Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45476
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛人愷
dc.contributor.authorZeng-Yuan Wuen
dc.contributor.author吳政淵zh_TW
dc.date.accessioned2021-06-15T04:22:18Z-
dc.date.available2009-10-28
dc.date.copyright2009-10-28
dc.date.issued2009
dc.date.submitted2009-10-12
dc.identifier.citation1. 黃振賢,機械材料修定二版,新文京開發出版股份有限公司,2003。
2. A. Shapiro and A. Rabinkin: Welding J. Vol. 82, No. 10, 2003。
3. 張清桐,Ti-6Al-4V硬銲之研究,國立東華大學博士論文,2006。
4. H. W. Rosenberg, Titanium Alloying in Theory and Practice, The Science, Technology and Application of Titanium, Pergamon Press, 1970.
5. D.W. Liaw, Z.Y. Wu, R.K. Shiue and C.S. Chang: Mater. Sci. Eng. A Vol. 454-455, 2007, p.104.
6. D.W. Liaw, Z.Y. Wu, R.K. Shiue and C.S. Chang: ISIJ Inter. Vol. 47, No. 6 , 2007, p.869.
7. G. Humpton and D. M. Jacobson, Principles of Soldering and Brazing, ASM International, 1993.
8. M. M. Schwartz, Introduction to Brazing and Soldering, ASM Handbook, Edited by Theodore B. Zorc, Faith Reidendenbach,Vol.6,1993.
9. A. Rabinkin, H. Liebermann, S. Pounds, T. Taylor, F. Reidinger, S.C. Lui, Scripta Mater. 25, 1991, p.399.
10. W.T. Kaarlela, W. S. Margolis, Welding J. 53, 1974, p629.
11. O. Botstein, A. Rabinkin, Mater. Sci. Eng. A188, 1994, p.305.
12. O. Botstein, A. Schwarzman, A. Rabinkin, Mater. Sci. Eng. A206, 1996, p14.
13. C.T. Chang, Y.C. Du, R.K. Shiue, C.S. Chang, Mater. Sci. Eng. 420A, 2006, p.155.
14. C. T. Chang, R.K. Shiue, C.S. Chang, Scripta Mater. 54 (5), 2006, p.853.
15. I.T. Hong, C.H. Koo, Mater. Sci. Eng. A 398, 2005, p.131.
16. C. Leyens and M. Peters, Titanium and Titanium alloys: Fundamentals and Applications.
17. R. Boyer, E. W. Collings and G. Welsch, Materials Properties Handbook: Titanium Alloys, ASM International, 1994.
18. W. F. Smith, Structure and Properties of Engineering Alloys, McGraw-Hill Inc., 1993.
19. 鍾偉志,SP-700鈦合金雷射銲件之熱處理及顯微組織研究,國立台灣大學碩士論文,2006。
20. J. L. Walter, M. R. Jackson and C. T. Sims, Titanium and its alloys: Principles of Alloying Titanium, ASM International, Metals Park, 1988.
21. Titanium – A Technical Guide, ASM International, Metals Park USA, 1988.
22. J. R. Davis et. al., Metals handbook. Properties and selection: nonferrous alloys and special purpose materials, vol. 2. Materials Park: ASM International; 1990.
23. D. Eylon, High Temperature Alloys – A Review, J. of Metals, 1984, p.55.
24. S. L. Semiatin, V. Seetharaman, I. Weiss, Hot Working of Titanium Alloys – An Overview, Advances in the Science and Technology of Titanium Alloy Processing, Minerals, Metals and Materials Society, 1997, p.3.
25. N. Clément, A. Lenain, and P. J. Jacques, Mechanical Property Optimization via Microstructural Control of New Metastable Beta Titanium Alloys, JOM, Vol.59 2007, p.50.
26. Massalski TB. Binary Alloy Phase Diagrams. Materials Park: ASM International; 1990.
27. R. R. Boyer, An Overview on the Use of Titanium in Aerospace Industry, Materials Science and Engineering A213, 1996.
28. M. Cormier and F. Claisse, Beta-AlphaTransformation in Ti and Ti-O Alloys, J. Less-Common Met, Vol.34, 1974.
29. G. A. Lenning, C. M. Craighead, and R. I. Jaffee, Constitution and Mechanical Properties of Titanium-Hydrogen Alloys, Hydrogen Damage, American Society for Metals, 1977.
30. Phase Diagrams of Binary Alloys, ASM International, 1987.
31. T.B. Massalski: Binary Alloy Phase Diagrams, ASM International, Materials Park, 1990.
32. H. Fukai, A. Ogawa, K. Minikawa, Mechanical Properties of SP-700 Titanium Alloy at Room Temperature, Ti-2003 Science and Technology, Vol.5, 2004, p.1848.
33. M. Ishikawa, O. Kuboyama, M. Niikura and C. Ouchi, Microstructure and Mechanical Properties Relationship of β-rich α-β Titanium Alloy; SP-700, Titanium '92 Science and Technology, edited by F. H. Froes and I. Caplan, Vol. 2, 1993, p.141.
34. Atsushi Ogawa, Masakazu Niikura, Chiaki Ouchi, Kuninori Minikawa, and Makato Yamada, Development and Applications of Titanium Alloy SP-700 with High Formability, J. of Testing and Evaluation, Vol.24 No.2, 1996, p.100.
35. H. Fukai, A. Ogawa, and K. Minakawa, A Study on Microstructure of Solution Treated and Aged SP-700 Titanium Alloy, Ti-2003 Science and Technology, Vol.5 , 2004, p.1147.
36. H. Fukai, K. Minakawa, and C. Ouchi, Strength-Ductility Relationship in Treated and Aged α β Type Ti-4.5%Al-3%V- 2%Fe-2%Mo Titanium Alloy, ISIJ International, Vol. 44 No.11 , 2004, p.1911.
37. Gunawarman, Mitsuo Niinomi, Kei-ichi Fukunaga, Daniel Eylon, Shiro Fujishiro, and Chiaki Ouchi, Effect of Cooling Rate on Microstructure and Fracture Characteristics of β-rich α β Type Ti-4.5Al-3V- 2Fe-2Mo Alloy, Materials Transactions, Vol.42, No.7 , 2001, p.1339.
38. Advantages of High-Formability SP-700 Titanium Alloy and Its Applications, JFE Technical Report, No.5, 2005, p.74.
39. R.R. Boyer and H.W. Rosengerg, Beta Titanium Alloys in the 1980’s, TMS/AIME, 1984.
40. 吳政淵,IN738鎳基超點金硬銲修補之研究,國立台灣大學碩士論文,2005。
41. G. Humpton and D. M. Jacobson, Principles of Soldering and Brazing , ASM International, 1993.
42. M. M. Schwartz, Introduction to Brazing and Soldering, ASM Handbook, Edited by Theodore B. Zorc, Faith Reidendenbach, Vol.6, 1993.
43. D. L. Olson et. Al., Welding, Brazing, and Soldering, ASM Handbook Vol.6, 1993.
44. M. Schwartz, Brazing: For the Engineering Technologist, ASM International, 1995.
45. D. A. Canonico, N. C. Cole, and G. M. Staughter, Direct Brazing of Ceramics, Graphite and Refractory Metals, Welding J., Aug. 1997, p.5.
46. W. D. Brewer, R. K. Bird, T. A. Wallace, Titanium Alloys and Processing for High Speed Aircraft, Material Science and Engineering A, 1998, p.299.
47. W. Xiaowei et. al., Brazing of Inconel X-750 to Stainless Steel 304 Using Induction Process, Materials Science and Engineering A288 , 2000, p.84.
48. D. A. Canonico, N. C. Cole, and G. M. Staughter, Direct Brazing of Ceramics, Graphite and Refractory Metals, Welding J., Aug. 1997, p.5
49. Y. Nakao, Bonding of AlN to Metals, Welding International, Vol. 8, No.1.
50. J. T. Smith, Development of Chromium-Vanadium Alloys for Brazing Tungsten to Molybdenum, Welding Research Supplement, Mar. 1996, p.135.
51. A. M. Hadian, A. L. Drew Robin, Distribution and Chemistry of Phases Developed in the Brazing of Silicon Nitride to Molybdenum, J. of the European Ceramic Society, Vol. 19, No. 8, June, 1999, p.1623.
52. A. Guedesa, A. Pintoa, M. Vieirab, F. Viana, The Effect of Brazing Temperature on the Titanium/Glass-ceramic Bonding, Journal of Materials Processing Technology, Vol. 92-93, August 1999, p.102.
53. B. Dumez, Study of Vacuum Furnace Atmospheres for Brazing Titanium Honeycomb Panels, Welding Research Supplement, July 1972, p.346.
54. W. Blair, Procedure Development for Brazing Inconel 718 Honeycomb Sandwich Structures, Welding Research Supplement, Oct. 1973, p443.
55. D. G. Howden, R.W.Monroe, Suitable Alloys for Brazing Titanium Heat Exchangers, Welding J., Jan. 1972, p.31.
56. AWS Brazing Manual, 4th ed., American Welding Society, Miami, Florida.
57. J. F. Lancaster, Metallurgy of Welding, 5th ed., Chapman & Hall, 1993, p.46.
58. J. G. Li, Influence of Oxygen Partial Pressure on the Wetting Behavior of Titanium Carbide by Molten Copper and Other Metals, Material Letters, vol. 17, p.74.
59. J. E. Lazaroff, P. D. Ownby, D. A. Weirauch, Wetting in an Electronic Packing Ceramic System, J. of Materials Science, p.1765.
60. M. M. Schwartz, “Brazing”, ASM international, Metals Park, Ohio.
61. 林榮崧,410不銹鋼、17-4PH不鏽鋼及Stellite No.6鈷基超合金之銀合金硬銲研究,國立台灣大學材料科學與工程學研究所,1987。
62. W. A. Anderson, Metallurgical Studies of the Vacuum Brazing of Aluminum, Welding Research Supplement, Oct. 1977, p.314.
63. R. D. Eng, E. J. Ryan, J. R. Doyle, Nickel-base Brazing Filler Metals for Aircraft Gas Turbine Application, Welding J., Oct. 1977, p.15.
64. H. D. Stiffens, H. Lange, Properties of High Temperature Brazed NiCr20TiAl-PdNi40 Joints, Welding J., Oct. 1974,p.476.
65. W. E. Clautice, Introduction Brazing at the Kennedy Space Center, Welding J., Oct. 1974, p.612.
66. R. A. Woods and I. B. Robinson, Flow of Aluminum Dip Brazing Filler Metals, Welding Research Supplement, Oct. 1974, p440.
67. 王誠佑,利用BAg-8填料紅外線硬銲接合Ti-6Al-4V與17-4 PH之研究,台灣大學碩士論文,2004。
68. 李訓杰,鈦鋁介金屬紅外線加熱接合及其介面之研究,台灣大學博士論文,1997。
69. N. A. Dececco, J.N. Parks, The Brazing of Titanium, Welding J., Vol. 32, No. 11, 1953, p1071.
70. N. A. Tiner, Metallurgical Aspects of Silver Brazing Titanium, Welding J., Vol. 34, No. 9, 1955, p846.
71. W. T. Kaarlela, W.S. Margolis, Development of the Ag-Al-Mn Brazing Filler Metal for Titanium, Welding J., Vol. 53, No. 10, 1974, p629.
72. T. Wantanabe, Y. Higo, T. Miki, A. Yanagisawa, Brazing of Titanium with Ag-based Filler Metals in Air, Quarterly J. of the Japan Welding Society, Vol. 12, No. 4, 1994, p.502.
73. X. Heberard et al., Low-temperature Brazing to Ti-6Al-4V Titanium Alloy, Titanium, Vol. 80, 1980, p.2415.
74. R. R. Wells, Low-Temperature Large-Area Brazing of Damage Tolerant Titanium Structures, Welding J., Vol. 54, No, 10, 1975, p.348.
75. T. Takemoto, I. Okamoto, Intermetallic Compounds Formed During Brazing of Titanium with Aluminum Filler Metals, J. Materials Science, Vol. 23, No. 4, 1988, p.1301.
76. A. Rabinkin et al., Amorphous Ti-Zr Base METGLAS® Brazing Filler Metals, Scripta Metallurgica, Vol. 25, 1991, p.399.
77. M. Donachie, Titanium; A Technical Guide, ASM International, 1988.
78. M. Schwartz, Brazing of Reactive and Refractory Metals, In “Metals Handbook”, 9th ed., AST, Vol. 6, 1983.
79. C. E. Smeltzer, A. M. Hammer, Titanium Braze System for High Temperature Application, Technical Report AFML-TR-76-145, 1976.
80. D. G. Howden, R.W.Monroe, Suitable Alloys for Brazing Titanium Heat Exchangers, Welding J., Jan. 1972, p.31.
81. S. W. Lan, Laminated Brazing Metals for Titanium Assemblies, Welding J., Vol. 61, No. 10, 1982.
82. P. Villars, A. Prince, H. Okamoto, Handbook of Ternary Alloy Phase Diagrams. Materials Park: ASM International; 1995.
83. JCPDS-International Centre for Diffraction Data V. 2.4,2003.
84. B.D. Cullity, S.R. Stock, Element of X-Ray Diffraction 3rd,Prentice Hall,2001.
85. W. D. Zhuang, R. K. Shiue, P. C. Chang, Finite Element Analysis of the Residual Thermal Stresses in a Power Package with Two Different Leads, International Journal of Microcircuits & Electronic Packaging, Vol. 22, No. 3, 1999, p.196.
86. George F. Vander Voort, Metallography Principles and Practice, 1984.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45476-
dc.description.abstract鈦合金近年來愈來愈受重視,由於其礦產藏量不低,加上近年來的治煉技術進步,且其某些機械性質可比鋼鐵材料更加優異,例如:比強度、常溫及高溫抗蝕性都比常用的鋼鐵材料好,加上鈦合金亦可依不同需求增加合金量來改變其機械性質。實際應用中銲接性質為此材料是能否成為優秀的工程材料的重要指標之一,因此本研究選擇鈦合金的硬銲當成研究主題。
研究中以鈦基填料使用紅外線真空爐硬銲鈦合金,主要研究銲道顯微組織之演化,過去文獻的研究僅偏重在掃描式電子顯微及其全、半定量分析鏡觀察其組織變化,但銲道內合金元素眾多、組織非常的細小,不足以有全面透徹的研究。本研究以描式電子顯微及其全定量分析為輔,搭配穿透式電子顯微鏡為主來分析鈦合金硬銲銲道結構。
首先本研究使用三種鈦基填料Ti-15Cu-15Ni、Ti-25Cu-15Ni、Ti-15Cu-25Ni硬銲SP-700觀察銲道結構,發現在300秒的硬銲,組織差異僅在於銲道中心初晶有所不同,當使用Ti-15Cu-15Ni、Ti-15Cu-25Ni時,初晶為Ti2Ni為主,少量α-Ti及Ti2Cu。而使用Ti-25Cu-15Ni時初晶以Ti2Cu為主。在銲道其他部分三種填料則是α-Ti及Ti2Cu的共析組織和些許殘留在常溫的β-Ti。硬銲1800秒時,三種填料組織皆為過飽合α-Ti及殘留β-Ti。
其次,以Ti-15Cu-15Ni硬銲三種不同結構基材α鈦合金、α-β雙相鈦合金、β鈦合金,發現影響銲道組織最重大的有二種因素,首先為基材的β鈦穩定元素的多寡,其次為Cu、Ni量的分佈情形。
zh_TW
dc.description.abstractThe importance of Ti alloys is increasing due to abundance of Ti mine on earth and improvements of Ti metallurgical technique. Mechanical properties of Ti alloy are better than those of steels, such as strength-to-weight ratio and corrosion resistance …etc. Mechanical properties of Ti alloys can be enhanced based on the demand. Development of joining process is always an important index in application of engineering alloys. Accordingly, the main subject of this study is concentrated on brazing Ti alloys. The study of infrared brazing Ti alloys using the Ti-based fillers are mainly focused in microstructure and phase transformation of the joint. Traditionally, the study of Ti brazing is emphasized on the SEM morphology and EDS chemical analysis results. It is difficult to unveil phase transformation of the brazed joint due inadequate resolution of the facilities. TEM analysis of the joint is required in the experiment. First, Ti-15Cu-15Ni, Ti-25Cu-15Ni, Ti-15Cu-25Ni are applied in brazing SP-700 substrate. There is eutectic in the center of joint for the 300s brazed specimen. Primary Ti2Ni and few α-Ti as well as Ti2Cu are observed in the central region of the joint using Ti-15Cu-15Ni and Ti-15Cu-25Ni fillers, respectively. In contrast, primary Ti2Cu is widely observed from the Ti-25Cu-15Ni brazed joint. Additionally, eutectoid α-Ti and Ti2Cu with retained β-Ti are also found next to the primary Ti2Cu. For the 1800s brazed specimen, the joint mainly consists of over-saturated α-Ti and retained β-Ti. Second, Ti-15Cu-15Ni braze is applied in brazing 3 different substrates, CP-Ti, SP-700 (en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:22:18Z (GMT). No. of bitstreams: 1
ntu-98-D95527004-1.pdf: 70261015 bytes, checksum: e2b31fd8539193dcab31de8ce6fd064e (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目 錄
口試委員會審定書…………………………….....................………………………………………………..i
誌謝……………………………………………………….....................…………………………………………….ii
中文摘要………………………………………………………….........................................................iii
英文摘要……………………………………………………...............................................................iv
第一章 前言………………………………………......................................................................1
第二章 文獻回顧......................................................................................................3
2-1 硬銲基材- 鈦與鈦合金.............................................................................3
2-1-1 鈦與鈦合金簡介............................................................................3
2-1-2 合金元素的添加對鈦合金的影響.................................................4
2-1-3 鈦合金分類.....................................................................................6
2-1-4 商用純鈦 (CP-Ti)簡介..............................................................7
2-1-5 雙相鈦合金SP-700簡介..............................................................8
2-1-6 β鈦合金Ti-15-3簡介..............................................................10
2-2 硬銲接合技術.........................................................................................11
2-2-1 硬銲製程簡介.............................................................................12
2-2-2 影響硬銲製的重要因素..............................................................13
2-2-3 各種加熱源硬銲..........................................................................18
2-3 鈦合金硬銲..............................................................................................22
2-3-1 鈦合金硬銲使用之填料..............................................................22
2-3-2 Ti-Cu-Ni填料合金之相變態........................................................23
第三章 實驗設備與方法.........................................................................................53
3-1實驗目的......................................................................................................53
3-2實驗材料......................................................................................................54
3-3 硬銲銲件製備流程及設備.........................................................................54
3-4 EPMA全定量分析及SEM顯微組織觀察.......................................................55
3-5 TEM顯微結構觀測.......................................................................................55
第四章 結果與討論...................................................................................................64
4-1 以Ti-15Cu-15Ni硬銲SP-700.......................................................................64
4-1-1 SP-700/Ti-15Cu-15Ni/SP-700硬銲接合銲道顯微組織EPMA觀察…………………………………………………………………………64
4-1-2 SP-700/Ti-15Cu-15Ni/SP-700銲道顯微組織TEM微觀觀察.........66
4-2 以Ti-25Cu-15Ni硬銲SP-700........................................................................70
4-2-1 SP-700/Ti-25Cu-15Ni/SP-700硬銲接合銲道顯微組織EPMA觀察…………………………………………………………………………70
4-2-2 SP-700/Ti-25Cu-15Ni/SP-700硬銲接合銲道顯微組織TEM觀察…………………………………………………………………………73
4-3 以Ti-15Cu-25Ni硬銲SP-700.......................................................................76
4-3-1 SP-700/Ti-15Cu-25Ni/SP-700硬銲接合銲道顯微組織EPMA觀察…………………………………………………………………………76
4-4 以Ti-15Cu-15Ni硬銲CP-Ti..........................................................................77
4-4-1 CP-Ti/Ti-15Cu-15Ni/CP-Ti硬銲接合銲道顯微組織EPMA觀察...............................................................................................................77
4-4-2 CP-Ti/Ti-15Cu-15Ni/CP-Ti硬銲接合銲道顯微組織TEM觀察.....78
4-5 以Ti-15Cu-15Ni硬銲Ti-15-3......................................................................80
4-5-1 Ti-15-3/Ti-15Cu-15Ni/ Ti-15-3硬銲接合銲道顯微組織EPMA觀察…………………………………………………………………………80
4-5-2 Ti-15-3/Ti-15Cu-15Ni/ Ti-15-3硬銲接合銲道顯微組織TEM觀察…………………………………………………………………………81
4-6 Ti基填料硬銲Ti合金接合部位相變態.......................................................83
4-7 三種Ti基填料硬銲SP-700合金討論..........................................................84
4-8 使用Ti-15Cu-15Ni硬銲三種Ti合金基材討論.........................................85
第五章 結論.............................................................................................................127
參考文獻...................................................................................................................129
個人簡歷...................................................................................................................136

表 目 錄
表2-1 純鈦的基本物理性質[16].............................................................................26
表2-2 常見鈦合金的鋁當量、鉬當量及其分類[17] ............................................27
表2-3 SP-700的基本物理性質[17] ........................................................................28
表2-4 SP-700現行與潛在之主要應用領域[38] .................................................29
表2-5 Ti-15-3的基本物理性質[17] ........................................................................30
表2-6 軟銲、硬銲與銲接的比較[41-44] ................................................................31
表2-7 α-Ti、β-Ti、Ti2Ni 及Ti2Cu之結構及晶格常數[83] ..................................32
表 4-1. 鈦合金和鋼相的比較.................................................................................89
表 4-2. 使用Ti-15Cu-15Ni填料硬銲銲道組織預測...........................................90
表 4-3. 使用Ti-15Cu-15Ni填料硬銲銲道各區形貌……………………………91

圖 目 錄
圖2-1 鈦合金中兩種主要結構 (a) HCP,α-Ti (b) BCC,β-Ti[18-21].......................33
圖2-2 通過β轉轉溫度時β相(110)面轉變成α相(0001)面二者對應關係[19].....34
圖2-3 典型α穩定元素相圖[18]................................................................................35
圖2-4 間隙型元素含量對未合金化純Ti的(a)強度(b)延性之影響[18].................36
圖2-5 β安定元素相圖(a)
dc.language.isozh-TW
dc.title使用鈦基填料紅外線硬銲鈦合金之研究zh_TW
dc.titleThe Study of Infrared Brazing Ti Alloys Using the Ti-based fillersen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree博士
dc.contributor.oralexamcommittee林招松,林新智,郭東昊,蔡履文
dc.subject.keyword鈦合金,硬銲,鈦基填料,顯微組織,電子顯微鏡,zh_TW
dc.subject.keywordTi alloys,Brazing,Ti-based fillers,Microstructure,TEM,en
dc.relation.page136
dc.rights.note有償授權
dc.date.accepted2009-10-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
68.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved