請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45445完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 藍崇文 | |
| dc.contributor.author | Wei-Tse Hsu | en |
| dc.contributor.author | 徐為哲 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:20:34Z | - |
| dc.date.available | 2009-10-28 | |
| dc.date.copyright | 2009-10-28 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-10-22 | |
| dc.identifier.citation | [1] Aram, M. and M. A.Wechester, “High power laser device”, United States Patent 6243407 (2001).
[2] Heald, D. L. and L. T. Reyes, “Method and apparatus for wafer level testing of semiconductor lasers”, United States Patent 6448805 (2002). [3] Aram, M. and M. A.Wechester, “High power laser”, United States Patent 6614827 (2003). [4] 高宗盛 “科學發展”, 386 (2005) pp.22-27. [5] Cho, Y., K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, K. Kitamura, “Terabit inch-2 ferroelectric data storage using scanning nonlinear dielectric microscopy nanodomain engineering system”, Nanotechnology, 14 (2003) pp.637-642. [6] Bai, Y.S. and R. Kachru, “Two-step grated holographic reording in photorefractive materials using CW laser”, United States Patent 5698344 (1997). [7] Franken, P. A., A. E. Hill, C. W. Peters, “Generation of optical harmonics ” Physical Review Letters, 1 (1961) pp.118-120. [8] Armstrong, A., N. Blombergen, J. Ducuing and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric”, Physical Review, 127 (1962) pp1918-1939. [9] 干福憙,段維新,連雙喜, “資訊材料” 新文京開發出版社 2004。 [10] Ashkin, A., G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Bullman, J. J. Levinstein and K. Nassau, “Optical- induced refractive index inhomogeneity in LiNbO3 and LiTaO3,” Applied Physical Letters, 9 (1966) 72-74. [11] Chen, F. S., “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” Journal of Applied Physics 40 (1969) pp.3389-3396. [12] 李明華, 陽春暉, 徐玉垣 等著, “光折變晶體材料科學導論”, 高等教育出版社 2003。 [13] Tay, S., P. A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto and N. Peyghambarian, “An updatable holographic three-dimensional display”, Nature, 451 (2008) pp.694-698. [14] Barlic, J. J., “Single crystal pulling without temperature programming”, Journal of Scientific Instruments, 42 (1965) pp361-362. [15] Tsai, C. B., Y. T. Hsia, M. D. Shih, C. Y. Tai, C. K. Hsieh, W. C. Hsu and C.W. Lan, “Zone-levelling Czochralski growth of MgO-doped near-stoichiometric lithium niobate single crystals”, Journal of Crystal Growth, 275 (2005) pp.504-511. [16] Zachariasen, W. H., “Untersuchungen Äuber die Kristallstruktur von Sesquioxydenund Verbindungen ABO3”, Skr. Norske Vid.-Akad. 4 (1928) pp.312. [17] Matthias, B. T. and J. P. Remeika, “Ferroelectricity in the Ilmenite Stuucture”, Physical Review, 76 (1949) pp.1886-1886. [18] Abrahams, S. C., and J. L. Bernstein, “Ferroelectric lithium tantalate—1. single crystal X-ray diffraction study at 24°C”, Journal of Physics and Chemistry of Solids, 28 (1967) pp.1685-1692. [19] Ballman, A. A., ‘‘Growth of piezoelectric and ferroelectric materials by the CzochraIski technique”, Journal of the American Ceramic Society, 48 (1965) pp.112-113. [20] Yamada, T., N. Niizeki and H. Toyoda, “Curie point and lattice constants of lithium tantalate”, Japanese Journal of Applied Physics, 7 (1968) pp.298B-299B. [21] Miyazawa, S. and H. Iwasaki, “Congruent melting composition of lithium metatantalate”, Journal of Crystal Growth, 10 (1971) pp.276-278. [22] http://www.almazoptics.com/LiTao3.htm, Copyrights 1933-2005 Almaz Optics, Inc. [23] Bordui, P. F., R. G. Norwood, C. D. Bird and G. D. Calvert, “Compositional uniformity in growth and poling of large-diameter lithium niobate crystals”, Journal of Crystal Growth, 113 (1991) pp.61-68. [24] Kim, I. G., S. Takekawa, Y. Furukawa, M. Lee, K. Kitamura, “Growth of LixTa1-xO single crystals and their optical properties”, Journal of Crystal Growth, 229 (2001) pp243-247. [25] Baumer, C., C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Kratzig and M. Wohlecke, “Composition dependence of the ultraviolet absorption edgein lithium tantalate”, Journal of Applied Physics, 93 (2003) pp.3102-3104. [26] Baumer, C., C. David, K. Betzler, H. Hesse, K. Lengyel, L. Kovacs and M. Wohlecke, “Composition dependence of the OH-stretch-mode spectrum in lithium tantalate”, Physica Status Solidi, 201 (2004) pp.R13-R16. [27] Shi, L., Y. Kong, W. Yan, J. Sun, S. Chen, L. Zhang, W. Zhang, H. Liu, X. Li, X. Xie, D. Zhao, L. Sun, Z. Wang, J. Xu and G. Zhang, “Determination of the composition of lithium tantalate by means of Raman and OH− absorption measurements”, Materials Chemistry and Physics, 95 (2006) pp.229-234. [28] Nitanda, F., Y. Furukawa, S. Makio, M. Sato and K. Ito, “Increased optical damage resistance and transparency in MgO-doped LiTaO3 single crystals”, Japanese Journal of Applied Physics, 34 (1995) pp.1546-1550. [29] Kumaragurubaran, S., S. Takekawa, M. Nakamura and K. Kitamura, “Growth of 4-in diameter MgO-doped near-stoichiometric lithium tantalate single crystals and fabrication of periodically poled structures”, Journal of Crystal Growth, 292 (2006) pp.332-336. [30] Nakamura, M., S. Takekawa, Y. Furukawa and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals”, Journal of Crystal Growth, 41 (2002) pp. L465-L467. [31] Nakamura, M., S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa and K. Kitamura, “Optical damage resistance and refractive indices in near-stoichiometric MgO-doped LiNbO3”, Japanese Journal of Applied Physics, 41 (2002) ppL49-L51. [32] 徐兆慶,二維藍綠與紫外光非線性晶體雷射之研究,國立台灣大學 光電工程學研究所 碩士論文,民國92年7月。 [33] Gao, Z. D., S. N. Zhu, S.Y. Tu and A. H. Kung,“Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalate, Applied Physics Letters, 89 (2006) pp.181101,3p. [34] Wirp A., C. Bäumer, H. Hesse, D. Kip and E. Kratzig, “Magnesium-doped near-stoichiometric lithium tantalate crystals for nonlinear optics”, Physica Status Solidi (a), 202 (2005) pp.1120-1124. [35] Hum, D. “Frequency conversion in near-stoichiometric lithium tantalate fabricated by vapor transport equilibrium” Doctoral thesis 2007. [36] http://www.hcphotonics.com.tw/product_onlinestore_PPMgOLN.htm Copyrights 2007 HC Photonics Corp. [37] Chen, F. S. “Optically induced change of refractive indices in LiNbO3 and LiTaO3”, Journal of Applied Physics, 40 (1969) pp.3389-3394. [38] Kukhtarev, N. V., V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state”, Ferroelectrics, 22 (1979) pp.949-954. [39] Blanche, P. A., S. Tay, R. Voorakaranam, P. S. Hilaire, C. Christenson, T. Gu, W. P. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood and N. Peyghambarian, “An updatable holographic display for 3D visualization”, Journal of Display Technology, 4 (2008) pp.424-430. [40] Steckman, G. J., “Holographic recording in polymeric materials with applications”, Doctoral thesis 2001. [41] Mecher, E., G. G. Francisco, H. Tilimann, H. H. Horhold, J.C. Hummelen and K. Meerholz, “Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination”, Nature, 418 (2002) pp.959-964. [42] Buse, K. “Light-induced charge transport processes in photorefractive crystals II: Materials”, Applied Physics B, 64 (1997) pp.391-407. [43] 張玉龍, 唐磊, “人工晶體-生長技術性能與應用”, 化學工業出版社 2005。 [44] Krätzig, E. and R. Orlowski, “LiTaO3 as a hlographic storage material”, Applied Physics, 15 (1978) pp.133-139. [45] Ohira, M., Z. Chen and T. Kasanmatsu, “Crystal Growth of LiNbO3:Fe and Its Photorefractive Properties”, Japanese Journal of Applied Physics, 30 (9B) (1991) pp.2326-2329. [46] Imbrock, J., A.Warp, D. Kip and E. Kratzig, “Photorefractive properties of lithium and copper in-diffused in lithium niobate crystals”, Journal of the optical society of America B, 19 (2002) pp.1822-1829. [47] Yue, X., A. Adibi, T. Hudson, K. Buse and D. Psaltis, “Role of cerium in lithium niobate for holographic recording”, Journal of Applied Physics, 87 (9) (2000) pp.4051-4055. [48] Yang, Y., D. Psaltis, M. Luennemann, D. Berben, U. Hartwig and K. Buse, “Photorefractive properties of lithium niobate crystals doped with manganese”, The Journal of Optical Society of America B 20 (2003) pp.1491-1502. [49] Karpets, Y. M. and V. A. Maksimenko, “Photoinduced light scattering in LiNbO3:Rh crystals”, Journal of Optical Technology, 71 (9) (2004) pp.570-571. [50] Chiang, C.H., J. C. Chen, Y. C. Lee, C. H. Lin and J. Y. Chang, “Photorefractive properties of Ru doped lithium niobate crystal”, Optical Materials, 31 (2009) pp.812-816. [51] Zhang, T., Y. T. Dong, T. Geng, Q. Dau and Y. H. Xu, “Growth and holographic data storage properties of near-stoichiometric LiTaO3 crystals doped with Mn, Materials Chemistry and Physics, 114 (2009) pp.257-260. [52] Furukawa, Y., K. Kitamura, Y. Ji, G. Montemrzzani, M. Zgonik, C. Medrano and P. Gunter, “Photorefractive properties of iron-doped stoichiometric lithium niobate”, Optics letters, 22 (1997) pp.501-503. [53] Furukawa, Y., K. Kitamura, K. Niwa, H. Hatano, P. Bersasconi, G. Montemezzani and P. Gunter, ”Stoichiometric LiTaO3 for dynamic holography in near UV wavelength range“, Japanese Journal of Applied Physics, 38 (1999) pp.1816-1819. [54] Liu, Y., K. Kitamura, S. Takekawa, G. Ravi, M. Nakamura, Y. Furukawa and H. Hatano, “Comparison of two-color hologram lifetime of near-stoichiometric lithium niobate and tantalate crystals”, Applied Optics, 43 (2004) pp.5778-5783. [55] Xu, J, G. Zhang, F. Li, X. Zhang, Q. Sun, S. Liu, and F. Song, “Enhancement of ultraviolet photorefraction in highly magnesium-doped lithium niobate crystals”, Optics Letters, 25 (2000) pp.129-131. [56] Qiao, H., J. Xu, G. Zhang, X. Zhang, Q. Sun, and G. Zhang, “Ultraviolet photorefractivity features in doped lithium niobate crystals”, Physical Review B, 70 (2004) pp.094101-094111. [57] Fang, S. Q., D. C. Ma, B. Wang, F. R. Ling and G. Wang, “Influence of post-treatment conditions on photorefractive effect of Zn:Fe:LiNbO3 crystals”, Microwave and Optical Technology Letters, 48 (2006) pp.986-988. [58] Fang, S., D. Ma, T. Zhang, F. Ling and B. Wang, “Growth and optical properties of Mg, Fe Co-doped LiTaO3 crystal”, Optik, 117 (2006) pp.72–76. [59] Fang, S., B. Wang, T. Zhang, F. Ling and R. Wang, “Growth and photorefractive properties of Zn,Fe double-doped LiTaO3 crystal”, Optical Materials, 28 (2006) pp.207–211. [60] Ma, D., B. Wang, S. Fang, Tao. Zhang, R. Wang and Y. Wei, “Growth and studies of optical properties of double-doped In:Fe:LiTaO3 crystal”, Microwave and Optical Technology Letters, 48 (2006) pp.2227-2230. [61] Ma, D., B. Wang , R. Wang, Y. Wei, H. C. Liu, H Wang, “Growth and optical properties of Zn:Ce:Cu:LiNbO3 single crystals”, Solid-State Electronics, 52 (2008) pp.644-648. [62] Xu, Z. P., “Growth and photorefractive properties of Mg:Ce:Fe:LiNbO3 crystals”, Optical Materials, 30 (2008) pp.928-930. [63] Xu, Z. P., Y. Xu, “Growth and optical properties of Mg:Ce:Fe:LiNbO3 crystals”, Materials Letters 61 (2007) pp.3243-3246. [64] Sun, X., S. Luo, J. Wang, Y. Jiang and H. Shi, “Improvement of blue photorefractive properties in In-doped LiNbO3 : Fe : Cu crystals”, Journal of Physics D: Applied Physics, 42 (2009) pp.115413-1-7. [65] Sun, X., S. Luo, H. Shi, Q. Meng and Y. Jiang, “Growth and photorefractive properties of near-stoichiometricIn:Fe:Cu:LiNbO3 crystals”, Optics Communications, 282 (2009) pp.3149–3152. [66] Amodei, J. J. and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Applied Physical Letters, 18 (1971) pp.540-545. [67] Micheron, F., and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Applied Physicals Letters, 20 (1972) pp.79-81. [68] Buse, K., A. Adibi, and D. Psaltis”, Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature, 393 (1998) pp.665-668. [69] Carruthers, J. R., G. E. Peterson, and M. Grasso, “Nonstoichiometry and Crystal Growth of Lithium Niobate”, Journal of Applied Physics, 42 (1971) pp1846-1851. [70] Kitamura, K., J.K. Yamamoto, N. Iyi, S. Kirnura and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system”, Journal of Crystal Growth, 116 (1992) pp327-332. [71] Kan, S., M. Sakamoto, Y. Okano, K. Hoshikawa and T. Fukuda, “LiNbO3 single crystal growth by the continuous charging Czochralski method with Li/Nb ratio control”, Journal of Crystal Growth, 119 (1992) pp215-220. [72] Kan, S., M. Sakamoto, Y. Okano, K. Hoshikawa and T. Fukuda, “LiNbO3 single crystal growth from Li-rich melts by the continuous charging and double crucible Czochralski methods”, Journal of Crystal Growth, 128 (1993) pp915-919. [73] Malovichko, G. I., V. G. Grachev, L. P. Yurchenko, V. Ya. Proshko, E. P. Kokanyan and V. T. Gabrielyan, “Improvement of LiNbO3 microstructure by crystal- growth with potassium”, Physica Status Solidi A, 133 (1992) ppK29-K32. [74] Ni, D. Q., W. Y. Wang, D. F. Zhang, X. Wu, X. L. Chen and K. Q. Lu, “Near- stoichiometric LiNbO3 single-crystal growth by metal strip-heated zone melting technique”, Journal of Crystal Growth, 263 (2004) pp421-426. [75] 伍哲毅,可視化水平區熔法生長等化學計量比鈮酸鋰單晶可行性之研究,國立台灣大學 化學工程學研究所 碩士學位論文,民國93年7月。 [76] Zheng, Y., E. Shi, Z. Lu, S. Cui, S. Wang and W. Zhong, “A Novel Technique to grow Stoichiometric Lithium Niobate Single Crystal”, Journal of Crystal Growth, 275 (2005) pp.e895-e898. [77] 蔡淳博,等化學計量比鈮酸鋰單晶區融提拉製程之開發研究,國立台灣大學 化學工程研究所 博士論文,民國94年11月。 [78] 何俊賢,鈮酸鋰單晶區熔提拉法之研究,國立台灣大學 化學工程學研究所 碩士學位論文,民國92年7月。 [79] JCPDS-International Centre for Diffraction Data, Version 2.15, Newtown Square, PA 19073, U. S. A., 1987-1994. [80] 夏英庭,鈮酸鋰單晶區熔提拉法-直徑與溫場改良之研究,國立台灣大學 化學工程學研究所 碩士學位論文,民國93年7月。 [81] Ashino, T. and K. Takada, “Determination of lithium and niobium in lithium niobate by inductively coupled plasma atomic emission spectrometry after fusion with ammonium hydrogensulfate”, Analytical Sciences, 9 (1993) pp.737-739. [82] Lee, S. H., Y. J. Kim, S. H. Cho and E. P. Yoon, “The influence of the Czochralski growth parameters on the growth of lithium niobate single crystals”, Journal of Crystal Growth, 125 (1992) pp.175-180. [83] Kitamura, K., S. Kimura and S. Hosoya, “The interface shapes of some oxide materials frown by floating zone method” Journal of Crystal Growth, 48 (1980) pp.469-472. [84] Kumaragurubaran, S., S. Takekawa, M. Nakamura and K. Kitamura, “Growth of 4-in diameter near-stoichiometric lithium tantalate single crystals”, Journal Crystal Growth, 285 (2005) pp.88-95. [85] Okada, Y. and T. Iizuka, “An X-ray topographic study of dislocations in LiNbO3 crystal”, Journal of Applied Crystallography, 9 (1976) pp.375-377. [86] Rauber A., “Current topics in material science”, North-Holland. (1978). [87] Wohlecke, M., G. Corradi and K. Betzler, “Optical methods to characterize the composition and homogeneity of lithium niobate single crystals”, Applied Physics B, 63 (1996) pp.323-330. [88] Niwa, K., Y. Furukawa, S. Takekawa and K. Kitamura, “Growth and characterization of MgO doped near stoichiometric LiNbO3 crystals as a new nonlinear optical material”, Journal of Crystal Growth, 208 (2000) pp493-500. [89] Didomenico, M. and S. H. Wemple, “Oxygen-octahedra ferroelectrics. II. Electro-optical and nonlinear-optical device applications”, Journal of Applied Physics, 40 (1969) pp.720-734. [90] http://www.opt-oxide.com/english/product/linb03.html, Copyrights © 2003-2005 Oxide Corporation. [91] Smith, R. G., D. B. Fraser, R. T. Denton and T. C. Rich, “Correlation of reduction in optically induced refractive-index inhomogeneity with OH content in LiTaO3 and LiNbO3”, Journal of Applied Physics, 39 (1968) pp.4600-4606. [92] Furukawa, Y., K. Kitamura, E. Suzuki and K. Niwa, ”Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system“, Journal of Crystal Growth, 197 (1999) pp.889-895. [93] Li, H., Y. Fan, F. Guo, Y. Xu and L. Zhao, “Growth and spectroscopic characterization of Fe2O3 highly doped near-stoichiometric LiNbO3 single crystals” Journal of Crystal Growth, 303 (2007) pp.651-654. [94] Grabmaier, B. C. and F. Otto, “Growth and investigation of MgO-doped LiNbO3”, Journal of Crystal Growth, 79 (1986) pp682-688. [95] Iyi, N., K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa and M. Sato, “Defect structure model of MgO-doped LiNbO3”, Journal of Solid State Chemistry, 118 (1995) pp148-152. [96] Malovichko, G., O. Cerclier, J. Estienne, V. Grachev, E. Kokanyan and C. Boulesteix, “Lattice constants of K- and Mg-doped LiNbO3 composition with nonstoichiometric lithium niobate”, The Journal of Physics and Chemistry of Solids, 56 n9 (1995) pp1285-1289. [97] Azaroff, L. V. and M. J. Buerger, “Analytical methods for indexing powder photographs”, The Powder Method in X-ray Crystallography, McGraw-Hill, New York, 1958 pp.82-83. [98] Sun, D., J. Xiao, L. Zhang, Y. Hang, S. Zhu, A. Wang, S, Yin, “Study on the growth facets and ferroelectric domains in near-stoichiometric LiNbO3 crystals”, Journal of Crystal Growth, 262 (2004) pp.240-245. [99] 胡明理,Zn:LiNbO3之晶體生長與其特性研究,國立中央大學 光電科學研究所 博士論文,民國93年1月。 [100] Prokhorov, A. M. and Yu S. Kuz’minov, “Physics and chemistry of crystalline lithium niobate” Chapter 6, Adam Hilger 1990. [101] Chen, Y. L., J. Guo, C. B. Liu, J. W. Yuan, W. L. Zhang and S. L. Chen, “Crystal growth and characterization of 6.5 mol% MgO-doped LiNbO3”, Journal of Crystal Growth 263 (2004) pp.427-430. [102] Tiller, W. A., K. A. Jackson, J.W. Rutter and B. Chalmers, “The redistribution of solute atoms during the solidification of metals”, Acta Materialia, 1 (1953) pp.428-437. [103] Lerner, P., C. Legras and J. P. Duman, “Stoechiometric des monocristaux de metaniobate delithium”, Journal of Crystal Growth, 3/4 (1968) 231-236. [104] Knacke, O., O. Kubaschewski and K. Hesselmann, “Thermochemical properties of inorganic substances”, Springer-Verlag 1991. [105] Kahn, A. H., and A. J. Leyendecker, “Electronic energy bands in strontium titanate”, Physics Review, 135 (1964) pp1321-1325. [106] Cabuk, S., and A. Mamedov, “A study of the LiNbO3 AND LiTaO3 absorption edge”, Turkish Journal of Physics, 22 (1998) pp.41-45. [107] Clark, M. G., F. J. Disalvo, A. M. Glass and G. E. Peterson, “Electronic structure and optical index damage of iron-doped lithium niobate”, Journal of Chemistry and Physics, 59 (1973) pp.6209-6219. [108] Watanabe, Y., T. Sota, K. Suzuki, N. Ily, K. Kitamura and S. Kimura; “Defect structures in LiNbO3 ”, Journal of Physics Condensed Matter, 7 (1995) pp.3627-3635. [109] Yevdokimov, S.V. and A.V. Yatsenko, “Investigation of the Localization of H+ Ions in Stoichiometric LiNbO3”, Crystallography Reports, 48 (2003) pp.542-546. [110] Liu, J., W. Zhang and G. Zhang, “Microscopic mechanism of suppressing photorefraction in LiNbO3:Mg,Fe crystals”, Solid State Communications, 98 (1996) pp.523-526. [111] Xia, H., X. Zeng, J. Wana, J. Zhang, J. Xu, Y. Zhang, “Growth of Fe-doped LiNbO3 single crystal by Bridgman method”, Journal of Crystal Growth, 58 (2006) pp2476-2480. [112] Bae, S. I., J. Ichikawa, K. Shimamura, H. Onodera and T. Fukuda, “Doping effect of Mg and or Fe ions on congruent LiNbO3 single crystal growth”, Journal of Crystal Growth, 180 (1997) pp.94-100. [113] Mok, F., G. Burr, D. Psaltis, “System metric for holographic memory systems”, Optics Letters, 21 (1996) pp.896-898. [114] Glass, A. M., “Excited state polarization, bulk photovoltaic effect and the photorefractive effect in electrically polarized media”, Journal of Electronic Materials, 4 (1975) pp.915-943. [115] Kogelnik H., “Coupled wave theory for thick hologram gratings”, Bell System Technical Journal, 48 (1969) pp.2909-2947. [116] Yang, Y. A. Adibi and D. Psaltis, “Comparison of transmission and the 90-degree holographic recording geometry”, Applied Optics. 42 (2003) pp.3418-3427. [117] Bryan, D. A., R. Gerson and H. E. Tomaschke, “Increased Optical Damage Resistance in Lithium Niobate”, Applied Physics Letters, 44 n9 (1984) pp.847-849. [118] Nakamura, M., S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, Y. Furukawa, “Near-stoichiometric LiTaO3 for bulk quasi-phase-matched devices”, Ferroelectrics, 273 (2002) pp199-204. [119] Guo, Y., Y. Liao, L. Cao, G. Liu, Q. He and G. Jin, “Improvement of photorefractive properties and holographic applications of lithium niobate crystal”, Optic Express, 12 (2004) pp.5556-5561. [120] 徐朝鵬, “Ce:Fe LiNbO3的晶體生長與光折變性質”, Journal of the Chinese Ceramic Society, 35 (2007) pp.765-769. [121] 胡榮章, “MgO:LiNbO3 單晶生長及其特性之研究”,國立成功大學礦冶及材料科學研究所 博士論文,民國80年7月。 [122] Peterson, G. E., and A. Carneval “93Nb NMR linewidths in nonstoichiometric lithium niobate”, Journal of Chemical Physics, 56 (1972) pp.4848-4856. [123] Fay, H., W. J. Alford and H. M. Dess, “Dependence of second harmonic phase matching temperature in LiNbO3 crystals on composition”, Applied Physics Letters, 12 (1968) pp.89-93. [124] Volk, T., B. Maximov, T. Chernaya, N. Rubinina, M. Wöhlecke and V. Simonov, “Photorefractive properties of LiNbO3:Zn crystals related to the defect structure” Applied Physics, B72 (2001) pp.647-651. [125] Tsai, P. C., M. L. Sun, C. T. Chia, H. F. Lu, S. H. Lin, M. L. Hu and J. F. Lee, “Defect structure of highly Zn-doped LiNbO3 single crystal revealed by extended x-ray absorption spectra”, Applied Physics Letters, 92 (2008) pp161902. [126] Yamada, M., N. Nada, M. Saitoh and K. Watanabe, “First-order quasi phase matched LiNbO3 Waveguide periodic poled by applying an external field for efficient blue second harmonic generation”, Applied physics letters, 62 (1993) pp.435-436. [127] Myers, L. E., G. D. Miller, R. C. Eckardt, M. M. Fejer, and R. L. Byer, ” Quasi-phase-matched 1.064-mm-pumped optical parametric oscillator in bulk periodically poled LiNbO3”, Optics Letters 20 (1995) pp.52-54. [128] Berger, V. “Nonlinear photonic crystals”, Physical Review Letters, 81 (1998) pp.4136-4139. [129] Gabor, D., “A new Microscopic principle”, Nature, 161, (1948) pp.777-779. [130] 蘇威佳,三維亂相編碼之體積全像及其應用,國立中央大學 電工程學研究所 博士論文,民國90年6月。 [131] Yang, Y., I. Nee, K. Buse, and D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals”, Applied Physics Letters, 78 (2001) pp.4076. 3ps. [132] 江昌鴻,摻釕鈮酸鋰單晶生長及其特性之研究,國立中央大學 機械工程研究所 博士論文,民國96年10月。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45445 | - |
| dc.description.abstract | 近年來由於光電產業的蓬勃發展,許多新穎的材料都被陸續開發,其中因為鉭酸鋰晶體具備有數種優秀的性質,如高抗光損傷閥值、高非線性光學係數、高焦電係數、高電光係數以及容易生長等優點,成為最近熱門的研究話題,隨著光電技術迅速發展,超大容量的儲存技術將成為為電子技術後之新興產業,資料儲存的高密度化和資料傳輸的高速化將是今後科技發展的重點,而利用鉭酸鋰晶體做為媒介進行體積全像儲存已被實現,其理論儲存密度可達Tb/cm3等級,而傳輸速度也可達Gb/s。此外鉭酸鋰晶體的另外一種應用為變頻(倍頻、混頻和差頻)雷射,隨著準相位匹配技術的發展,PPLT可望取代GaN而主導下一代的藍綠光市場,有鑑於此近年來有許多廠商積極投入這塊市場。
市場上所販售的鉭酸鋰晶片,應多以共熔組成為主,然而共融組成的鉭酸鋰(CLT)晶體中通常有相當多的本質缺陷,此缺陷將導致晶體的品質下降而影響晶體的性質,如光學吸收係數增加、雙折效應減少、居禮溫度下降、矯頑電場增加、抗光折變能力下降等,大幅降低晶體的應用價值。而等化學計量比組成之鉭酸鋰(SLT)晶體在熱力學上較CLT晶體穩定且晶體中的本質缺陷少,因此SLT晶體的性質較CLT晶體優越,是一種相當值得投資及研究的光學材料。然而生長SLT晶體有其難度,因為生長時會因偏析而導致晶體組成偏移,無法使用使用傳統的柴式提拉法生長SLT單晶,因此於本論文中將嘗試使用我們實驗室自行開發的區熔提拉法進行SLT晶體生長,此外使用區熔提發法所生長之晶體,則藉由光學、物理或是化學分析方法來評價晶體之軸向、徑向組成及均勻性,此外我們也針對鉭酸鋰晶體做摻雜處理,以探討晶體摻雜後的特性。 藉著使用鋰過量之原料做為熔區,且調配適當濃度比例的鉭酸鋰做為底部進料,配合精密的熱場設計下,我們成功使用區熔提拉法生長無摻雜的近等化學計量比鉭酸鋰晶體,透過數種濃度分析技術,皆顯示晶體軸向濃度梯度僅為1.1×10-2 %/mm,而晶體的光學和物理性質在和文獻值比較後,顯示晶體品質以達到商品化的水準,因此我們可得知區熔提拉法是一個相當傑出的連續進料製程。 一般而言,鉭酸鋰晶體的居禮溫度低於熔點溫度,在長晶過程後,通常需要對鉭酸鋰晶體施以一外加電壓,以得到單鐵電域的鉭酸鋰晶體,於本論文中也討論高品質的單鐵電域晶體之製備方式,我們透過使用緩衝層來避免雜質擴散進入晶體後而導致晶體劈裂,極化過程中須施加適當的電流密度於晶體上,過強的電流密度將導致晶體碎裂,而過小的電流密度導致極化不完全。 我們也生長鎂鐵雙摻的SLT晶體,其中摻鐵的目的是能增加晶體的繞射效率以及提供大的動態範圍,而摻鎂則是增加晶體的光導電度而縮短反應時間,控制化學計量比目的則是提高敏感度。透過ZLCz法我們也成功生長不同濃度的鎂鐵雙摻SLT晶體,其晶體外觀則隨著鐵摻濃度的增加而加深,此外晶體的氧化還原狀態於穿透吸收光譜上的變化也被探討,靠著適當的鐵摻雜量以及氧化程度,Fe2+ 所引起的inter-valence transfer吸收峰被觀察在位於425nm處。高鐵摻的雙摻晶體則於OH-吸收光譜上,觀察到特殊吸收峰值(3504 cm2),此吸收峰值被歸MgLi+-OH--FeTa3-模式所產生的吸收。最後晶體的全像儲存性質也被討論,在特定的摻雜濃度和光強下,鎂鐵雙摻晶體可提供繞射效率為83.96%,寫入時間為93.75 s,抹除時間為452 s,動態範圍為4.3,敏感度為4.07×10-2 cm/J,和其摻雜之鉭酸鋰或鈮酸鋰晶體比較下,鎂鐵雙摻鉭酸鋰晶體提供不錯的全像儲存特性。 | zh_TW |
| dc.description.abstract | Recently, the electro-optics industry has developed vigorously, thus several new materials with excellent properties have been discovered. Lithium tantalate (LT) crystal is one of the most important materials for industrial application due to its excellent properties such as high damage threshold, large nonlinear optical constant, large electro-optic constant, and ease of growth; it has been, therefore, the focus of research of many companies and laboratories. With the rapid expansion of digital information, a new storage technique with extra-large storage density and high transfer rate is needed. A promising technique named holographic data storage technique could satisfy the requirements. The theoretical storage density by using holographic technique on the LT crystal could be estimated at a value of Tb/cm3, and transfer rate of Gb/s. The LT crystal is also often used in laser application. By employing the quasi phase matched (QPM) technique, the periodic poled lithium tantalate (PPLT) device could replace GaN to lead the laser market. Therefore, many companies have zealously investigated the new material.
The congruent lithium tantalate (CLT) crystal is the main product in the market, because the CLT crystal could be grown easily though the traditional Czochralski (CZ) method. However, the CLT crystal often contains a lot of intrinsic defects (anti-site defects), which will damage the potencies of the LT crystal, that is, increase the cutoff wavelength and coercive field, and decrease the birefringence and optical damage threshold. It is well known that the stoichiometric lithium tantalate (SLT) crystal provides better properties. Due to the segregation issue, growing SLT crystal by traditional Cz puller is very difficult. The conventional technique for growing SLT crystals was the double-crucible Czochralski (DCCz) method. However, because the use of the powder feeding requires a complicate design, this is not convenient for a conventional Czochralski puller. In this study, the zone-leveling Czochralski (ZLCz) method was used to grow the SLT crystals successfully. Additionally, the axial and radial composition distributions in these grown crystals are characterized by using several optical, physical, and chemical methods, which show that these crystals show high uniformity in radial and axial distribution. The axial composition segregation is very slight (1.1×10-2 %/mm) in the crystals, and no radial segregation is observed in the SLT crystals. The SLT crystals grown by ZLCz technique have comparable quality with commercial products. Furthermore, we also studied the doping effects for the SLT crystals. For the laser or hologram application, the as grown SLT crystals need to be further treated by an electrical field to be of single ferroelectric domain. In this study, we also discuss the method for producing high-quality single-domain wafers. We found that the LT buffer wafers needed to be used to prevent cracks caused by the ions diffusion issue; the high-quality crystals could then be obtained by applying a moderate current density (2.5 mA/cm2). However, the smaller or larger current density could cause the domain inverse to become incomplete or the crystal to crash, respectively. The Mg and Fe co-doped SLT crystals were also grown by the ZLCz method. The purpose of doping Fe ions into the crystal is to enhance the diffraction efficiency and dynamic range. Doping Mg and the increase in Li/Ta ratio would enhance the photoconductivity and improve the sensitivity and response time of the SLT crystal. The crystal color becomes darker with the iron concentration. The oxidation and reduction condition of Mg as well as the Fe co-doped SLT crystal are also studied. By controlling the Fe concentration in the crystal and the oxidation time, a special absorption peak attributed to inter-valence transfer of Fe2+ to Ta5+ could be shown at the wavelength of 425 nm. For the high iron doping crystal, an extra vibrational peak located at 3504 cm-1 is observed in the OH-absorption spectrum, which is attributed to the MgLi+-OH--FeTa3- vibrational mode. Finally, we investigated the photorefractive properties of a series of Mg/Fe co-doped near-stoichiometric lithium tantalate (SLT) crystals under varying light intensities of the two-beam coupling method. In the photorefractive experiment, the recording time constant, erasing time constant, dynamic range, and sensitivity decreased with light intensity; however, the diffraction efficiency showed an opposite trend. Furthermore, the photorefractive properties of crystals were enhanced with the increasing Fe/Ta ratio. The effects of the Li/Ta, Mg/Ta, and Fe/Ta ratios on the holographic parameters were also studied. The recording time constant and erasing time constant were shortened by doping Mg and controlling the stoichiometry. The experimental results showed that the Mg/Fe co-doped SLT crystal could be an excellent candidate for lifetime data storage media. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:20:34Z (GMT). No. of bitstreams: 1 ntu-98-D92524012-1.pdf: 5071326 bytes, checksum: 1895a837ea2170cf2d534aa884866beb (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要 I
英文摘要 III 目錄 VI 圖目錄 IX 表目錄 IIX 第一章 緒論 1 1.1 簡介 1 1.2 文獻回顧 5 1.2.1鉭酸鋰晶體 5 1.2.2鉭酸鋰晶體的非線性光學性質應用 11 1.2.3鉭酸鋰晶體的光折變性質和應用 16 1.2.4 控制晶體組成之生長方法 22 1.3 研究動機 31 第二章 實驗藥品、設備及流程 32 2.1 實驗藥品 32 2.1.1 晶體生長用藥品 32 2.1.2 鉭酸鋰溶液配製用藥品 34 2.1.3 晶片研磨用藥品 35 2.1.4 清洗用藥品 36 2.2 晶體生長實驗之設備及流程 37 2.2.1 原料配製 37 2.2.1.1 原料配製設備 37 2.2.1.2 原料配製步驟 38 2.2.2 原料填裝、晶體生長及晶體回火 41 2.2.2.1 晶體生長設備 41 2.2.2.2 原料填裝步驟 50 2.2.2.3 晶體生長及晶體回火步驟 51 2.2.3 晶體定向、切割及研磨 52 2.2.3.1 晶體定向、切割及研磨拋光設備 53 2.2.3.2 晶體定向步驟 55 2.2.3.3 晶體切割步驟 57 2.2.3.4 晶體研磨拋光(lapping & polishing)步驟 57 2.2.4 晶體評價 59 2.2.4.1 量測設備 59 2.2.4.2 晶片穿透度、吸收波長量測步驟 64 2.2.4.3 晶體折射率量測步驟 65 2.2.4.4 晶體居禮溫度量測步驟 65 2.2.4.5 晶體晶格常數量測步驟 65 2.2.4.6 晶體組成量測步驟 66 2.2.4.7 矯頑電場量測步驟 67 2.3 鉭酸鋰晶片進行VTE實驗之流程 68 2.4單鐵電域晶體之製備和光折變性質量測 70 2.4.1 晶體極化實驗之流程 70 2.4.2 鉭酸鋰晶體光折變實驗流程 72 第三章 ZLCz晶體生長及晶體評價 75 3.1 ZLCz晶體生長之特性及熱場分析 75 3.2 SLN晶體之生長 79 3.2.1 未摻雜SLT晶體 79 3.2.2 鎂摻雜SLT晶體 81 3.2.2.1 熱場改良 81 3.2.2.2 晶體生長 84 3.3 晶體評價 86 3.3.1 晶體組成量測 86 3.3.2 晶體穿透度量測 89 3.3.3 晶體吸收波長量測 90 3.3.4 紅外線吸收光譜量測 93 3.3.5 晶體折射率量測 95 3.3.6 晶體居禮溫度量測 97 3.3.7 晶體矯頑電場量測 98 3.3.8 粉末X-ray繞射圖譜 100 3.3.9 晶體鐵電域觀察 102 3.4氣相傳輸平衡法研究 104 第四章 鎂鐵雙摻SLT晶體生長與評價 107 4.1 鎂鐵雙摻SLT晶體生長 107 4.2 單鐵域晶體製備方法研究 109 4.2.1 晶體極化的方法 109 4.2.2 極化參數對鐵電域反轉之影響 101 4.3 鎂鐵雙摻SLT晶體評價 113 4.3.1 鎂鐵雙摻等化學計量鉭酸鋰晶體 113 4.3.2 ICP-AES 組成量測 114 4.3.3 UV-Visible-NIR吸收光譜 116 4.3.4 OH-吸收光譜 119 4.3.5 XRCCD分析 121 4.4 鎂鐵雙摻SLT晶體之光折變性質研究 124 4.4.1 鎂鐵雙摻SLT晶體之繞射效率 124 4.4.2 鎂鐵雙摻SLT晶體之寫入和抹除時間參數 128 4.4.3 鎂鐵雙摻SLT晶體之動態範圍和光敏感度 131 第五章 結論 135 附錄 138 參考文獻 143 圖目錄 圖1.1-1 (a) ZMCz法示意圖[14];(b) ZLCz法示意圖。………………………. 4 圖1.2-1 鉭酸鋰晶體中之原子排列。(a)鈣鈦礦結構;(b)菱方結構。…..…… 7 圖1.2-2 鉭酸鋰晶體結構。(a)順電相;(b)鐵電相。……………………………. 7 圖1.2-3 鐵電相時,鋰離子於氧平面之位能圖。………………………………... 8 圖1.2-4 Li2O-Ta2O5雙成分系統相圖。[21]…………………………………….. 8 圖1.2-5 準相位匹配之二倍頻轉換效率示意圖[32]。………………………… 12 圖1.2-6 不同組成的LN和LT晶體性能比較圖[36]。………………………… 15 圖1.2-7 (a)雙坩堝柴氏法示意圖[70];(b)連續進料柴氏法示 意圖[71]。………………………………………………………………. 24 圖1.2-8 TSSG法示意圖[73]。…………………………………..……………… 25 圖1.2-9 MSHZM法系統示意圖[74]。………………….……………………… 26 圖1.2-10 MPMS法系統示意圖[76]。………………………………………..… 27 圖1.2-11 區熔提拉晶體生長系統之簡易模型[77]。……………………..…… 29 圖1.2-12 VTE法示意圖[23]。………………………………….………………. 30 圖2.2-1 原料配製流程圖。……………………………………………………… 37 圖2.2-2 原料填裝、晶體生長及回火之流程圖。……………………………… 41 圖2.2-3 J50晶體生長爐。……………………………………………………….. 43 圖2.2-4銥坩堝,內徑11.6 cm、高13 cm、厚2 mm。……………………….. 44 圖2.2-5 (a)銥內坩堝。(內徑7.5 cm、高2.5 cm、厚2 mm)。(b)內坩堝固定裝 置。……………………………………………………….. ……………. 45 圖2.2-6 內徑16.5 cm,適用於內徑11.6 cm坩堝之感應線圈。…………… 46 圖2.2-7 一吋直徑SLT晶體生長系統之熱場示意圖。……………………….. 47 圖2.2-8 後加熱器(內徑6.5 cm、高8 cm、厚0.2 mm) 。……………………… 48 圖2.2-9 氧化鋁遮罩(外徑4.5cm、內徑2cm、厚1cm) 。…………………… 49 圖2.2-10 子晶、子晶接頭及桿。……………………………………………….. 49 圖2.2-11 晶體定向、切割、研磨之流程圖。…………………………………. 52 圖2.2-12 (a) X-ray單晶定向儀;(b)三軸向固定座(置於sample載台上),可 進行三正交方向之獨立自由旋轉。………………………………… 53 圖2.2-13 APD1精密切割機。…………………………………………………… 54 圖2.2-14 MP5研磨拋光機。…………………………………………………….. 55 圖2.2-15 鉭酸鋰之標準X-ray繞射圖譜[79]。…………………….. 56 圖2.2-16 晶體評價流程圖。…………………………………………………….. 59 圖2.2-17 菱鏡耦合儀之基本原理。…………………………………………….. 61 圖2.2-18 矯頑電場量測裝置(黃衍介教授提供)。(a)示意圖;(b)照片。…….. 67 圖2.2-19 矯頑電場量測中之施加電壓變化(上)及其電流監測結果(下)。雙向箭頭標示處為晶片中極性開始反轉之電壓,電場即為電壓除與晶片之厚度。………………………………………………………………… 68 圖2.3-1 VTE實驗之流程圖。…………………………………………………… 68 圖2.4-1晶體極化實驗之流程。………………………………………………… 70 圖2.4-2 晶體極化裝置。………………………………………………………… 71 圖2.4-3晶體光折變性質量測之流程。………………………………………… 72 圖2.4-4寫入實驗架構。………………………………………………………… 74 圖2.4-5抹除實驗架構。………………………………………………………… 74 圖3.1-1 SLT晶體生長中之秤重訊號。………………………………………… 76 圖3.1-2 SLT晶體生長中之溫度及功率之變動。……………………………… 77 圖3.1-3 使用ZLCz法生長SLT晶體之溫度分佈圖。………………………… 78 圖3.2-1 ZLCz法生長一吋直徑SLT晶體之生長系統示意圖。………………. 80 圖3.2-2 未摻雜SLT晶體(晶體1)。……………………………………………. 81 圖3.2-3 多晶SLT晶體。……………………………………………………….. 82 圖3.2-4 兩吋直徑鎂摻SLT晶體之生長系統示意圖。……………………….. 83 圖3.2-5 鎂摻雜SLT晶體(晶體2)。……………………………………………. 85 圖3.2-6 鎂摻雜SLT晶體(晶體2*)。…………………………………………… 85 圖3.3-1 晶體1和晶體2之組成軸向分佈。…………………………………… 89 圖3.3-2 晶體1和晶體2之晶片穿透度。……………………………………… 90 圖3.3-3 晶體1和晶體2之軸向吸收波長分佈。……………………………… 92 圖3.3-4 晶體 2之徑向吸收波長分佈(0點位置為晶片中心)。……………… 93 圖3.3-5 晶體1和晶體2之軸向OH-吸收波長分佈。………………………… 95 圖3.3-6 晶體 1和晶體 2之軸向折射率分佈。……………………………… 96 圖3.3-7 晶體 1和晶體 2之軸向居禮溫度分佈。…………………………… 98 圖3.3-8 晶體 1和晶體 2之軸向矯頑電場分佈。…………………………… 100 圖3.3-9 1 mol% MgO摻雜SLT晶體之粉末XRD圖譜。……………………. 101 圖3.3-10 SLT晶體蝕刻後之電畴圖形 (a) C-cut SLT晶片(1X),(b)觀察處放 大50倍之蝕刻圖形,(c) 觀察處放大500倍之蝕刻圖形。………. 103 圖3.5-1 使用VTE處理後晶體1軸向吸收波長之變化。……………………. 105 圖3.5-2 使用VTE處理後晶體1軸向雙折射率變化。………………………. 105 圖4.2-1 晶體極化設備示意圖。………………………. ………………………. 110 圖4.2-2電流密度為1.2 mA/cm2之鐵電域反轉圖形。 (100X,視窗大小:625*470 | |
| dc.language.iso | zh-TW | |
| dc.subject | 晶體生長 | zh_TW |
| dc.subject | 全像儲存材料 | zh_TW |
| dc.subject | 雷射材料 | zh_TW |
| dc.subject | holographic data storage | en |
| dc.subject | crystal growth | en |
| dc.subject | laser material | en |
| dc.title | 鎂鐵雙摻近等化學計量比鉭酸鋰晶體生長及其特性之研究 | zh_TW |
| dc.title | Growth and Properties of Mg, Fe Codoped near Stoichiometric Lithium Tantalate Single Crystals | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 何國川,吳嘉文,黃衍介,彭隆瀚,賈至達,張正陽 | |
| dc.subject.keyword | 晶體生長,雷射材料,全像儲存材料, | zh_TW |
| dc.subject.keyword | crystal growth,laser material,holographic data storage, | en |
| dc.relation.page | 157 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-10-23 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 4.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
