Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45467
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張國柱
dc.contributor.authorYa-Wei Tsengen
dc.contributor.author曾雅微zh_TW
dc.date.accessioned2021-06-15T04:21:46Z-
dc.date.available2010-03-12
dc.date.copyright2010-03-12
dc.date.issued2009
dc.date.submitted2009-10-16
dc.identifier.citationAbe T, Ohga Y, Nobuoki T, Kobayashi S, Sakata S, Misawa H, Tsuyushi T, Kohzuki H, Suga H, Taniguchi S, Takaki M (2002). Left ventriculr diatolic dysfunction in type 2 diabetes mellitus model rats. Am J Phyiol Heart Circ Physiol 282: H138-H148.
Abraham NG, Kappas A (2005). Heme oxygenase and the cardiovascular-renal system. Free Radic Biol Med 39(1): 1-25.
Abraham NG, Kappas A (2008). Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev 60(1): 79-127.
Ahmad M, Turkseven S, Mingone CJ, Gupte SA, Wolin MS, Abraham NG (2005). Heme oxygenase-1 gene expression increases vascular relaxation and decreases inducible nitric oxide synthase in diabetic rats. Cell Mol Biol (Noisy-le-grand) 51(4): 371-376.
Al-Majed AA, Sayed-Ahmed MM, Al-Omar FA, Al-Yahya AA, Aleisa AM, Al-Shabanah OA (2006a). Carnitine esters prevent oxidative stress damage and energy depletion following transient forebrain ischaemia in the rat hippocampus. Clin Exp Pharmacol Physiol 33(8): 725-733.
Al-Majed AA, Sayed-Ahmed MM, Al-Yahya AA, Aleisa AM, Al-Rejaie SS, Al-Shabanah OA (2006b). Propionyl-L-carnitine prevents the progression of cisplatin-induced cardiomyopathy in a carnitine-depleted rat model. Pharmacol Res 53(3): 278-286.
Alvarez de Sotomayor M, Bueno R, Perez-Guerrero C, Herrera MD (2007). Effect of L-carnitine and propionyl-L-carnitine on endothelial function of small mesenteric arteries from SHR. J Vasc Res 44(5): 354-364.
Alves AM, Alves EP, Fregonesi CE, Defani MA, Stabille SR, Evangelista CC, Dos Santos CA, de Miranda Neto MH (2006). Morphoquantitative aspects of NADH-diaphorase myenteric neurons in the ileum of diabetic rats treated with acetyl-L-carnitine. Anat Histol Embryol 35(1): 13-18.
Amersi F, Buelow R, Kato H, Ke B, Coito AJ, Shen XD, Zhao D, Zaky J, Melinek J, Lassman CR, Kolls JK, Alam J, Ritter T, Volk HD, Farmer DG, Ghobrial RM, Busuttil RW, Kupiec-Weglinski JW (1999). Upregulation of heme oxygenase-1 protects genetically fat Zucker rat livers from ischemia/reperfusion injury. J Clin Invest 104(11): 1631-1639.
Arduini A, Bonomini M, Savica V, Amato A, Zammit V (2008). Carnitine in metabolic disease: potential for pharmacological intervention. Pharmacol Ther 120(2): 149-156.
Armstrong D, Browne R (1994). The analysis of free radicals, lipid peroxides, antioxidant enzymes and compounds related to oxidative stress as applied to the clinical chemistry laboratory. Adv Exp Med Biol 366: 43-58.
Asai T, Okumura K, Takahashi R, Matsui H, Numaguchi Y, Murakami H, Murakami R, Murohara T (2006). Combined therapy with PPARalpha agonist and L-carnitine rescues lipotoxic cardiomyopathy due to systemic carnitine deficiency. Cardiovasc Res 70(3): 566-577.
Avogaro A, de Kreutzenberg SV, Fadini G (2008). Endothelial dysfunction: causes and consequences in patients with diabetes mellitus. Diabetes Res Clin Pract 82 Suppl 2: S94-S101.
Bakker SJ, RG IJ, Teerlink T, Westerhoff HV, Gans RO, Heine RJ (2000). Cytosolic triglycerides and oxidative stress in central obesity: the missing link between excessive atherosclerosis, endothelial dysfunction, and beta-cell failure? Atherosclerosis 148(1): 17-21.
Beckman JS, Koppenol WH (1996). Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271(5 Pt 1): C1424-1437.
Bogalho P (1998). [Lipid disorders in children with insulin-dependent diabetes mellitus]. Acta Med Port 11(7): 683-690.
Bremer J (1983). Carnitine--metabolism and functions. Physiol Rev 63(4): 1420-1480.
Brownlee M (2001). Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865): 813-820.
Brownlee M (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54(6): 1615-1625.
Bueno R, Alvarez de Sotomayor M, Perez-Guerrero C, Gomez-Amores L, Vazquez CM, Herrera MD (2005). L-carnitine and propionyl-L-carnitine improve endothelial dysfunction in spontaneously hypertensive rats: different participation of NO and COX-products. Life Sci 77(17): 2082-2097.
Burattini R, Fioretti S, Jetto L (1985). A simple algorithm for defining the mean cardiac cycle of aortic flow and pressure during steady state. Comput Biomed Res 18: 303-312.
Cai H, Harrison DG (2000). Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87(10): 840-844.
Calabrese V, Giuffrida Stella AM, Calvani M, Butterfield DA (2006). Acetylcarnitine and cellular stress response: roles in nutritional redox homeostasis and regulation of longevity genes. J Nutr Biochem 17(2): 73-88.
Calabrese V, Ravagna A, Colombrita C, Scapagnini G, Guagliano E, Calvani M, Butterfield DA, Giuffrida Stella AM (2005). Acetylcarnitine induces heme oxygenase in rat astrocytes and protects against oxidative stress: involvement of the transcription factor Nrf2. J Neurosci Res 79(4): 509-521.
Calo LA, Pagnin E, Davis PA, Semplicini A, Nicolai R, Calvani M, Pessina AC (2006). Antioxidant effect of L-carnitine and its short chain esters: relevance for the protection from oxidative stress related cardiovascular damage. Int J Cardiol 107(1): 54-60.
Candido R, Srivastava P, Cooper ME, Burrell LM (2003). Diabetes mellitus: a cardiovascular disease. Curr Opin Investig Drugs 4(9): 1088-1094.
Cao J, Inoue K, Li X, Drummond G, Abraham NG (2009). Physiological significance of heme oxygenase in hypertension. Int J Biochem Cell Biol 41(5): 1025-1033.
Carbonell LF, Salom MG, Garcia-Estan J, Salazar FJ, Ubeda M, Quesada T (1987). Hemodynamic alterations in chronically conscious unrestrained diabetic rats. Am J Physiol 252(5 Pt 2): H900-905.
Carl J, Wilmer W (1982). Aortic input impedance in cardiovascular disease. Prog Cardiovasc Dis 4: 307-318.
Ceriello A (2003). New insights on oxidative stress and diabetic complications may lead to a 'causal' antioxidant therapy. Diabetes Care 26(5): 1589-1596.
Ceriello A, Kumar S, Piconi L, Esposito K, Giugliano D (2007). Simultaneous control of hyperglycemia and oxidative stress normalizes endothelial function in type 1 diabetes. Diabetes Care 30(3): 649-654.
Chang KC, Hsu KL, Tseng CD, Lin YD, Cho YL, Tseng YZ (2006). Aminoguanidine prevents arterial stiffening and cardiac hypertrophy in streptozotocin-induced diabetes in rats. Br J Pharmacol 147(8): 944-950.
Chang KC, Hsu KL, Tseng YZ (2003). Effects of diabetes and gender on mechanical properties of the arterial system in rats: aortic impedance analysis. Exp Biol Med (Maywood) 228(1): 70-78.
Chinen I, Shimabukuro M, Yamakawa K, Higa N, Matsuzaki T, Noguchi K, Ueda S, Sakanashi M, Takasu N (2007). Vascular lipotoxicity: endothelial dysfunction via fatty-acid-induced reactive oxygen species overproduction in obese Zucker diabetic fatty rats. Endocrinology 148(1): 160-165.
Chung SS, Ho EC, Lam KS, Chung SK (2003). Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol 14(8 Suppl 3): S233-236.
Coker M, Coker C, Darcan S, Can S, Orbak Z, Goksen D (2002). Carnitine metabolism in diabetes mellitus. J Pediatr Endocrinol Metab 15(6): 841-849.
Cruickshank K, Riste L, Anderson SG, Wright JS, Dunn G, Gosling RG (2002). Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation 106(16): 2085-2090.
Davis PA, Calo LA (2006). Carnitine'S protective effect on oxidative stress is mediated by heme oxygenase-1. Nephrology (Carlton) 11(6): 569.
De Grandis D, Minardi C (2002). Acetyl-L-carnitine (levacecarnine) in the treatment of diabetic neuropathy. A long-term, randomised, double-blind, placebo-controlled study. Drugs R D 3(4): 223-231.
de Sotomayor MA, Mingorance C, Rodriguez-Rodriguez R, Marhuenda E, Herrera MD (2007). l-carnitine and its propionate: improvement of endothelial function in SHR through superoxide dismutase-dependent mechanisms. Free Radic Res 41(8): 884-891.
Defani MA, Zanoni JN, Natali MR, Bazotte RB, de Miranda-Neto MH (2003). Effect of acetyl-L-carnitine on VIP-ergic neurons in the jejunum submucous plexus of diabetic rats. Arq Neuropsiquiatr 61(4): 962-967.
Di Giacomo C, Latteri F, Fichera C, Sorrenti V, Campisi A, Castorina C, Russo A, Pinturo R, Vanella A (1993). Effect of acetyl-L-carnitine on lipid peroxidation and xanthine oxidase activity in rat skeletal muscle. Neurochem Res 18(11): 1157-1162.
Di Mario U, Pugliese G (2001). 15th Golgi lecture: from hyperglycaemia to the dysregulation of vascular remodelling in diabetes. Diabetologia 44(6): 674-692.
Dillmann W (1982). Influance of thyroid hormone administration on myosin ATPase activity and myosin isoenzyme distribution in the heart of diabetic rat. Metabolism 31: 199-204.
Droge W (2003). Oxidative stress and aging. Adv Exp Med Biol 543: 191-200.
Du X, Edelstein D, Obici S, Higham N, Zou MH, Brownlee M (2006). Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J Clin Invest 116(4): 1071-1080.
Du X, Matsumura T, Edelstein D, Rossetti L, Zsengeller Z, Szabo C, Brownlee M (2003). Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 112(7): 1049-1057.
Eid HM, Lyberg T, Larsen J, Arnesen H, Seljeflot I (2002). Reactive oxygen species generation by leukocytes in populations at risk for atherosclerotic disease. Scand J Clin Lab Invest 62(6): 431-439.
Erciyas F, Taneli F, Arslan B, Uslu Y (2004). Glycemic control, oxidative stress, and lipid profile in children with type 1 diabetes mellitus. Arch Med Res 35(2): 134-140.
Esposito K, Marfella R, Giugliano D (2002). Hyperglycemia and heart dysfunction: an oxidant mechanism contributing to heart failure in diabete. J. Endocrinol. Invest. 25: 485-488.
Evans JD, Jacobs TF, Evans EW (2008). Role of acetyl-L-carnitine in the treatment of diabetic peripheral neuropathy. Ann Pharmacother 42(11): 1686-1691.
Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002). Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23(5): 599-622.
Fang ZY, Prins JB, Marwick TH (2004). Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 25(4): 543-567.
Ferrannini E, Buzzigoli G, Bevilacqua S, Boni C, Del Chiaro D, Oleggini M, Brandi L, Maccari F (1988). Interaction of carnitine with insulin-stimulated glucose metabolism in humans. Am J Physiol 255(6 Pt 1): E946-952.
Ferrari R, Merli E, Cicchitelli G, Mele D, Fucili A, Ceconi C (2004). Therapeutic effects of L-carnitine and propionyl-L-carnitine on cardiovascular diseases: a review. Ann N Y Acad Sci 1033: 79-91.
Foster Ua (1998) Diabetes mellitus. In: William Textbook of Endocrinology., pp 973-1059. Philadelphia, Pa: WB Saunders Co.
Frei B, Stocker R, Ames BN (1988). Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci U S A 85(24): 9748-9752.
Gambardella S, Frontoni S, Spallone V, Maiello M, Civetta E, Lanza G, Sandric S, Menzinger G (1993). Increased left ventricular mass in normotensive diabetic patients with autonomic neuropathy. Am J Hypertens 6: 97-102.
Gambert S, Vergely C, Filomenko R, Moreau D, Bettaieb A, Opie LH, Rochette L (2006). Adverse effects of free fatty acid associated with increased oxidative stress in postischemic isolated rat hearts. Mol Cell Biochem 283(1-2): 147-152.
Ganguly P, Pierce G, Dhalla K, Dhalla N (1983). Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am J Physiol Endocrinol. Metab. 244(7): E528-E535.
Giugliano D, Ceriello A, Paolisso G (1996). Oxidative stress and diabetic vascular complications. Diabetes Care 19(3): 257-267.
Gomez-Amores L, Mate A, Miguel-Carrasco JL, Jimenez L, Jos A, Camean AM, Revilla E, Santa-Maria C, Vazquez CM (2007). L-carnitine attenuates oxidative stress in hypertensive rats. J Nutr Biochem 18(8): 533-540.
Gotzsche O (1983). The adrenergic B-receptor adenylate cyclase system in heart and lymphocytes from streptozotocin-diabetic rats. In vivo and in vitro evidence for a desensitized myocardial B-receptor. Diabetes 32: 1110-1116.
Hashiba T, Suzuki M, Nagashima Y, Suzuki S, Inoue S, Tsuburai T, Matsuse T, Ishigatubo Y (2001). Adenovirus-mediated transfer of heme oxygenase-1 cDNA attenuates severe lung injury induced by the influenza virus in mice. Gene Ther 8(19): 1499-1507.
Head KA (2006). Peripheral neuropathy: pathogenic mechanisms and alternative therapies. Altern Med Rev 11(4): 294-329.
Hebden RA, Bennett T, Gardiner SM (1988). Blood pressure recovery following haemorrhage in rats with streptozotocin-induced diabetes mellitus. Circ Shock 26(3): 321-330.
Hebden RA, Gardiner SM, Bennett T, Macdonald IA (1986). The influence of streptozptocin-induced diabetes mellitus on fluid and electrolyte handling in rats. Clin. Sci 70: 111-117.
Herrera MD, Bueno R, De Sotomayor MA, Perez-Guerrero C, Vazquez CM, Marhuenda E (2002). Endothelium-dependent vasorelaxation induced by L-carnitine in isolated aorta from normotensive and hypertensive rats. J Pharm Pharmacol 54(10): 1423-1427.
Heyliger CE, Prakash A, JH M (1987). Alterations incardiac sarcolemmal Ca2+ pump activity during diabetes mellitus. Am J Physiol Heart Circ Physiol 252(21): H540-H544.
Hostetter T, Troy J, Brenner B (1981a). Glomerularhemodynamics in experimental diabetes mellitus. Kidney int 19: 410-415.
Hostetter TH, Troy JL, Brenner BM (1981b). Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int 19(3): 410-415.
Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H (2000). High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49(11): 1939-1945.
Irat AM, Aktan F, Ozansoy G (2003). Effects of L-carnitine treatment on oxidant/antioxidant state and vascular reactivity of streptozotocin-diabetic rat aorta. J Pharm Pharmacol 55(10): 1389-1395.
Ishikawa K, Navab M, Leitinger N, Fogelman AM, Lusis AJ (1997). Induction of heme oxygenase-1 inhibits the monocyte transmigration induced by mildly oxidized LDL. J Clin Invest 100(5): 1209-1216.
Ishizaka N, Aizawa T, Mori I, Taguchi J, Yazaki Y, Nagai R, Ohno M (2000). Heme oxygenase-1 is upregulated in the rat heart in response to chronic administration of angiotensin II. Am J Physiol Heart Circ Physiol 279(2): H672-678.
Joffe II, Travers KE, Perreault-Micale CL, Hampton T, Katz SE, Morgan JP, Douglas PS (1999). Abnormal cardiac function in the strptozotocin-induced, non-insulin dependent diabetic rat. journal of the amerecan college of cardiology 34(7): 2111-2119.
Juan SH, Lee TS, Tseng KW, Liou JY, Shyue SK, Wu KK, Chau LY (2001). Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Circulation 104(13): 1519-1525.
Kimball T, Daniels S, Khoury P, Magnotti R, Turner A, Dolan L (1994). Cardiovascular status in young patients with insulin-dependent diabetes mellitus. Circulation 90: 357-361.
Kofo-Abayomi A, Lucus PD (1988). A comparison between atria from control and streptozotocin-diabetic rats: the effects of dietary myoinositol. Br. J. Pharmacol 93: 3-8.
Korshunov SS, Skulachev VP, Starkov AA (1997). High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416(1): 15-18.
Kwak JY, Takeshige K, Cheung BS, Minakami S (1991). Bilirubin inhibits the activation of superoxide-producing NADPH oxidase in a neutrophil cell-free system. Biochim Biophys Acta 1076(3): 369-373.
Laight DW, Carrier MJ, Anggard EE (1999). Endothelial cell dysfunction and the pathogenesis of diabetic macroangiopathy. Diabetes Metab Res Rev 15(4): 274-282.
Lambert J, Aarsen M, Donker AJ, Stehouwer CD (1996). Endothelium-dependent and -independent vasodilation of large arteries in normoalbuminuric insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol 16(5): 705-711.
Laxminarayan S, Sipkema P, Westerhof N (1978). Characterization of the arterial system in the time-domain. IEEE Trans Piomed Eng 25: 177-184.
Lee L, Horowitz J, Frenneaux M (2004). Metabolic manipulation in ischaemic heart disease, a novel approach to treatment. Eur Heart J 25(8): 634-641.
Lee M, Gardin J, Smith V-E, Tracy R, Savage P, Szklo M, Ward V (1997). Diabetes mellitus and echocardiographic left ventricular function in free-living elderly men and women: The Cardiovascular Health Study. Am Heart J 133: 36-43.
Liu Z, Brin K, Yin F (1986). Estimation of total arterier compliance: an improved method and evaluation of current methods. Am J Physiol 251: H588-H600.
Llesuy SF, Tomaro ML (1994). Heme oxygenase and oxidative stress. Evidence of involvement of bilirubin as physiological protector against oxidative damage. Biochim Biophys Acta 1223(1): 9-14.
Lo Giudice P, Careddu A, Magni G, Quagliata T, Pacifici L, Carminati P (2002). Autonomic neuropathy in streptozotocin diabetic rats: effect of acetyl-L-carnitine. Diabetes Res Clin Pract 56(3): 173-180.
Loffredo L, Marcoccia A, Pignatelli P, Andreozzi P, Borgia MC, Cangemi R, Chiarotti F, Violi F (2007). Oxidative-stress-mediated arterial dysfunction in patients with peripheral arterial disease. Eur Heart J 28(5): 608-612.
Lowitt S, Malone JI, Salem AF, Korthals J, Benford S (1995). Acetyl-L-carnitine corrects the altered peripheral nerve function of experimental diabetes. Metabolism 44(5): 677-680.
Lu SC (2000). Regulation of glutathione synthesis. Curr Top Cell Regul 36: 95-116.
Malone JI, Cuthbertson DD, Malone MA, Schocken DD (2006). Cardio-protective effects of carnitine in streptozotocin-induced diabetic rats. Cardiovasc Diabetol 5: 2.
Malone JI, Schocken DD, Morrison AD, Gilbert-Barness E (1999). Diabetic cardiomyopathy and carnitine deficiency. J Diabetes Complications 13(2): 86-90.
Mamoulakis D, Galanakis E, Dionyssopoulou E, Evangeliou A, Sbyrakis S (2004). Carnitine deficiency in children and adolescents with type 1 diabetes. J Diabetes Complications 18(5): 271-274.
McMackin CJ, Widlansky ME, Hamburg NM, Huang AL, Weller S, Holbrook M, Gokce N, Hagen TM, Keaney JF, Jr., Vita JA (2007). Effect of combined treatment with alpha-Lipoic acid and acetyl-L-carnitine on vascular function and blood pressure in patients with coronary artery disease. J Clin Hypertens (Greenwich) 9(4): 249-255.
Mikkelsen RB, Wardman P (2003). Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 22(37): 5734-5754.
Milnor W (1989). Hemodynamics, 2nd ed. Williams and wilkins, Baltimore.
Milnor WR (1975). Arterial impedance as ventricular afterload. Circ Res 36: 565-570.
Milstien S, Katusic Z (1999). Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem Biophys Res Commun 263(3): 681-684.
Mitchell G, Pfeffer M, Westeshof N, Pfeffer J (1994). Measurement of aortic imput impedance in rats. Am J Physiol 267: H1907-H1915.
Moncada S, Higgs EA (1995). Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J 9(13): 1319-1330.
Motterlini R, Foresti R, Intaglietta M, Winslow,RM (1996). NO-mediated activation of heme oxygenase: endogenous cytoprotection against oxidative stress to endothelium. Am J Physiol 270(1 Pt 2): H107-114.
Mueckler M (1994). Facilitative glucose transporters. Eur J Biochem 219(3): 713-725.
Nakamura J, Koh N, Sakakibara F, Hamada Y, Hara T, Sasaki H, Chaya S, Komori T, Nakashima E, Naruse K, Kato K, Takeuchi N, Kasuya Y, Hotta N (1998). Polyol pathway hyperactivity is closely related to carnitine deficiency in the pathogenesis of diabetic neuropathy of streptozotocin-diabetic rats. J Pharmacol Exp Ther 287(3): 897-902.
Neuzil J, Stocker R (1994). Free and albumin-bound bilirubin are efficient co-antioxidants for alpha-tocopherol, inhibiting plasma and low density lipoprotein lipid peroxidation. J Biol Chem 269(24): 16712-16719.
Nichols W, Conti C, Walker W (1977). input impedance of the systemic circulation in man. Circ Res 40: 451-460.
Nichols W, Pepine C, Geiser E (1980). Vascular load defined by the aortic input impedance spectrum. Fed Proc 39: 196-210.
Nichols WW, O'Rourke MF (1998) McDonald's Blood Flow in Arteries. Arnold: London.
Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M (2000). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404(6779): 787-790.
Nitenberg A, Cosson E, Pham I (2006). Postprandial endothelial dysfunction: role of glucose, lipids and insulin. Diabetes Metab 32 Spec No2: 2S28-33.
Noble M, Gade I, Frenchard D (1976). Blood pressure and flow in the ascending aorta of conscious dogs. Cardiovasc Res 1: 9-21.
Nwose EU, Richards RS, Kerr RG, Tinley R, Jelinek H (2008). Oxidative damage indices for the assessment of subclinical diabetic macrovascular complications. Br J Biomed Sci 65(3): 136-141.
O'Rourke MF, Avolio AP, Nichols WW (1987) Left ventricular-systemic arterial coupling in humans and strategies to improve coupling in disease states In: Ventricular/Vascular Coupling, Yin, FCP (ed), pp 1–19 New York: Springer-Verlag
O'Rourke,MF, Taylor MG (1967). Input impedance of the systemic circulation. Circ Res 20(4): 365-380.
Oka T, Itoi T, Terada N, Nakanishi H, Taguchi R, Hamaoka K (2008). Change in the membranous lipid composition accelerates lipid peroxidation in young rat hearts subjected to 2 weeks of hypoxia followed by hyperoxia. Circ J 72(8): 1359-1366.
Orlandi A, Francesconi A, Marcellini M, Di Lascio A, Spagnoli LG (2007). Propionyl-L-carnitine reduces proliferation and potentiates Bax-related apoptosis of aortic intimal smooth muscle cells by modulating nuclear factor-kappaB activity. J Biol Chem 282(7): 4932-4942.
Orlandi A, Marcellini M, Pesce D, Calvani M, Spagnoli LG (2002). Propionyl-L-carnitine reduces intimal hyperplasia after injury in normocholesterolemic rabbit carotid artery by modulating proliferation and caspase 3-dependent apoptosis of vascular smooth muscle cells. Atherosclerosis 160(1): 81-89.
Owens GK (1995). Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75(3): 487-517.
Pandolfi A, De Filippis EA (2007). Chronic hyperglicemia and nitric oxide bioavailability play a pivotal role in pro-atherogenic vascular modifications. Genes Nutr 2(2): 195-208.
Paradies G, Ruggiero FM, Petrosillo G, Gadaleta MN, Quagliariello E (1994). The effect of aging and acetyl-L-carnitine on the function and on the lipid composition of rat heart mitochondria. Ann N Y Acad Sci 717: 233-243.
Parving HH, Viberti GC, Keen H, Christiansen JS, Lassen NA (1983). Hemodynamic factors in the genesis of diabetic microangiopathy. Metabolism 32(9): 943-949.
Peng Y, Chang K (2000). Acute effects of methoxamine on left ventricular-arterial coupling in streptozotocin-diabetic rats: a pressure-volume analysis. Can J Physiol Pharm 78: 415-422.
Penzo D, Tagliapietra C, Colonna R, Petronilli V, Bernardi P (2002). Effects of fatty acids on mitochondria: implications for cell death. Biochim Biophys Acta 1555(1-3): 160-165.
Pettegrew JW, Levine J, McClure RJ (2000). Acetyl-L-carnitine physical-chemical, metabolic, and therapeutic properties: relevance for its mode of action in Alzheimer's disease and geriatric depression. Mol Psychiatry 5(6): 616-632.
Pieper GM (1999). Enhanced, unaltered and impaired nitric oxide-mediated endothelium-dependent relaxation in experimental diabetes mellitus: importance of disease duration. Diabetologia 42(2): 204-213.
Pileggi A, Molano RD, Berney T, Cattan P, Vizzardelli C, Oliver R, Fraker C, Ricordi C, Pastori RL, Bach FH, Inverardi L (2001). Heme oxygenase-1 induction in islet cells results in protection from apoptosis and improved in vivo function after transplantation. Diabetes 50(9): 1983-1991.
Poorabbas A, Fallah F, Bagdadchi J, Mahdavi R, Aliasgarzadeh A, Asadi Y, Koushavar H, Vahed Jabbari M (2007). Determination of free L-carnitine levels in type II diabetic women with and without complications. Eur J Clin Nutr 61(7): 892-895.
Quan S, Kaminski PM, Yang L, Morita T, Inaba M, Ikehara S, Goodman AI, Wolin MS, Abraham NG (2004). Heme oxygenase-1 prevents superoxide anion-associated endothelial cell sloughing in diabetic rats. Biochem Biophys Res Commun 315(2): 509-516.
Rahman S, Rahman T, Ismail AA, Rashid AR (2007). Diabetes-associated macrovasculopathy: pathophysiology and pathogenesis. Diabetes Obes Metab 9(6): 767-780.
Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996). Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97(8): 1916-1923.
Rajasekar P, Viswanathan P, Anuradha CV (2008). Renoprotective action of L-carnitine in fructose-induced metabolic syndrome. Diabetes Obes Metab 10(2): 171-180.
Rask-Madsen C, King GL (2007). Mechanisms of Disease: endothelial dysfunction in insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab 3(1): 46-56.
Regan CP, Adam PJ, Madsen CS, Owens GK (2000). Molecular mechanisms of decreased smooth muscle differentiation marker expression after vascular injury. J Clin Invest 106(9): 1139-1147.
Riihimaa PH, Suomine K, Knip M, Tapanainen P, Tolonen U (2002). Cardiovascular autonomic reactivity is decreaed in adolecents with type 1 diabetes. Diabetic medicine 19: 932-938.
Rodella LF, Vanella L, Peterson SJ, Drummond G, Rezzani R, Falck JR, Abraham NG (2008). Heme oxygenase-derived carbon monoxide restores vascular function in type 1 diabetes. Drug Metab Lett 2(4): 290-300.
Rolo AP, Palmeira CM (2006). Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 212(2): 167-178.
Ross J, Covell J, Sonnenbuck E, Braunwald E (1966). contractiloe state of the heart charecterized by force-velocity relations in variable afterload and isovolumic beats. Circ Res 18: 149-163.
Sahajwalla CG, Helton ED, Purich ED, Hoppel CL, Cabana BE (1995). Multiple-dose pharmacokinetics and bioequivalence of L-carnitine 330-mg tablet versus 1-g chewable tablet versus enteral solution in healthy adult male volunteers. J Pharm Sci 84(5): 627-633.
Sano K, Nakamura H, Matsuo T (1985). Mode of inhibitory action of bilirubin on protein kinase C. Pediatr Res 19(6): 587-590.
Schiffrin EL (2004). Vascular stiffening and arterial compliance. Implications for systolic blood pressure. Am J Hypertens 17(12 Pt 2): 39S-48S.
Schonfeld P, Wieckowski MR, Wojtczak L (2000). Long-chain fatty acid-promoted swelling of mitochondria: further evidence for the protonophoric effect of fatty acids in the inner mitochondrial membrane. FEBS Lett 471(1): 108-112.
Sedlak TW, Snyder SH (2004). Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics 113(6): 1776-1782.
Sima AA, Calvani M, Mehra M, Amato A (2005). Acetyl-L-carnitine improves pain, nerve regeneration, and vibratory perception in patients with chronic diabetic neuropathy: an analysis of two randomized placebo-controlled trials. Diabetes Care 28(1): 89-94.
SM S (2007). Role of vascular reactive oxygen species in development of vascular abnormalities in diabetes. Diabetes Res Clin Pract 77 Suppl 1: S65-70.
Smith JM, Paulson DJ, Romano FD (1997). Inhibition of nitric oxide synthase by L-NAME improves ventricular performance in streptozotocin-diabetic rats. J Mol Cell Cardiol 29(9): 2393-2402.
Stadler K, Jenei V, Somogyi, A, Jakus J (2005). Beneficial effects of aminoguanidine on the cardiovascular system of diabetic rats. . Diabetes Metab. Res. Rev. 21: 189–196.
Staiger K, Staiger H, Weigert C, Haas C, Haring HU, Kellerer M (2006). Saturated, but not unsaturated, fatty acids induce apoptosis of human coronary artery endothelial cells via nuclear factor-kappaB activation. Diabetes 55(11): 3121-3126.
Stam H, Hulsmann WC, Jongkind JF, van der Kraaij AM, Koster JF (1989). Endothelial lesions, dietary composition and lipid peroxidation. Eicosanoids 2(1): 1-14.
Stehouwer CD, Henry RM, Ferreira I (2008). Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease. Diabetologia 51(4): 527-539.
Steiber A, Kerner J, Hoppel CL (2004). Carnitine: a nutritional, biosynthetic, and functional perspective. Mol Aspects Med 25(5-6): 455-473.
Stein AB, Guo Y, Tan W, Wu WJ, Zhu X, Li Q, Luo C, Dawn B, Johnson TR, Motterlini R, Bolli R (2005). Administration of a CO-releasing molecule induces late preconditioning against myocardial infarction. J Mol Cell Cardiol 38(1): 127-134.
Stevens MJ, Lattimer SA, Feldman EL, Helton ED, Millington DS, Sima AA, Greene DA (1996). Acetyl-L-carnitine deficiency as a cause of altered nerve myo-inositol content, Na,K-ATPase activity, and motor conduction velocity in the streptozotocin-diabetic rat. Metabolism 45(7): 865-872.
Stocker R, Glazer AN, Ames BN (1987a). Antioxidant activity of albumin-bound bilirubin. Proc Natl Acad Sci U S A 84(16): 5918-5922.
Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987b). Bilirubin is an antioxidant of possible physiological importance. Science 235(4792): 1043-1046.
Sundaresan PR, Sharma VK, Gingold SI, Banerjee SP (1984). Decrease B-adrenergic receptors in tat heart in strptozotocin-induced diabetes: role of thyroid hormones. Endocrinology 114: 1358-1363.
T A, Watanabe Y, Kamata K, Kasuya Y (1993). Changes in endothelium-dependent relaxation and levels of cyclic nucleotides in the perfused mesenteric arterial bed from streptozotocin-induced diabetic rats. Life Sci 53(1): PL7-12.
Takano H, Zou Y, Hasegawa H, Akazawa H, Nagai T, Komuro I (2003). Oxidative stress-induced signal transduction pathways in cardiac myocytes: involvement of ROS in heart diseases. Antioxid Redox Signal 5(6): 789-794.
Tamai I, Ohashi R, Nezu J, Yabuuchi H, Oku A, Shimane M, Sai Y, Tsuji A (1998). Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem 273(32): 20378-20382.
Tamamogullari N, Silig Y, Icagasioglu S, Atalay A (1999). Carnitine deficiency in diabetes mellitus complications. J Diabetes Complications 13(5-6): 251-253.
Taylor AA (2001). Pathophysiology of hypertension and endothelial dysfunction in patients with diabetes mellitus. Endocrinology and metabolism clinics of North America 30(4): 983-997.
Thomson L, Trujillo M, Telleri R, Radi R (1995). Kinetics of cytochrome c2+ oxidation by peroxynitrite: implications for superoxide measurements in nitric oxide-producing biological systems. Arch Biochem Biophys 319(2): 491-497.
Tomlinson K, Gardiner S, Bennett T (1990). Blood pressure in streptozotocin-treated Brattleboro and Long-evans rats. Am J Physiol 258: R852-R859.
Tomlinson K, Gardiner S, Hebden R, Bennett T (1992a). Functional consequences of stre
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45467-
dc.description.abstract背景:持續存在之高血糖、血脂異常以及左旋卡尼汀 (l-carnitine,LC)缺乏等糖尿病代謝異常病徵會導致細胞內氧化壓力增加進而造成動脈功能發生障礙。乙醯左旋卡尼汀 (acetyl-l-carnitine,ALC)在眾左旋卡尼汀的衍生物中具最佳抗氧化能力而且同樣具有調控脂肪酸代謝的功能。現今雖已證實ALC對於糖尿病之神經病變具有療效,但針對於脈態血行力學方面的作用以及預防糖尿病心血管併發症方面的研究卻仍闕如。因此,本篇研究中以特徵阻抗分析來釐清ALC對於streptozotocin誘發之糖尿病Wistar大鼠動脈管特性的作用,並同時評估ALC對於糖尿病造成脂質過氧化 (lipid peroxidation)增加以及血脂參數異常的影響。
方法:八週大的Wistar-Kyoto大鼠從尾部靜脈注射streptozotocin (STZ,55 mg kg-1) 以誘發糖尿病。兩天後經檢測確定已顯現高血糖病徵並穩定兩週之後,於每日飲用水中餵予ALC (150 mg kg-1) 進行為期八週的療程,並以年齡匹配之糖尿病鼠作為對照組別。
結果:與糖尿病鼠組別相較,經由ALC治療八週後的糖尿病鼠顯示,在總周邊阻力及主動脈特徵阻抗等參數上均無差異。相對的,在經ALC治療後,波傳輸時間 (wave transit time,τ) 明顯增加21.04±0.34 to 24.23±0.55 ms (P<0.001),且波反射係數大幅降低0.71±0.04 to 0.47±0.03 (P<0.001)。此外,糖尿病中偏高的游離脂肪酸、三酸甘油脂、丙二醛 (malondialdehyde,MDA)血中濃度以及MDA動脈含量,給予ALC治療後有部份回復的現象。顯示ALC可能藉其代謝方面功能與本身之抗氧化能力改善糖尿病所造成動脈系統相關聯之左心室收縮負荷增加。心室重量經體重校正後之比值 (心室肥厚的指標) 亦可經由餵予ALC後減少2.46±0.05 to 2.01±0.04 mg g-1 (P<0.001)。
結論:經過ALC長期治療後,能顯著改善糖尿病所引起之心室負荷狀態以及波傳輸現象惡化情形,推測可能是由於ALC能降低糖尿病中升高的氧化壓力所致。
zh_TW
dc.description.abstractBackground: Persistent hyperglycemia, dyslipidemia and carnitine deficiency contribute to enhanced oxidative stress, which causes arterial dysfunction in diabetes mellitus. Acetyl-l-carnitine (ALC) has the best antioxidant capacity among carnitine derivates and has similar action on fatty acid metabolism. Although ALC has been proven to be beneficial for diabetic neuropathy, little attention has been given to the pulsatile hemodynamic responses to ALC in preventing diabetes-associated vascular complications. Herein, we determined the effects of ALC on physical properties of the arterial system in streptozotocin (STZ)-induced diabetes in Wistar rats, using aortic impedance analysis. In addition, the influences of ALC in diabetes-derived lipid peroxidation and abnormal lipid profiles were also measured.
Materials and methods: Diabetes was induced in Wistar-Kyoto rats by a single tail vein injection with STZ (55 mg kg-1). After induction of hyperglycemia and stabilization for 2 weeks, animals were daily treated with ALC (150 mg kg-1 in drinking water) for 8 weeks and compared with the untreated aged-matched diabetic controls.
Results: After exposure to ALC, the STZ-diabetic rats showed no alterations in total peripheral resistance and aortic characteristic impedance. In contrast, treatment of this experimental diabetic rats with ALC resulted in a significant rise in wave transit time, from 21.04±0.34 to 24.23±0.55 ms (P<0.001) and a fall in wave reflection factor, from 0.71±0.04 to 0.47±0.03 (P<0.001). Moreover, rising circulating NEFA and triglycerides concentration and increasing malondialdehyde (MDA) content in plasma and aortas of diabetes rats were decreased in ALC treatment group. These suggested that ALC might attenuate the diabetes-derived augmentation in systolic load of left ventricular coupled to its arterial system possibly correlating with its metabolic and antioxidant property per se. The ratio of left ventricular weight to body weight, an indicator of cardiac hypertrophy was also attenuated by the action of ALC in diabetic rats, from 2.46±0.05 to 2.01±0.04 mg g-1 (P<0.001).
Conclusions: We conclude that long-term supplementation of ALC to diabetic rats imparts significant protection against the diabetes-related deterioration in ventricular loading conditions and wave reflection phenomena properly via alleviating the increasing oxidative stress in the STZ-induced rats.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:21:46Z (GMT). No. of bitstreams: 1
ntu-98-R90441008-1.pdf: 834962 bytes, checksum: b4a0a8e18b591b95d9a5104e19cba4ad (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書……………………………………………………i
誌謝……………………………………………………………………ii
縮寫名詞對照表 ……………………………………………………vii
中文摘要 ……………………………………………………………xi
英文摘要 ……………………………………………………………xiii
緒論……………………………………………………………………1
一、 糖尿病之心血管併發症...............................1
1-1 糖尿病概論………………………………………………………1
1-2 糖尿病引發心血管病變之源起…………………………………2
1-3 糖尿病之心血管病變相關研究發展……………………………3
二、氧化壓力與心血管疾病之關聯…………………………………4
2-1 活性含氧物種 (reactive oxygen species,ROS)…………4
2-2 抗氧化作用 ……………………………………………………4
2-3 氧化壓力指標 …………………………………………………5
2-4 糖尿病所致氧化性傷害 ………………………………………6
2-5 糖尿病與心血管併發症及ROS之關聯…………………………10
三、乙醯左旋卡尼汀 (Acetyl-L-Carnitine,ALC)………………13
3-1 卡尼汀物質概述 ………………………………………………14
3-2 卡尼汀物質對心血管疾病之作用 ……………………………15
3-3 卡尼汀物質對糖尿病之影響 …………………………………18
四、動脈管之物理特性………………………………………………19
4-1 動脈物理性質之量化……………………………………………19
4-2 主動脈輸入阻抗頻譜的特性及功能……………………………19
五、實驗目的…………………………………………………………22
材料與方法……………………………………………………………23
實驗流程………………………………………………………………23
一、實驗動物製備…………………………………………………23
二、實驗動物分組…………………………………………………24
三、血液中葡萄糖濃度測定………………………………………24
四、血壓波及血流波之測量………………………………………25
五、手術流程………………………………………………………26
六、資料轉換與分析方法…………………………………………28
七、左心室比率……………………………………………………35
八、血液以及組之中生化物質分析 ……………………………35
九、統計 …………………………………………………………37
結果……………………………………………………………………38
基本資料……………………………………………………………38
主動脈輸入阻抗頻譜…………………………………………………39
穩態基本血行力學參數………………………………………………39
脈態參數………………………………………………………………40
生化物質測定…………………………………………………………41
討論……………………………………………………………………42
糖尿病及ALC對心血管動脈物理特性之影響 ………………………42
一、基本資料方面…………………………………………………42
二、穩態參數方面…………………………………………………43
三、脈態參數方面 …………………………………………………45
糖尿病及ALC對血脂異常以及氧化壓力的影響…………………… 49
結論……………………………………………………………………51
表次……………………………………………………………………53
表一:糖尿病及投予ALC,對於雄性Wistar大鼠之血糖、體重、
左心室重量及主動脈血壓相關數據的影響 ……………………… 53
圖次……………………………………………………………………54
圖一:升主動脈之血壓波及血流波、升主動脈特徵阻抗頻譜之
振幅、相位及脈衝響應 ……………………………………54
圖二:糖尿病及投予ALC,對於雄性Wistar大鼠之基礎心跳速率
(HR)、心輸出量 (CO)、心搏量 (SV) 及總周邊阻力(Rp)
的影響 ………………………………………………………55
圖三:糖尿病及投予ALC,對於雄性Wistar大鼠之主動脈特徵阻
抗 (Zc)、主動脈平均壓所對應之動脈容積度 (Cm)、波
反射係數 (Rf) 及波傳輸時間 (τ) 的影響 ……………56
圖四:糖尿病及投予ALC,對於雄性Wistar大鼠之血中游離脂肪
酸及三酸甘油酯的影響……………………………………57
圖五:糖尿病及投予ALC,對於雄性Wistar大鼠之血液及主動脈
中MDA含量之影響 …………………………………………58
參考文獻………………………………………………………………59
dc.language.isozh-TW
dc.subject波反射zh_TW
dc.subject波傳輸時間zh_TW
dc.subjectSTZ糖尿病鼠zh_TW
dc.subject乙醯左旋卡尼汀zh_TW
dc.subject血脂異常zh_TW
dc.subject脂質過氧化zh_TW
dc.subject氧化壓力zh_TW
dc.subjectdyslipidemiaen
dc.subjectacetyl-l-carnitineen
dc.subjectwave transit timeen
dc.subjectstreptozotocin-induced diabetesen
dc.subjectpulse wave reflectionen
dc.subjectoxidative stressen
dc.subjectlipid peroxidationen
dc.title乙醯左旋卡尼汀可改善streptozotocin誘發糖尿病鼠併發之動脈硬化及心室肥厚zh_TW
dc.titleAcetyl-l-carnitine attenuates arterial stiffness and cardiac hypertrophy in streptozotocin-induced diabetic ratsen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳朝峰,曾春典,賴凌平
dc.subject.keyword乙醯左旋卡尼汀,血脂異常,脂質過氧化,氧化壓力,波反射,STZ糖尿病鼠,波傳輸時間,zh_TW
dc.subject.keywordacetyl-l-carnitine,dyslipidemia,lipid peroxidation,oxidative stress,pulse wave reflection,streptozotocin-induced diabetes,wave transit time,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2009-10-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
815.39 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved