes/ fullerene derivative. Applied
Physics Letters, 2004. 84(9): p. 1609‐1611.
62. Mutolo, K., et al., Enhanced open‐circuit voltage in subphthalocyanine/C60 organic
photovoltaic cells. J. Am. Chem. Soc, 2006. 128(25): p. 8108‐8109.
63. VanSlyke, S.A., C.H. Chen, and C.W. Tang, Organic electroluminescent devices with improved
stability. Applied Physics Letters, 1996. 69(15): p. 2160‐2162.
64. Bonzel, H.P. and C. Kleint, On the History of Photoemission. Progress in Surface Science, 1995.
49(2): p. 107‐153.
65. Watts, J.F. and J. Wolstenholme, An introduction to surface analysis by XPS and AES. 2003, J.
Wiley: Chichester, West Sussex, England ; New York., p. 212.
66. Shirley, D.A., High‐Resolution X‐Ray Photoemission Spectrum of Valence Bands of Gold.
Physical Review B, 1972. 5(12): p. 4709‐&.
67. Proctor, A. and P.M.A. Sherwood, Data‐Analysis Techniques in X‐Ray Photo‐Electron
Spectroscopy. Analytical Chemistry, 1982. 54(1): p. 13‐19.
68. Tougaard, S., et al., Test of Algorithm for Background Correction in Xps under Variation of Xps
Peak Energy. Surface and Interface Analysis, 1988. 13(4): p. 225‐227.
69. Tougaard, S. and B. Jorgensen, Absolute Background Determination in Xps. Surface and
Interface Analysis, 1985. 7(1): p. 17‐21.
70. Zahn, D.R.T., G.N. Gavrila, and G. Salvan, Electronic and vibrational spectroscopies applied to
organic/inorganic interfaces. Chemical Reviews, 2007. 107(4): p. 1161‐1232.
71. Vilan, A. and D. Cahen, How organic molecules can control electronic devices. Trends in
128
Biotechnology, 2002. 20(1): p. 22‐29.
72. Ashkenasy, G., et al., Molecular engineering of semiconductor surfaces and devices. Acc.
Chem. Res, 2002. 35(2): p. 121‐128.
73. Evans, S., et al., Self‐assembled monolayers of alkanethiols containing a polar aromatic
group: effects of the dipole position on molecular packing, orientation, and surface wetting
properties. Journal of the American Chemical Society, 1991. 113(11): p. 4121‐4131.
74. Hill, I.G., et al., Charge‐separation energy in films of [pi]‐conjugated organic molecules.
Chemical Physics Letters, 2000. 327(3‐4): p. 181‐188.
75. Hüfner, S., Photoelectron spectroscopy : principles and applications. 2nd ed. Springer series
in solid‐state sciences. 1996, Berlin ; New York: Springer. xiv, p 516.
76. Cardona, M. and L. Ley, Photoemission in solids. 1978, Berlin ; New York: Springer‐Verlag.
77. Martinez‐Diaz, M.V., et al., Supramolecular organization of subphthalocyanines in Langmuir
and Langmuir‐Blodgett films. Journal of Materials Chemistry, 1999. 9(7): p. 1521‐1526.
78. Tseng, P.C., et al., Current Status of the 6‐M Low‐Energy Spherical Grating Monochromator
Beamline at Srrc. Review of Scientific Instruments, 1995. 66(2): p. 1658‐1660.
79. Crist, B.V., Handbook of monochromatic XPS spectra. 2000, Chichester ; New York: Wiley.
80. Ko, C.H., et al., The soft X‐ray scanning photoemission microscopy project at SRRC. Journal of
Synchrotron Radiation, 1998. 5: p. 299‐304.
81. Briggs, D. and M.P. Seah, Practical surface analysis. 2nd ed. 1990, Chichester ; New York
Aarau: Wiley ; Salle Sauerländer.
82. Kohiki, S., et al., Energy‐loss structure in core‐level photoemission satellites of SrTiO3, SrTiO3 :
La, and SrTiO3 : Nb. Physical Review B, 2000. 62(12): p. 7964‐7969.
83. Available from: http://www.nsrrc.org.tw/
84. Bredas, J.L., et al., A nonempirical effective Hamiltonian technique for polymers: Application
to polyacetylene and polydiacetylene. The Journal of Chemical Physics, 1981. 75(1): p.
255‐267.
85. Libert, J., et al., From neutral oligoanilines to polyanilines: A theoretical investigation of the
chain‐length dependence of the electronic and optical properties. Physical Review B, 1997.
56(14): p. 8638.
86. Fahlman, M., et al., Experimental and Theoretical Studies of the Electronic Structure of
Poly(p‐phenylenevinylene) and Some Ring‐Substituted Derivatives. Macromolecules, 2002.
28(6): p. 1959‐1965.
87. Segal, G. and J. Pople, Approximate Self‐Consistent Molecular Orbital Theory. III. CNDO
Results for AB [sub 2] and AB [sub 3] Systems. J. Chem. Phys, 1966. 44: p. 3289.
88. Pople, J.A., D.L. Beveridge, and P.A. Dobosh, Approximate Self‐Consistent Molecular‐Orbital
Theory. V. Intermediate Neglect of Differential Overlap. The Journal of Chemical Physics,
1967. 47(6): p. 2026‐2033.
89. M. J. Frisch, G.W.T., H. B. Schlegel, G. E. Scuseria, , et al., Gaussian 03, Revision E.01. 2004.
129
90. Noel M. O'boyle, Adam L. Tenderholt, and Karol M. Langner, cclib: A library for
package‐independent computational chemistry algorithms. Journal of Computational
Chemistry, 2008. 29(5): p. 839‐845.
91. Thomas, L.H., The calculation of atomic fields. Proc. Camb. Phil. Soc., 1927. 23: p. 542‐548.
92. Fermi, E., Un metodo statistico per la determinazione di alcune priorieta dell’atome. Rend.
Accad. Naz. Lincei, 1927. 6: p. 602‐607.
93. Kohn, W. and L.J. Sham, Self‐Consistent Equations Including Exchange and Correlation Effects.
Physical Review, 1965. 140(4A): p. 1133‐&.
94. Becke, A.D., Density‐functional exchange‐energy approximation with correct asymptotic
behavior. Physical Review A, 1988. 38(6): p. 3098.
95. Colle, R. and O. Salvetti, Approximate Calculation of Correlation Energy for Closed Shells.
Theoretica Chimica Acta, 1975. 37(4): p. 329‐334.
96. Lee, C.T., W.T. Yang, and R.G. Parr, Development of the Colle‐Salvetti Correlation‐Energy
Formula into a Functional of the Electron‐Density. Physical Review B, 1988. 37(2): p. 785‐789.
97. Boese, A.D. and N.C. Handy, A new parametrization of exchange‐correlation generalized
gradient approximation functionals. Journal of Chemical Physics, 2001. 114(13): p.
5497‐5503.
98. Becke, A.D., Density‐functional thermochemistry. III. The role of exact exchange. The Journal
of Chemical Physics, 1993. 98(7): p. 5648‐5652.
99. Hertwig, R.H. and W. Koch, On the parameterization of the local correlation functional. What
is Becke‐3‐LYP? Chemical Physics Letters, 1997. 268(5‐6): p. 345‐351.
100. Adachi, C., T. Tsutsui, and S. Saito, Confinement of Charge‐Carriers and Molecular Excitons
within 5‐Nm‐Thick Emitter Layer in Organic Electroluminescent Devices with a Double
Heterostructure. Applied Physics Letters, 1990. 57(6): p. 531‐533.
101. You, H., et al., Improved performances of organic light‐emitting diodes with metal oxide as
anode buffer. Journal of Applied Physics, 2007. 101(2): p. 026105.
102. Hung, L.S., C.W. Tang, and M.G. Mason, Enhanced electron injection in organic
electroluminescence devices using an Al/LiF electrode. Applied Physics Letters, 1997. 70(2): p.
152‐154.
103. Jabbour, G.E., et al., Highly efficient and bright organic electroluminescent devices with an
aluminum cathode. Applied Physics Letters, 1997. 71(13): p. 1762‐1764.
104. Kido, J. and T. Matsumoto, Bright organic electroluminescent devices having a metal‐doped
electron‐injecting layer. Applied Physics Letters, 1998. 73(20): p. 2866‐2868.
105. Hong, I.H., et al., Effective hole injection of organic light‐emitting diodes by introducing
buckminsterfullerene on the indium tin oxide anode. Applied Physics Letters, 2005. 87(6): p.
063502.
106. Ganzorig, C., et al., Fine tuning work function of indium tin oxide by surface molecular design:
Enhanced hole injection in organic electroluminescent devices. Applied Physics Letters, 2001.
130
79(2): p. 272‐274.
107. Campbell, I.H., et al., Controlling Schottky energy barriers in organic electronic devices using
self‐assembled monolayers. Physical Review B, 1996. 54(20): p. 14321‐14324.
108. Gould, R.D., Structure and electrical conduction properties of phthalocyanine thin films.
Coordination Chemistry Reviews, 1996. 156: p. 237‐274.
109. del Rey, B., et al., Synthesis and nonlinear optical, photophysical, and electrochemical
properties of subphthalocyanines. Journal of the American Chemical Society, 1998. 120(49):
p. 12808‐12817.
110. Claessens, C.G., D. Gonzalez‐Rodriguez, and T. Torres, Subphthalocyanines: Singular
nonplanar aromatic compounds‐synthesis, reactivity, and physical properties. Chemical
Reviews, 2002. 102(3): p. 835‐853.
111. Gommans, H., et al., Electro‐optical study of subphthalocyanine in a bilayer organic solar cell.
Advanced Functional Materials, 2007. 17(15): p. 2653‐2658.
112. Mutolo, K.L., et al., Enhanced open‐circuit voltage in subphthalocyanine/C‐60 organic
photovoltaic cells. Journal of the American Chemical Society, 2006. 128(25): p. 8108‐8109.
113. de Wild, M., et al., A novel route to molecular self‐assembly: Self‐intermixed monolayer
phases. Chemphyschem, 2002. 3(10): p. 881‐885.
114. Berner, S., et al., Adsorption and two‐dimensional phases of a large polar molecule:
Sub‐phthalocyanine on Ag(111). Physical Review B, 2003. 68(11): p. 115410.
115. Yanagi, H., et al., Site‐specific physisorption and chemical reaction of subphthalocyanine
molecules on silicon(111)‐(7x7). Physical Review B, 2000. 61(3): p. 1959‐1964.
116. Mannsfeld, S., H. Relchhard, and T. Fritz, LEED and STM investigation of
chloro(subphthalocyaninato)boron on Au(111). Surface Science, 2003. 525(1‐3): p. 215‐221.
117. Halls, J.J.M., et al., Efficient Photodiodes from Interpenetrating Polymer Networks. Nature,
1995. 376(6540): p. 498‐500.
118. Granstrom, M., et al., Laminated fabrication of polymeric photovoltaic diodes. Nature, 1998.
395(6699): p. 257‐260.
119. Tang, C.W., Two‐layer organic photovoltaic cell. Applied Physics Letters, 1986. 48(2): p. 183.
120. Xue, J.G., et al., 4.2% efficient organic photovoltaic cells with low series resistances. Applied
Physics Letters, 2004. 84(16): p. 3013‐3015.
121. Koeppe, R., et al., Complexation of pyrrolidinofullerenes and zinc‐phthalocyanine in a bilayer
organic solar cell structure. Applied Physics Letters, 2005. 87(24): p. 244102.
122. Brabec, C.J., N.S. Sariciftci, and J.C. Hummelen, Plastic solar cells. Advanced Functional
Materials, 2001. 11(1): p. 15‐26.
123. Potscavage, W.J., S. Yoo, and B. Kippelen, Origin of the open‐circuit voltage in multilayer
heterojunction organic solar cells. Applied Physics Letters, 2008. 93(19): p. 193308.
124. Reyes‐Reyes, M., K. Kim, and D.L. Carroll, High‐efficiency photovoltaic devices based on
annealed poly(3‐hexylthiophene) and 1‐(3‐methoxycarbonyl)‐propyl‐1‐phenyl‐(6,6)C‐61
131
blends. Applied Physics Letters, 2005. 87(8): p. 083506.
125. Peumans, P., A. Yakimov, and S.R. Forrest, Small molecular weight organic thin‐film
photodetectors and solar cells (vol 93, pg 3693, 2003). Journal of Applied Physics, 2004.
95(5): p. 2938‐2938.
126. Brabec, C.J., et al., Origin of the open circuit voltage of plastic solar cells. Advanced
Functional Materials, 2001. 11(5): p. 374‐380.
127. Lozzi, L., S. Santucci, and S. La Rosa, Photoemission investigation on copper phthalocyanine :
fullerene blend film. Applied Physics Letters, 2006. 88(13): p. 133505.
128. Schlebusch, C., et al., Organic photoconductors and C60. Synthetic Metals, 1996. 77(1‐3): p.
151‐154.
129. Rand, B.P., D.P. Burk, and S.R. Forrest, Offset energies at organic semiconductor
heterojunctions and their influence on the open‐circuit voltage of thin‐film solar cells.
Physical Review B, 2007. 75(11): p. 115327.
130. Kobayashi, N., et al., Synthesis, spectroscopy, and molecular orbital calculations of
subazaporphyrins, subphthalocyanines, subnaphthalocyanines, and compounds derived
therefrom by ring expansion. Journal of the American Chemical Society, 1999. 121(39): p.
9096‐9110.
131. Ferro, V.R., et al., A theoretical study of subphthalocyanine and its nitro‐ and
tertbutyl‐derivatives. Journal of Molecular Structure‐Theochem, 2001. 537: p. 223‐234.
132. Ferro, V.R., et al., Density functional study of the redox processes in subphthalocyanines.
International Journal of Quantum Chemistry, 2003. 91(3): p. 369‐375.
133. Ferro, V.R., et al., The axial coordination in subphthalocyanines. Geometrical and electronic
aspects. Journal of Porphyrins and Phthalocyanines, 2001. 5(6): p. 491‐499.
134. Ishizaka, A. and Y. Shiraki, Low‐Temperature Surface Cleaning of Silicon and Its Application to
Silicon Mbe. Journal of the Electrochemical Society, 1986. 133(4): p. 666‐671.
135. Tadayyon, S.M., et al., CuPc buffer layer role in OLED performance: a study of the interfacial
band energies. Organic Electronics, 2004. 5(4): p. 157‐166.
136. Cho, S.W., et al., Interfacial electronic structure of
N,N'‐bis(1‐naphthyl)‐N,N'‐diphenyl‐1,1'‐biphenyl‐4,4'‐diamine/copper phthalocyanine : C‐60
composite/Au studied by ultraviolet photoemission spectroscopy. Applied Physics Letters,
2007. 91(5): p. 052102.
137. Pi, T.W., et al., Electronic structure of tris(8‐hydroxyquinolato) aluminum at room
temperature and during annealing. Physical Review B, 2005. 71(20): p. 205310.
138. Ahlund, J., et al., The electronic structure of iron phthalocyanine probed by photoelectron
and x‐ray absorption spectroscopies and density functional theory calculations. Journal of
Chemical Physics, 2006. 125(3): p. 034709.
139. Zhang, L., et al., Growth of zinc phthalocyanine onto ZnS film investigated by synchrotron
radiation‐excited X‐ray photoelectron and near‐edge absorption spectroscopy. Surface
132
Science, 2005. 596(1‐3): p. 98‐107.
140. Nilson, K., et al., STM and XPS characterization of zinc phthalocyanine on InSb(001). Surface
Science, 2008. 602(2): p. 452‐459.
141. Schwieger, T., et al., Electronic structure of the organic semiconductor copper phthalocyanine
and K‐CuPc studied using photoemission spectroscopy. Physical Review B, 2002. 66(15): p. ‐.
142. Peisert, H., M. Knupfer, and J. Fink, Electronic structure of partially fluorinated copper
phthalocyanine (CuPCF4) and its interface to Au(100). Surface Science, 2002. 515(2‐3): p.
491‐498.
143. Zhang, R., C. Lee, and S. Lee, Theory of the charge‐transport properties of naphthyl diamine
used in organic light‐emitting devices. Applied Physics Letters, 1999. 75: p. 2418.
144. Zhang, R., C. Lee, and S. Lee, The electronic structures and properties of Alq3 and NPB
molecules in organic light emitting devices: Decompositions of density of states. Journal of
Chemical Physics, 2000. 112(19): p. 8614‐8620.
145. Pan, J., et al., Theoretical investigations of the molecular conformation and reorganization
energies in the organic diamines as hole‐transporting materials. Journal of Physical Organic
Chemistry, 2007. 20(10), p. 743.
146. Curioni, A. and W. Andreoni, Metal‐Alq3 Complexes: The Nature of the Chemical Bonding.
Journal of the American Chemical Society, 1999. 121(36): p. 8216‐8220.
147. Zhang, R.Q., et al., Metal/Alq3 interactions in organic light emitting devices: The different
roles of Mg, Al, and Li atoms. Journal of Chemical Physics, 2002. 116(20): p. 8827.
148. Endo, J., T. Matsumoto, and J. Kido, Organic Electroluminescent Devices with a
Vacuum‐Deposited Lewis‐Acid‐Doped Hole‐Injecting Layer. Japanese Journal of Applied
Physics, 2002. 41(3B): p. L358‐L360.
149. Zhang, R., C. Lee, and S. Lee, ARTICLES‐Surfaces, Interfaces, and Materials‐The electronic
structures and properties of Alq3 and NPB molecules in organic light emitting devices:
Decompositions of density of states. Journal of Chemical Physics, 2000. 112(19): p.
8614‐8620.
150. X. Zhou, et al., Real‐Time Observation of Temperature Rise and Thermal Breakdown
Processes in Organic LEDs Using an IR Imaging and Analysis System. Advanced Materials,
2000. 12(4): p. 265‐269.
151. Aziz, H., et al., Degradation mechanism of small molecule‐based organic light‐emitting
devices. Science, 1999. 283(5409): p. 1900‐1902.
152. Hung, L.S., et al., Application of an ultrathin LiF/Al bilayer in organic surface‐emitting diodes.
Applied Physics Letters, 2001. 78(4): p. 544‐546.
153. Wu, C.I., G.R. Lee, and T.W. Pi, Energy structures and chemical reactions at the Al/LiF/Alq3
interfaces studied by synchrotron‐radiation photoemission spectroscopy. Applied Physics
Letters, 2005. 87(21): p. 212108.
154. Choi, H.W., et al., Enhancement of electron injection in inverted top‐emitting organic
133
light‐emitting diodes using an insulating magnesium oxide buffer layer. Applied Physics
Letters, 2005. 87(8): p. 082102.
155. Kim, S.H., J. Jang, and J.Y. Lee, Relationship between indium tin oxide surface treatment and
hole injection in C60 modified devices. Applied Physics Letters, 2006. 89(25): p. 253501.
156. Feng, X.D., et al., Ohmic cathode for low‐voltage organic light‐emitting diodes. Applied
Physics Letters, 2005. 86(14): p. 253501.
157. Zhao, Y.Q., et al., Transparent conducting C‐60 : LiF nanocomposite thin films for organic
light‐emitting diodes. Applied Physics Letters, 2007. 91(10): p. 103109.
158. Cho, S., et al., Interfacial electronic structure of N, N‐bis (1‐naphthyl)‐N, N‐diphenyl‐1,
1‐biphenyl‐4, 4‐diamine/copper phthalocyanine: C composite/Au studied by ultraviolet
photoemission spectroscopy. Applied Physics Letters, 2007. 91: p. 052102.
159. Yan, L., et al., Direct observation of fermi‐level pinning in Cs‐doped CuPc film. Applied Physics
Letters, 2001. 79(25): p. 4148‐4150.
160. Chen, Y.H., et al., Enhancement of Current Efficiency in Organic Light Emitting Diodes with
Incorporation of Subphthalocyanine. Applied Physics Letters, 2009. Accepted.
161. Ding, H.J. and Y.L. Gao, Evolution of the unoccupied states in Cs‐doped copper phthalocyanine.
Applied Physics Letters, 2008. 92(5): p. 053309.
162. Ding, H. and Y. Gao, Electronic structure of Cs‐doped tris (8‐hydroxyquinoline) aluminum.
Applied Physics Letters, 2005. 86: p. 213508.
163. Johansson, N., et al., Electronic structure of tris (8‐hydroxyquinoline) aluminum thin films in
the pristine and reduced states. The Journal of Chemical Physics, 1999. 111: p. 2157.
164. Wertheim, G.K., P.T.T.M. Van Attekum, and S. Basu, Electronic structure of lithium graphite.
Solid State Communications, 1980. 33(11): p. 1127‐1130.
165. Cahen, D. and G. Hodes, Molecules and electronic materials. Advanced Materials, 2002.
14(11): p. 789.
166. Wu, C., G. Lee, and T. Pi, Energy structures and chemical reactions at the Al/ LiF/ Alq3
interfaces studied by synchrotron‐radiation photoemission spectroscopy. Applied Physics
Letters, 2005. 87: p. 212108.
167. Shen, C., A. Kahn, and J. Schwartz, Chemical and electrical properties of interfaces between
magnesium and aluminum and tris‐(8‐hydroxy quinoline) aluminum. Journal of Applied
Physics, 2001. 89: p. 449.
168. Ding, H. and Y. Gao, Au/ LiF/tris (8‐hydroxyquinoline) aluminum interfaces. Applied Physics
Letters, 2007. 91: p. 172107.
169. Rohlfing, F., T. Yamada, and T. Tsutsui, Electroabsorption spectroscopy on
tris‐(8‐hydroxyquinoline) aluminum‐based light emitting diodes. Journal of Applied Physics,
1999. 86: p. 4978.
170. Wu, C., et al., Electronic structures and electron‐injection mechanisms of
cesium‐carbonate‐incorporated cathode structures for organic light‐emitting devices. Applied
134
Physics Letters, 2006. 88: p. 152104.
171. Yi, Y., et al., Origin of the improved luminance‐voltage characteristics and stability in organic
light‐emitting device using CsCl electron injection layer. Applied Physics Letters, 2005. 86: p.
213502.
172. Yi, Y., et al., Evidence of gap state formed by the charge transfer in Alq/ NaCl/ Al
interface studied by ultraviolet and x‐ray photoelectron spectroscopy. Applied Physics Letters,
2005. 86: p. 113503.
173. Mason, M., et al., Interfacial chemistry of Alq and LiF with reactive metals. Journal of Applied
Physics, 2001. 89: p. 2756.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45480-
dc.description.abstract摘 要
酞菁衍生物(Phthalocyanine derivatives)因為其特殊的物理與化學性質,在化學工業與光
電產業中被廣泛的利用。本論文中, 首次將氯化硼亞酞菁
(chloro[subphthalocyaninato]boron(III), SubPc)成功的應用至有機發光二極體(OLEDs)內,並
探討SubPc 應用至有機半導體元件上所扮演的角色。首先,針對有機發光二極體的元件架
構做簡單介紹,並討論應用至各層時,有機材料所應該具備的相關物理與化學特性。介面
特性探討上,對於半導體介面上所適用的理論來簡單的介紹。最後,文獻探討部分將對於
酞菁衍生物的發展歷程有初步的介紹。並且對於應用至陽極注入時,酞菁衍生物在電洞注
入與傳輸介面上所扮演的角色跟運作原理做進一步的說明。本篇論文的研究動機與亟需探
討項目也會在第一章內提及。在進入實質內容討論前,先介紹實驗儀器與能譜分析所需的
公式。除此實驗探討之外,在第三章會提及運用第一原理(First principle)所需要的理論與方
法。
實驗部分,經由元件的製作,成功的實現了以SubPc 跟NPB 為電洞注入層的有機發光二
極體元件。光電子能譜的實驗上,SubPc 以極低蒸鍍速率鍍到NPB,蒸鍍過程中量測價帶
能譜(valence band spectrum)與核電子能譜(core-level spectrum)。經由能譜上的變化,推論出
NPB 與SubPc 兩者於介面上的反應方式。並且藉由前述的第一原理,先模擬分子結構至最
低能量,進而獲得模擬的價帶能譜與分子軌域圖樣(molecular orbital pattern)。藉由理論與實
驗能譜的對照,進一步佐證在實驗結果上所獲得的推論。陰極結構的應用上,將SubPc 與
LiF 以適當的比例運用至電子注入層,實現了元件電性的提升。個別的針對陰極結構的
Alq3SubPc 與SubPcLiFAl 的能譜來解釋元件電性提升的原因。除此之外,鹼金屬與有機
半導體材料在介面間的變化也是近年來相當有趣的課題。因此,本論文也會對鋰(lithium)
原子與SubPc 介面間,在價帶能譜與核電子能譜上的變化來討論。最後,本論文的實驗與
理論結果在第六章做總結,並提出未來可行的研究方向以建議後進學者。
zh_TW
dc.description.abstractOwing to their remarkable physical and chemical properties, phthalocyanine-derivatives are widely employed in chemical and optoelectronic industry. In this dissertation, we successfully apply the chloro[subphthalocyaninato]boron(III) (SubPc) as the carrier injection layer of OLEDs. Therefore, the main issue of this dissertation is discussed the roles of SubPc in organic semiconductor devices. First of this dissertation, we will briefly introduce the configuration of OLEDs, and the related characters of organic material which is employed at the each layer of OLEDs need to be contained. In the interfacial characteristics, we will discuss the working model of semiconductor interface. Then, the developed history of phthalocyanine-derivatives and research motivation will discuss in the final section of chapter 1. Before we start the discussion of experimental results of dissertation, spectral analysis and experimental instruments are studied in chapter 2. Then, the method of theoretical simulations and the first principle will mention in the chapter 3. Via the fabrication of OLED devices, we successively realized the OLEDs device with the hole injection layer of co-doping NPB and SubPc. As the results of photoemission spectra, we can measure the core-level spectrum and valence band spectrum, and then the chemical reaction between NPB and SubPc at extreme low evaporation rate can be deduced. Simulation results also provided another viewpoint to prove the inference which concluded from the experimental results. . Optimization of geometrical structure is completed at the lowest molecular energy, and then we applied that structure to simulate the valence spectrum and molecular orbital pattern at frontier energy state. At the cathode application, we realized the improvement of device performance with the co-evaporation of LiF and SubPc and explained it with photoemission spectrum. Interfacial chemical reaction of lithium and SubPc are also investigated in the chapter 5. Finally, the future work, theoretical and experimental results are summed at the final chapter.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:22:32Z (GMT). No. of bitstreams: 1
ntu-98-D93941015-1.pdf: 4641670 bytes, checksum: 8f3095ffc25a5c7bfbd2283be7bb8cdb (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘 要 I
Abstract II
Content III
List of Figures V
List of Tables VII
Charpter 1 Introduction 1
1.1 OLED structures 3
1.2 Carrier injection behavior at interfacial electronic structure 6
1.3 Literature Review 9
1.4 Motivation 12
Charpter 2 Experiments 18
2.1 Quantitative analysis in electron spectrum 20
2.1.1 Data definition in XPS 20
2.1.2 Date definition in UPS 26
2.2 Photoelectron spectroscopy 28
2.2.1 Ultraviolet photoelectron spectroscopy 29
2.2.2 Synchrotron radiation photoelectron spectroscopy 30
2.2.3 X-ray photoelectron spectroscopy 33
Charpter 3 Theoretical methodology 53
3.1 Estimated parameters by computational chemistry 53
Charpter 4 Application of SubPhthalocyanine at Anode Structure 61
4.1 Energy level alignment in the interfacial of SubPc and C60 64
4.2 Application in OLED devices 68
4.3 Discuss of interfacial electronic structure with ultra-violate photoelectron
spectroscopy and calculation 69
4.3.1 Simulation in UPS spectrum and Molecular orbital evaluation 70
4.3.2 Interfacial electronic structure of SubPc and NPB 72
4.3.3 Core-level spectra of SubPc and NPB 74
4.4 Theoretical study in the chemical reaction of NPB and SubPc 76
4.5 Discussion and summary 79
Charpter 5 Application of SubPhthalocyanine at Cathode Structure 103
5.1 Evaluation of energy level alignment and core-level spectrum of Li-doped SubPc............. 104
5.2 Application of SubPc in OLED cathode structure 108
Charpter 6 Conclusion and Future Work 120
6.1 Conclusion in Dissertation 120
6.2 Future work 122
dc.language.isoen
dc.subject有機發光二極體元件zh_TW
dc.subject載子注入zh_TW
dc.subject光電子激發術zh_TW
dc.subjectcarrier injectionen
dc.subjectOLEDsen
dc.subjectphotoelectron spectroscopyen
dc.title氯化硼亞zh_TW
dc.titleElectronic Structures and Interfacial Characteristics at the Application of (Chloro[subphthalocyaninato]boron(III) in Organic Light-Emitting Diode Devicesen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree博士
dc.contributor.oralexamcommittee吳忠幟(Chung-Chih Wu),陳奕君(I-Chun Cheng),汪根欉(Ken-Tsung Wong),皮敦文(Tun-Wen Pi)
dc.subject.keyword載子注入,有機發光二極體元件,光電子激發術,zh_TW
dc.subject.keywordcarrier injection,OLEDs,photoelectron spectroscopy,en
dc.relation.page134
dc.rights.note有償授權
dc.date.accepted2009-10-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
4.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved