Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45410
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王錦堂(Jin-Tang Wang)
dc.contributor.authorShih-Ying Wuen
dc.contributor.author伍時瑩zh_TW
dc.date.accessioned2021-06-15T04:18:40Z-
dc.date.available2013-03-12
dc.date.copyright2010-03-12
dc.date.issued2009
dc.date.submitted2009-11-22
dc.identifier.citation1. Abbott, S. 1999. Klebsiella, Enterobacter, Citrobacter and Serratia. In Manual of Clinical Microbiology, 7th ed. American Society for Microbiology Press, Washington D.C.
2. Adachi, Y., C. Satokawa, M. Saeki, N. Ohno, H. Tamura, S. Tanaka, and T. Yadomae. 1999. Inhibition by a CD14 monoclonal antibody of lipopolysac-charide binding to murine macrophages. J Endotoxin Res 5:139-146.
3. Aguilar, A., S. Merino, X. Rubires, and J. Tomas. 1997. Influence of osmo-larity on lipopolysaccharides and virulence of Aeromonas hydrophila serotype O: 34 strains grown at 37 degrees C. Infect Immun 65:1245-1250.
4. Ahern, P., A. Izcue, K. Maloy, and F. Powrie. 2008. The interleukin-23 axis in intestinal inflammation. Immunol Rev 226:147.
5. Akira, S., and K. Takeda. 2004. Toll-like receptor signalling. Nat Rev Im-munol 4:499-511.
6. Al-Salleeh, F., and T. M. Petro. 2008. Promoter analysis reveals critical roles for SMAD-3 and ATF-2 in expression of IL-23 p19 in macrophages. J Immu-nol 181:4523-4533.
7. Aliprantis, A., R. Yang, M. Mark, S. Suggett, B. Devaux, J. Radolf, G. Klimpel, P. Godowski, and A. Zychlinsky. 1999. Cell activation and apopto-sis by bacterial lipoproteins through toll-like receptor-2. Science 285:736.
8. Arbour, N. C., E. Lorenz, B. C. Schutte, J. Zabner, J. N. Kline, M. Jones, K. Frees, J. L. Watt, and D. A. Schwartz. 2000. TLR4 mutations are asso-ciated with endotoxin hyporesponsiveness in humans. Nat Genet 25:187-191.
9. Aujla, S. J., Y. R. Chan, M. Zheng, M. Fei, D. J. Askew, D. A. Pociask, T. A. Reinhart, F. McAllister, J. Edeal, K. Gaus, S. Husain, J. L. Kreindler, P. J. Dubin, J. M. Pilewski, M. M. Myerburg, C. A. Mason, Y. Iwakura, and J. K. Kolls. 2008. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med 14:275-281.
10. Ayinala, S. R., M. Vulpe, M. Azaz, H. Cohen, S. S. Donelson, and M. Lee. 2001. Pyogenic liver abscesses due to Klebsiella pneumoniae in a diabetic pa-tient. J Miss State Med Assoc 42:67-70.
11. Batshon, B. A., H. Baer, and M. F. Shaffer. 1963. Immunologic paralysis produced in mice by Klebsiella pneumoniae type 2 polysaccharide. J Immunol 90:121-126.
12. Beutler, B. 2004. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430:257-263.
13. Beutler, B. 2005. The Toll-like receptors: analysis by forward genetic methods. Immunogenetics 57:385-392.
14. Beutler, B., and E. T. Rietschel. 2003. Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3:169-176.
15. Cahill, M., B. Chang, and A. Murry. 2000. Bilateral endogenous bacterial endophthalmitis associated with pyogenic hepatic abscess. Br J Ophthalmol 84:1432-1432.
16. Cheng, D. L., Y. C. Liu, M. Y. Yen, C. Y. Liu, and R. S. Wang. 1991. Septic metastatic lesions of pyogenic liver abscess. Their association with Klebsiella pneumoniae bacteremia in diabetic patients. Arch Intern Med 151:1557-1559.
17. Chuang, Y. P., C. T. Fang, S. Y. Lai, S. C. Chang, and J. T. Wang. 2006. Genetic Determinants of Capsular Serotype K1 of Klebsiella pneumoniae Causing Primary Pyogenic Liver Abscess. J Infect Dis 193:645-654.
18. Chung, D. R., S. S. Lee, H. R. Lee, H. B. Kim, H. J. Choi, J. S. Eom, J. S. Kim, Y. H. Choi, J. S. Lee, M. H. Chung, Y. S. Kim, H. Lee, M. S. Lee, and C. K. Park. 2007. Emerging invasive liver abscess caused by K1 serotype Klebsiella pneumoniae in Korea. J Infect 54:578-583.
19. Clements, A., F. Gaboriaud, J. F. Duval, J. L. Farn, A. W. Jenney, T. Lith-gow, O. L. Wijburg, E. L. Hartland, and R. A. Strugnell. 2008. The major surface-associated saccharides of Klebsiella pneumoniae contribute to host cell association. PLoS One 3:e3817.
20. Cortes, G., N. Borrell, B. de Astorza, C. Gomez, J. Sauleda, and S. Alberti. 2002. Molecular Analysis of the Contribution of the Capsular Polysaccharide and the Lipopolysaccharide O Side Chain to the Virulence of Klebsiella pneumoniae in a Murine Model of Pneumonia. Infect Immun 70:2583-2590.
21. Dubin, P. J., and J. K. Kolls. 2007. IL-23 mediates inflammatory responses to mucoid Pseudomonas aeruginosa lung infection in mice. Am J Physiol Lung Cell Mol Physiol 292:L519-528.
22. Eads, D., R. Hansen, A. Oyegunwa, C. Cecil, C. Culver, F. Scholle, I. Petty, and S. Laster. 2009. Terameprocol, a methylated derivative of nordihydro-guaiaretic acid, inhibits production of prostaglandins and several key inflam-matory cytokines and chemokines. J Inflamm 6:2.
23. Eisenstein, B. I., and D. F. Zaleznik. 2000. Enterobacteriaceae. In Principles and Practice of Infectious Diseases, 5th ed. Churchill-Livingstone, Philadel-phia.
24. Fang, C., Y. Chen, S. Chang, W. Sau, and K. Luh. 2000. Klebsiella pneu-moniae meningitis: timing of antimicrobial therapy and prognosis. Oxford Univ Press 93:45-53.
25. Fang, C. T., Y. P. Chuang, C. T. Shun, S. C. Chang, and J. T. Wang. 2004. A Novel Virulence Gene in Klebsiella pneumoniae Strains Causing Primary Liver Abscess and Septic Metastatic Complications. J. Exp. Med. 199:697-705.
26. Flo, T. H., O. Halaas, E. Lien, L. Ryan, G. Teti, D. T. Golenbock, A. Sun-dan, and T. Espevik. 2000. Human toll-like receptor 2 mediates monocyte ac-tivation by Listeria monocytogenes, but not by group B streptococci or lipo-polysaccharide. J Immunol 164:2064-2069.
27. Fung, C., F. Chang, S. Lee, B. Hu, B. Kuo, C. Liu, M. Ho, and L. Siu. 2002. A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut 50:420-424.
28. Galloway, S., and C. Raetz. 1990. A mutant of Escherichia coli defective in the first step of endotoxin biosynthesis. J. Biol. Chem. 265:6394-6402.
29. Godinez, I., M. Raffatellu, H. Chu, T. A. Paixao, T. Haneda, R. L. Santos, C. L. Bevins, R. M. Tsolis, and A. J. Baumler. 2009. Interleukin-23 orches-trates mucosal responses to Salmonella enterica serotype Typhimurium in the intestine. Infect Immun 77:387-398.
30. Graveline, R., M. Segura, D. Radzioch, and M. Gottschalk. 2007. TLR2-dependent recognition of Streptococcus suis is modulated by the pres-ence of capsular polysaccharide which modifies macrophage responsiveness. Int. Immunol. 19:375-389.
31. Hansen, D. S., F. Mestre, S. Alberti, S. Hernandez-Alles, D. Alvarez, A. Domenech-Sanchez, J. Gil, S. Merino, J. M. Tomas, and V. J. Benedi. 1999. Klebsiella pneumoniae lipopolysaccharide O typing: revision of prototype strains and O-group distribution among clinical isolates from different sources and countries. J Clin Microbiol 37:56-62.
32. Happel, K., M. Zheng, E. Young, L. Quinton, E. Lockhart, A. Ramsay, J. Shellito, J. Schurr, G. Bagby, and S. Nelson. 2003. Cutting Edge: Roles of Toll-Like Receptor 4 and IL-23 in IL-17 Expression in Response to Klebsiella pneumoniae Infection. J Immunol 170:4432-4436.
33. Happel, K. I., P. J. Dubin, M. Zheng, N. Ghilardi, C. Lockhart, L. J. Quinton, A. R. Odden, J. E. Shellito, G. J. Bagby, S. Nelson, and J. K. Kolls. 2005. Divergent roles of IL-23 and IL-12 in host defense against Kleb-siella pneumoniae. J. Exp. Med. 202:761-769.
34. Hayashi, F., K. D. Smith, A. Ozinsky, T. R. Hawn, E. C. Yi, D. R. Goodlett, J. K. Eng, S. Akira, D. M. Underhill, and A. Aderem. 2001. The innate im-mune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099-1103.
35. Henneke, P., O. Takeuchi, J. A. van Strijp, H. K. Guttormsen, J. A. Smith, A. B. Schromm, T. A. Espevik, S. Akira, V. Nizet, D. L. Kasper, and D. T. Golenbock. 2001. Novel engagement of CD14 and multiple toll-like receptors by group B streptococci. J Immunol 167:7069-7076.
36. Kenne, L., and B. Lindberg. 1983. Bacterial polysaccarides, p. 287-363. The Polysaccharides (Aspinall, G. O., ed), vol. 2. Academic Press, Inc, New York.
37. Ko, W., D. Paterson, A. Sagnimeni, D. Hansen, A. Von Gottberg, S. Mo-hapatra, J. Casellas, H. Goossens, L. Mulazimoglu, and G. Trenholme. 2002. Community-acquired Klebsiella pneumoniae bacteremia: global differ-ences in clinical patterns. Emerg Infect Dis 8:160-166.
38. Kocabas, C., N. Katsenelson, S. Kanswal, M. N. Kennedy, X. Cui, M. S. Blake, D. M. Segal, and M. Akkoyunlu. 2007. Neisseria meningitidis type C capsular polysaccharide inhibits lipooligosaccharide-induced cell activation by binding to CD14. Cell Microbiol 9:1297-1310.
39. Langrish, C. L., Y. Chen, W. M. Blumenschein, J. Mattson, B. Basham, J. D. Sedgwick, T. McClanahan, R. A. Kastelein, and D. J. Cua. 2005. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233-240.
40. Le Roy, D., F. Di Padova, Y. Adachi, M. P. Glauser, T. Calandra, and D. Heumann. 2001. Critical role of lipopolysaccharide-binding protein and CD14 in immune responses against gram-negative bacteria. J Immunol 167:2759-2765.
41. Lee, J., T. H. Chuang, V. Redecke, L. She, P. M. Pitha, D. A. Carson, E. Raz, and H. B. Cottam. 2003. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc Natl Acad Sci U S A 100:6646-6651.
42. Lemaitre, B., E. Nicolas, L. Michaut, J. M. Reichhart, and J. A. Hoffmann. 1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973-983.
43. Lien, E., T. Means, H. Heine, A. Yoshimura, S. Kusumoto, K. Fukase, M. Fenton, M. Oikawa, N. Qureshi, and B. Monks. 2000. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin In-vest 105:497-504.
44. Manukyan, M., K. Triantafilou, M. Triantafilou, A. Mackie, N. Nilsen, T. Espevik, K. H. Wiesmuller, A. J. Ulmer, and H. Heine. 2005. Binding of li-popeptide to CD14 induces physical proximity of CD14, TLR2 and TLR1. Eur J Immunol 35:911-921.
45. Matsumoto, M., K. Funami, M. Tanabe, H. Oshiumi, M. Shingai, Y. Seto, A. Yamamoto, and T. Seya. 2003. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol 171:3154-3162.
46. McGeachy, M. J., K. S. Bak-Jensen, Y. Chen, C. M. Tato, W. Blumen-schein, T. McClanahan, and D. J. Cua. 2007. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 8:1390-1397.
47. Medzhitov, R., P. Preston-Hurlburt, and C. A. Janeway, Jr. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive im-munity. Nature 388:394-397.
48. Merino, S., S. Camprubi, S. Alberti, V. J. Benedi, and J. M. Tomas. 1992. Mechanisms of Klebsiella pneumoniae resistance to complement-mediated killing. Infect Immun 60:2529-2535.
49. Mizuta, K., M. Ohta, M. Mori, T. Hasegawa, I. Nakashima, and N. Kato. 1983. Virulence for mice of Klebsiella strains belonging to the O1 group: rela-tionship to their capsular (K) types. Infect. Immun. 40:56-61.
50. Oppmann, B., R. Lesley, B. Blom, J. Timans, Y. Xu, B. Hunte, F. Vega, N. Yu, J. Wang, and K. Singh. 2000. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715-725.
51. Orskov, I., and F. Orskov. 1984. Serotyping of Klebsiella. Methods Microbiol. 14:143-164.
52. Pan, Y. J., H. C. Fang, H. C. Yang, T. L. Lin, P. F. Hsieh, F. C. Tsai, Y. Keynan, and J. T. Wang. 2008. Capsular polysaccharide synthesis regions in Klebsiella pneumoniae serotype K57 and a new capsular serotype. J Clin Mi-crobiol 46:2231-2240.
53. Podschun, R., and U. Ullmann. 1998. Klebsiella spp. as nosocomial patho-gens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 11:589-603.
54. Raffatellu, M., D. Chessa, R. P. Wilson, R. Dusold, S. Rubino, and A. J. Baumler. 2005. The Vi capsular antigen of Salmonella enterica serotype Typhi reduces Toll-like receptor-dependent interleukin-8 expression in the intestinal mucosa. Infect Immun 73:3367-3374.
55. Regueiro, V., M. A. Campos, J. Pons, S. Alberti, and J. A. Bengoechea. 2006. The uptake of a Klebsiella pneumoniae capsule polysaccharide mutant triggers an inflammatory response by human airway epithelial cells. Microbiology 152:555-566.
56. Regueiro, V., D. Moranta, M. A. Campos, J. Margareto, J. Garmendia, and J. A. Bengoechea. 2009. Klebsiella pneumoniae increases the levels of toll-like receptors 2 and 4 in human airway epithelial cells. Infect. Immun. 77:714-724.
57. Roger, T., C. Froidevaux, D. Le Roy, M. K. Reymond, A. L. Chanson, D. Mauri, K. Burns, B. M. Riederer, S. Akira, and T. Calandra. 2009. Protec-tion from lethal gram-negative bacterial sepsis by targeting Toll-like receptor 4. Proc Natl Acad Sci U S A 106:2348-2352.
58. Saccente, M. 1999. Klebsiella pneumoniae liver abscess, endophthalmitis, and meningitis in a man with newly recognized diabetes mellitus. Clin Infect Dis 29:1570-1571.
59. Sahly, H., R. Podschun, T. A. Oelschlaeger, M. Greiwe, H. Parolis, D. Hasty, J. Kekow, U. Ullmann, I. Ofek, and S. Sela. 2000. Capsule impedes adhesion to and invasion of epithelial cells by Klebsiella pneumoniae. Infect Immun 68:6744-6749.
60. Schembri, M. A., J. Blom, K. A. Krogfelt, and P. Klemm. 2005. Capsule and fimbria interaction in Klebsiella pneumoniae. Infect Immun 73:4626-4633.
61. Schnare, M., G. M. Barton, A. C. Holt, K. Takeda, S. Akira, and R. Medz-hitov. 2001. Toll-like receptors control activation of adaptive immune res-ponses. Nat Immunol 2:947-950.
62. Shimazu, R., S. Akashi, H. Ogata, Y. Nagai, K. Fukudome, K. Miyake, and M. Kimoto. 1999. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189:1777-1782.
63. Stahl, P. D., and R. A. Ezekowitz. 1998. The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol 10:50-55.
64. Steeghs, L., H. de Cock, E. Evers, B. Zomer, J. Tommassen, P. van der Ley, A. Moreno-Borchart, K. Strasser, M. Finkbeiner, and A. Shevchenko. 2001. Outer membrane composition of a lipopolysaccharide-deficient Neisseria meningitidis mutant FREE. EMBO J 20:6937-6945.
65. Tamai, R., X. Deng, and Y. Kiyoura. 2009. Porphyromonas gingivalis with either Tannerella forsythia or Treponema denticola induces synergistic IL-6 production by murine macrophage-like J774.1 cells. Anaerobe 15:87-90.
66. Uhlig, H., S. Mckenzie, S. Hue, C. Thompson, B. Joyce-Shaikh, N. Robin-son, J. Cua, and F. Powrie. 2006. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. J Pediatr Gastroenterol Nutr 42:E56.
67. Um, S. H., D. K. Rhee, and S. Pyo. 2002. Involvement of protein kinase C and tyrosin kinase in tumoricidal activation of macrophage induced by Strep-tococcus pneumoniae type II capsular polysaccharide. Int Immunopharmacol 2:129-137.
68. Wacharotayankun, R., Y. Arakawa, M. Ohta, K. Tanaka, T. Akashi, M. Mori, and N. Kato. 1993. Enhancement of extracapsular polysaccharide syn-thesis in Klebsiella pneumoniae by RmpA2, which shows homology to NtrC and FixJ. Infect Immun 61:3164-3174.
69. Wang, J. S., Y. C. Liu, S. S. J. Lee, M. Y. Yen, Y. S. Chen, J. H. Wang, S. R. Wann, and H. H. Lin. 1998. Primary liver abscess due to Klebsiella pneumo-niae in Taiwan. Clin Infect Dis 26:1434-1438.
70. Wilson, R. P., M. Raffatellu, D. Chessa, S. E. Winter, C. Tükel, and A. J. Bäumler. 2008. The Vi-capsule prevents Toll-like receptor 4 recognition of Salmonella. Cell Microbiol 10:876-890.
71. Wright, S. D., R. A. Ramos, P. S. Tobias, R. J. Ulevitch, and J. C. Mathi-son. 1990. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249:1431-1433.
72. Wu, J., L. Hong, Y. Tsai, H. Chen, W. Chen, and T. Wu. 2006. Mito-gen-activated protein kinase (MAPK) signalling pathways in HepG2 cells in-fected with a virulent strain of Klebsiella pneumoniae. Cell Microbiol 8:1467-1474.
73. Wu, M. F., C. Y. Yang, T. L. Lin, J. T. Wang, F. L. Yang, S. H. Wu, B. S. Hu, T. Y. Chou, M. D. Tsai, C. H. Lin, and S. L. Hsieh. 2009. Humoral Im-munity against capsule polysaccharide protects the host from magA+ Kleb-siella pneumoniae-induced lethal disease by evading Toll-like receptor 4 sig-naling. Infect. Immun. 77:615-621.
74. Ye, P., F. H. Rodriguez, S. Kanaly, K. L. Stocking, J. Schurr, P. Schwar-zenberger, P. Oliver, W. Huang, P. Zhang, J. Zhang, J. E. Shellito, G. J. Bagby, S. Nelson, K. Charrier, J. J. Peschon, and J. K. Kolls. 2001. Re-quirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 194:519-527.
75. Yokochi, T., I. Nakashima, and N. Kato. 1977. Effect of capsular polysac-charide of Klebsiella pneumoniae on the differentiation and functional capaci-ty of macrophages cultured in vitro. Microbiol Immunol 21:601-610.
76. Yokochi, T., I. Nakashima, and N. Kato. 1979. Further studies on generation of macrophages in in vitro cultures of mouse spleen cells and its inhibition by the capsular polysaccharide of Klebsiella pneumoniae. Microbiol Immunol 23:487-499.
77. Yoshida, K., T. Matsumoto, K. Tateda, K. UchIida, S. Tsujimoto, and K. Yamaguchi. 2000. Role of bacterial capsule in local and systemic inflamma-tory responses of mice during pulmonary infection with Klebsiella pneumoniae. J Med Microbiol 49:1003-1010.
78. Zamze, S., L. Martinez-Pomares, H. Jones, P. R. Taylor, R. J. Stillion, S. Gordon, and S. Y. Wong. 2002. Recognition of bacterial capsular polysac-charides and lipopolysaccharides by the macrophage mannose receptor. J Biol Chem 277:41613-41623.
79. Zhang, Z., and H. J. Schluesener. 2006. Mammalian toll-like receptors: from endogenous ligands to tissue regeneration. Cell Mol Life Sci 63:2901-2907.
80. Zheng, Y., P. A. Valdez, D. M. Danilenko, Y. Hu, S. M. Sa, Q. Gong, A. R. Abbas, Z. Modrusan, N. Ghilardi, F. J. de Sauvage, and W. Ouyang. 2008. Interleukin-22 mediates early host defense against attaching and effacing bac-terial pathogens. Nat Med 14:282-289.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45410-
dc.description.abstract社區型克雷伯氏肺炎桿菌(Klebsiella pneumoniae)造成的化膿性肝膿瘍(community acquired pyogenic liver abscess,PLA)合併轉移型併發症是全球重要的新興感染症,近年來在台灣尤其常見,但對其致病機轉及感染後所引發的免疫反應目前尚不完全了解。本實驗使用小鼠巨噬細胞株RAW 264.7,將社區型化膿性肝膿瘍臨床菌株與非組織侵襲性臨床菌株分別刺激細胞後,初步分析細胞TNF-a表現量,發現肝膿瘍菌株容易引發較強的免疫反應。另外,克雷伯氏肺炎桿菌之莢膜(capsule)為一重要的致病因子,magA是克雷伯氏肺炎桿菌 K1血清型莢膜基因群(cps gene locus)中不可或缺的基因,剔除magA將導致細菌無法形成莢膜。因此本實驗也使用magA基因剔除株刺激細胞,並與野生株(wild type)NTUH-K2044刺激細胞後所產生的TNF-a 表現量比較,以了解細菌莢膜對於刺激免疫反應之重要性,結果發現感染劑量高時,NTUH-K2044可刺激細胞產生較多TNF-a,但當感染劑量低時則變為magA基因剔除株刺激細胞產生較多TNF-a,因此對於莢膜本身在刺激寄主免疫反應上所扮演之角色有待後續更進一步的實驗研究。另外透過transwell細胞培養盤進行實驗發現,不論NTUH-K2044或magA基因剔除株都不需與細胞直接接觸即可誘發細胞免疫反應。經由中和抗體(neutralizing antibody)抑制免疫反應實驗,初步認為NTUH- K2044可透過TLR4和CD14而非TLR2刺激細胞產生免疫反應。綜合上述,本實驗結果觀察到化膿性肝膿瘍菌株較非組織侵襲性菌株容易引發細胞免疫反應,由中和抗體阻斷實驗可知此免疫反應應以TLR4和CD14為辨認細菌之受體,而非TLR2。zh_TW
dc.description.abstractKlebsiella pneumoniae is a Gram-negative bacillus belonging to Enterobacteriace, which has become the predominant pathogen causing pyogenic liver abscess (PLA). It has been well known that capsule of K. pneumoniae is an important virulence factor. Previous studies had identified an important gene, magA, in K. pneumoniae strain NTUH-K2044, which is essential for NTUH-K2044 hypermucoviscosity phenotype and serotype K1 capsule biosynthesis. In this study, we analyzed the clinical isolates in National Taiwan University Hospital from 1997~2005, including 60 PLA strains and 32 non-tissue invasive strains and found out that PLA strains induced more TNF-a production than non-tissue invasive strains in vitro. Next, we compared the immune response induced by wild-type NTUH-K2044 with magA deletion mutant. By ELISA detection, in high bacteria dose NTUH-K2044 could induce more TNF-a expression, however the outcome reversed in low bacteria load stimulation. In transwell infection, both strains could induce cell immune response without direct contact with cells. We then used toll-like receptor (TLR)2, TLR4 and CD14 mouse specific neutralizing antibodies to block TNF-a expression. Our results showed that bacterial stimulation was significantly reduced after blocking of TLR4 and CD14 but not TLR2. Thus we conclude that the virulence of PLA strains may relate to severe inflammation outcome in patients and TLR4 and CD14 may be effect cell receptors for K. pneumoniae. However, the immunological characteristic of bacterial capsule need further study.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:18:40Z (GMT). No. of bitstreams: 1
ntu-98-R96445113-1.pdf: 999668 bytes, checksum: a9d762dac7d5c2cf2aafc8deb677d8ea (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書……………………………………………………………………1
誌謝……………………………………………………….……...2
中文摘要……………………………………………………………4
英文摘要……………………………………………………………5
第一章、緒論…………………………………………………….6
第二章、材料與方法
1.細胞培養………………………………………………………..11
2.實驗使用之細菌菌株..………………………………………..11
3.以細菌刺激小鼠巨噬細胞…………………………………....11
4.細胞激素濃度測定.……………………………………………12
5.中和抗體阻擋實驗………………………….………………….13
6.統計分析…………………………..………................14
第三章、結果
1.NTUH-K2044和社區型化膿性肝膿瘍菌株較非組織侵襲性菌株可刺激細胞產生較TNF-a………...….………………………………15
2.決定細菌感染細胞條件設定為感染時間四小時感染劑量為10……15
3.對於細菌莢膜刺激細胞產生免疫反應之角色尚待進一步釐清…..16
4.NTUH-K2044與magA基因剔除株都不需與細胞直接接觸就可刺激細胞產生免疫反應….………………….……………………………….17
5.TLR4與CD14而非TLR2為克雷伯氏肺炎桿菌之細胞受器………….18
第四章、總結與討論………………………………………….……...21
第五章、圖與表………………………………………………….....28
第六章、參考文獻………………………………………………...41

表目錄
表一、本研究使用之菌株………………………………………...28
表二、中和抗體阻擋實驗所用之中和抗體與其陰性對照組……..29
表三、比較肝膿瘍菌株與非組織侵襲性菌株間,或肝膿瘍菌株中K1血清型與非K1血清型間TNF-a表現量差異………………….…………30

圖目錄
圖一、比較造成社區型化膿性肝膿瘍之組織侵襲性菌株和非組織侵襲性菌株刺激細胞產生的TNF-a濃度…………………………………31
圖二、比較造成社區型化膿性肝膿瘍組織侵襲性菌株中,K1血清型與和非K1血清型菌株刺激細胞產生的TNF-a濃度.……..………….32
圖三、NTUH-K2044在不同感染劑量與時間點下刺激細胞產生之TNF-a
dc.language.isozh-TW
dc.subject克雷伯氏肺炎桿菌zh_TW
dc.subject莢膜zh_TW
dc.subject類鐸受體zh_TW
dc.subject細胞激素zh_TW
dc.subjectTLR2zh_TW
dc.subjectTLR4zh_TW
dc.subjectCD14zh_TW
dc.subjectTLR2en
dc.subjectKlebsiella pneumoniaeen
dc.subjectTNF-αen
dc.subjectCD14en
dc.subjectcapsuleen
dc.subjectTLR4en
dc.title克雷伯氏肺炎桿菌藉由TLR4和CD14受體誘發細胞激素表現之研究zh_TW
dc.titleKlebsiella pneumoniae Induced Cytokines Expression Through TLR4 and CD14en
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee嚴仲陽(Jeffrey Jong-Young Yen),鄧麗珍(Lee-Jene Teng)
dc.subject.keyword克雷伯氏肺炎桿菌,莢膜,類鐸受體,細胞激素,TLR2,TLR4,CD14,zh_TW
dc.subject.keywordKlebsiella pneumoniae,capsule,TLR2,TLR4,CD14,TNF-α,en
dc.relation.page49
dc.rights.note有償授權
dc.date.accepted2009-11-23
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
976.24 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved