請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45409完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫啟光 | |
| dc.contributor.author | Szu-Yu Chen | en |
| dc.contributor.author | 陳思妤 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:18:36Z | - |
| dc.date.available | 2009-12-29 | |
| dc.date.copyright | 2009-12-29 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-11-23 | |
| dc.identifier.citation | Abbe E (1873) Beitrage zur Theorie des Mikroskops der microskopischen Wahrnehmung. Schultzes Arch. Mikr. Anat. 9:413.
Agero ALC, Busam KJ, Benvenuto-andrade C, Scope A, Gill M, Marghoob AA, Gonzalez S, Halpern AC (2006) Reflectance confocal microscopy of pigmented basal cell carcinoma. J. Am. Acad. Dermatol. 54:638. Aghassi D, Anderson RR, Gonzalez S (2000) Confocal laser microscopic imaging of actinic keratoses in vivo: a preliminary report. J. Am. Acad. Dermatol. 43:42. Anderson RR, Parish JA (1981) The optics of human skin. J. Invest. Dermatol. 77:13. Armstrong JA, Bloembergen N, Ducuing J, Pershan PS (1962) Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127:1918. Barad Y, Eisenberg H, Horowitz M, Silberberg Y (1997) Nonlinear scanning laser microscopy by third harmonic generation. Appl. Phys. Lett. 70:922. Bertrand C, Corcuff P (1994) In vivo spatio-temporal visualization of the human skin by real-time confocal microscopy. Scanning 16:150. Beyer H (1985) Handbuck der Mikroskopie, 2nd Edition. VEB Verlag Technik, Berlin, DE. Boissy R (2003) Melanosome transfer to and translocation in the keratinocyte. Exp. Dermatol. 12:5. Born M, Wolf E (1999) Principles of Optics, 7th Edition. Cambrideg University Press, Cambridge. Boryczko K, Dzwinel W, Yuen DA (2003) Dynamical clustering of red blood cells in capillary vessels. J. Mol. Model 9:16. Boyd RW (1992) Nonlinear Optics. Academic Press, San Diego, CA, USA. Brenner M, Hearing VJ (2008) The protective role of melanin against UV damage in human skin. J. Photochem. Photobiol. 84:539. Brown E, McKee T, diTomaso E, Pluen A, Seed B, Boucher Y, Jain RK (2003) Dynamic imaging of collagen and its modulation in tumors in vivo using second harmonic generation. Nat. Med. 9:796. Campagnola PJ, Wei MD, Lewis A, Loew LM (1999) High-resolution nonlinear optical imaging of live cells by second harmonic generation. Biophys. J. 77:3341. Canioni L, Rivet S, Sarger L, Barille R, Vacher P, Viosin P (2001) Imaging of Ca2+ intracellular dynamics with a third-harmonic generation microscope. Opt. Lett. 26:515. Chan MC, Liu TM, Tai SP, Sun CK (2005) Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy. J. Biomed. Opt. 10:054006. Chen IH, Chu SW, Sun CK, Cheng PC, Lin BL (2002) Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources. Opt. Quantum Electron. 34:1251. Chen SY, Hsieh CS, Chu SW (2006) Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo. J. Biomed. Opt. 11:054022. Chen SY, Hsu CYS, Sun CK (2008) Epi-third and second harmonic generation microscopic imaging of abnormal enamel. Opt. Express 16:11670. Chen SY, Yu HC, Wang IJ, Sun CK (2009A) Infrared-based third and second harmonic generation imaging of cornea. J. Biomed. Opt. 14:044012. Chen SY, Chen SU, Wu HY, Lee WJ, Liao YH, Sun CK (2009B) In vivo virtual Biopsy of human skin by using noninvasive higher harmonic generation microscopy. Manuscript ID: JSTQE-INV-BIO1-03620-2009, accepted 01-September-2009. Chen SY, Wu HY, Sun CK (2009C) In vivo harmonic generation biopsy of human skin. J. Biomed. Opt. 14 (6). Chu SW, Chen IH, Liu TM, Cheng PC, Sun CK, Lin BL (2001) Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser. Opt. Lett. 26:1909. Chu SW, Chen SY Tsai TH, Liu TM, Lin CY, Tsai HJ, Sun CK (2003) In vivo developmental biology study using noninvasive multi-harmonic generation microscopy. Opt. Express 11:3093. Chu SW, Chen SY, Chern GW, Tsai TH, Chen YC, Lin BL, Sun CK (2004) Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy. Biophys. J. 86:3914. Cicchi R, Sestini S, De Giorgi V, Massi D, Lotti T, Pavone FS (2008) Nonlinear laser imaging of skin lesions. J. Biophoton. 1:62. Clay CO, Millard AC, Schaffer CB, Aus-der-Au J, Tsai PS, Squier JA, Kleinfeld D (2006) Spectroscopy of third-harmonic generation: evidence for resonances in model compounds and ligated hemoglobin. J. Opt. Soc. Am. B 23:932. Corcuff P, Leveque JL (1993) In vivo vision of the human skin with the tandem scanning microscope. Dermatology 186:50. Cormack DH (1993) Essential Histology. J. B. Lippincott Company, Philadelphia. Cox G, Kable E, Jones A, Fraser I, Manconi F, Gorrell MD (2003) 3-dimensional imaging of collagen using second harmonic generation. J. Struct. Biol. 141:53. Dalrymple JC, Brough AK, Monaghan JM (1989) Morphometric analysis of nuclear/cytoplasmic ratios in normal and perineoplastic vulvar skin. Histopathology 14:645. Debarre D, Supatto W, Pena AM, Fabre A, Tordjmann T, Combettes L, Schanne-Klein MC, Beaurepaire E (2006) Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat. Methods 3:47. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73. Dombeck DA, Kasischke KA, Vishwasrao HD, Hyman BT, Webb WW (2003) Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy. Proc. Natl. Acad. Sci. USA 100:7081. Dombeck DA, Blanchard-Desce M, Webb WW (2004) Optical recording of action potentials with second-harmonic generation microscopy. J. Neurosci. 24:999. Driggers RG (2003) Encyclopedia of optical engineering. Marcel Dekker, New York, USA. Fine F, Hansen WP (1971) Optical second harmonic generation in biological systems. Appl. Opt. 10:2350. Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, Voorhees JJ (2002) Mechanisms of photoaging and chronological skin aging. Arch. Dermatol. 138:1462. Fitzpatrick TB, Breathnach AS (1963) Das Epidermal Melanin-Einheit System. Dermatol. Wochenschr 147:481. Fitzpatrick TB (1988) The validity and practicality of sun-reaction skin types I through VI. Arch. Dermatol. 124:869. Fork RL, Greene BI, Shank CV (1981) Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking. Appl. Phys. Lett. 38:671. Forman SB, Ferringer TC, Peckham SJ, Dalton SR, Sasaki GT, Libow LF, Elston DM (2008) Is superficial spreading melanoma still the most common form of malignant melanoma? J. Am. Acad. Dermatol. 58:1013. Franken PA, Hill AE, Peters CW, Weinreich G (1961) Generation of optical harmonics. Phys. Rev. Lett. 7:118. Freinkel RK, Woodley DT (2001) The biology of the skin. Parthenon Publishing, New York, USA. Freund I, Deutsch M (1986) 2nd harmonic microscopy of biological tissue. Opt. Lett. 11:94. Gambichler T, Regeniter P, Bechara FG, Orlikov A, Vasa R, Moussa G, Stucker M, Altmeyer P, Hoffmann K (2007) Characterization of benign and malignant melanocytic skin lesions using optical coherence tomography in vivo. J. Am. Acad. Dermatol. 57:629. Gannaway JN, Sheppard CJR (1978) Second harmonic imaging in the scanning optical microscope. Opt. Quantum Electron. 10:435. Gerger A, Horn M, Samonigg H, Langsenlehner U, Krippl P, Kerl H, Smolle J (2006) Diagnostic virtual histopathology of untreated fresh specimens from squamous cell carcinoma using confocal laser-scanning microscopy. J. Invest. Dermatol. 126:114. Gerger A, Hofmann-Wellenhof R, Samonigg H, Smolle J (2009) In vivo confocal laser scanning microscopy in the diagnosis of melanocytic skin tumors. Brit. J. Dermatol. 160:475. Gonzalez S, Gonzalez E, White WM, Rajadhyaksha M, Anderson RR (1999) Allergic contact dermatitis: Correlation of in vivo confocal imaging to routine histology. J. Am. Acad. Dermatol. 40:708. Gonzalez S, Tannous Z (2002) Real-time, in vivo confocal reflectance microscopy of basal cell carcinoma. J. Am. Acad. Dermatol. 47:869. Gonzalez S, Swindells K, Rajadhyaksha M, Torres A (2003) Changing Paradigms in dermatology: confocal microscopy in clinical and surgical dermatology. Clin. Dermatol. 21:359. Goppert-Mayer M (1931) Ueber Elementarakte mit zwei Quanenspruengen. Ann. Phys. 9:273. Gu M, Gan X, Kisteman A, Xu MG (2000) Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media. Appl. Phys. Lett. 77:1551. Guo Y, Ho PP, Tirksliunas A, Liu F, Alfano RR (1996) Optical harmonic generation from animal tissues by the use of picosecond and femtosecond laser pulses. Appl. Opt. 35:6810. Guo Y, Ho PP, Savage H, Harris D, Sacks P, Schantz S, Liu F, Zhadin N, Alfano RR (1997) Second-harmonic tomography of tissues. Opt. Lett. 22:133. Guo Y, Savage HE, Liu F, Schantz SP, Ho PP, Alfano RR (1999) Subsurface structure of tissues investigated by noninvasive optical second harmonic tomography. Proc. Natl. Acad. Sci. USA 96:10854. Hanson KM, Bardeen CJ (2009) Application of nonlinear optical microscopy for imaging skin. Photochem. Photobiol. 85:33. Haus HA (1984) Waves and fields in optoelectronics. Prentice-Hall Inc., Englewood Cliffs, New Jersey. Havell TC, Hillman D, Lessin LS (2006) Deformability characteristics of sickle cells by microelastimetry. Am. J. Hematol. 4:9. Hompland T, Erikson A, Lindgren M, Lindom T, Davies CD (2008) Second-harmonic generation in collagen as a potential cancer diagnostic parameter. J. Biomed. Opt. 13:054050. Horn M, Gerger A, Wiltgen M, Langsenlehner U, Hofmann-Wellenhof R, Weger W, Richtig E, Samonigg H, Smolle J (2007) Diagnostic image analysis of malignant melanoma in in-vivo confocal laser-scanning microscopy. J. Invest. Dermatol. 127:S91. Hsieh CS, Chen SU, Lee YW, Yang YS, Sun CK (2008) Higher harmonic generation microscopy of in vitro cultured mammal oocytes and embryos. Opt. Express 16:11574. Kaiser W, Garrett CGB (1961) Two-photon excitation in CaF2:Eu3+. Phys. Rev. Lett. 7:229. Kligman LH, Schwartz E, Sapadin AN, Kligman AM (2000) Collagen loss in photoaged human skin is overestimated by histochemistry. Photodermatol. Photoimmunol. Photomed. 16:224. Kobayashi N, Nakagawa A, Muramatsu T, Yamashina Y, Shirai T, Hashimoto MW, Ishigaki Y, Ohnishi T, Mori T (1998) Supranuclear melanin caps reduce ultraviolet induced DNA photoproducts in human epidermis. J. Invet. Dermatol. 110:806. Koehler MJ, Konig K, Elsner P, Buckle R, Kaatz M (2006) In vivo assessment of human skin aging by multiphoton laser scanning tomography. Opt. Lett. 31:2879. Koehler MJ, Hahn S, Preller A, Elsner P, Ziemer M, Bauer A, Konig K, Buckle R, Fluhr JW, Kaatz M (2008) Morphological skin ageing criteria by multiphoton laser scanning tomography: noninvasive in vivo scoring of the dermal fibre network. Exp. Dermatol. 17:519. Kogelnik H, Li T (1966) Laser beams and resonators. Appl. Opt. 5:1550. Konig K, So PTC, Mantulin WW, Gratton E (1997) Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes. Opt. Lett. 22:135. Konig K, Ehlers A, Stracke F, Riemann I (2006) In vivo drug screening in human skin using femtosecond laser multiphoton tomography. Skin Pharmacol. Physol. 19:78. Konig K (2008) Clinical multiphoton tomography. J. Biophoton. 1:13. Kung CT, Chuang CC, Huang YK, Tsai HJ, Sun CK (2007) In vivo continuous observation of vertebrate cardiac valve for congenital heart disease study and drug screening using third harmonic generation microscopy. CLEO/QELS, paper CTuP4, Baltimore, MD, USA. Langley RGB, Fitzpatrick TB, Sober A (1998) Clinical characteristics. In: Cutaneous Melanoma. Quality Medical Publishing, St Louis, USA. Lanza RP (2004) Handbook of Stem Cells. Elsevier Academic Press, Burlington, MA, USA. Lanza RP (2005) Essentials of Stem Cell Biology. Elsevier Academic Press, Burlington, MA, USA. Lee JH, Chen SY, Yu CH, Chu SW, Wang LF, Sun CK, Chiang BL (2009) Noninvasive in vitro and in vivo assessment of epidermal hyperkeratosis and dermal fibrosis in atopic dermatitis. J Biomed. Opt. 14:014008. Leung DYM, Bieber T (2003) Atopic dermatitis. Lancet 361:151. Liu TM, Kartner FX, Fujimoto JG, Sun CK (2005) Multiplying the repetition rate of passive mode-locked femtosecond lasers by an intracavity flat surface with low reflectivity. Opt. Lett. 30:439. Lu H, Edwards C, Gaskell S, Pearse A, Marks R (1996) Melanin content and distribution in the surface corneocyte with skin phototypes. Brit. J. Dermatol. 135:263. MacKie RM (1971) Aid to preoperative assessment of pigmented lesions of skin. Brit. J. Dermatol. 85:232. Maiman TH (1960) Stimulated optical radiation in ruby lasers. Nature 187:493. Makino E, Uchida T, Matsushita Y, Inaoki M, Fujimoto W (2007) Melanocytic nevi clinically simulating melanoma. J. Dermatol. 34:52. Marghoob AA, Charles CA, Busam KJ, Rajadhyaksha M, Lee G, Clark-Loeser L, Halpern AC (2005) In vivo confocal scanning laser microscopy of a series of congenital melanocytic nevi suggestive of having developed malignant melanoma. Arch. Dermatol. 141:1401. Masters BR, So PTC, Gratton E (1997) Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys. J. 72:2405. Matts PJ, Dykes PJ, Marks R (2007) The distribution of melanin in skin determined in vivo. Brit. J. Dermatol. 156:620. Menzies SW, Westerhoff K, Rabinovitz H, Kopf AW, McCarthy WH, Katz B (2000) Surface microscopy of pigmented basal cell carcinoma. Arch. Dermatol. 136:1012. Millard AC, Wiseman PW, Fittinghoff DN, Wilson KR, Squire JA, Muller M (1999) Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source. Appl. Opt. 38:7393. Millard AC, Jin L, Lewis A, Loew LM (2003) Direct measurement of the voltage sensitivity of second-harmonic generation from a membrane dye in patch-clamped cells. Opt. Lett. 28:1221. Minsky M (1957) Microscopy apparatus, U.S. Patent 03013467. Mohler W, Millard AC, Campagnola PJ (2003) Second harmonics generation imaging of endogenous structural proteins. Methods 29:97. Montagna W, Prota G, Kenney JA (1993) Black skin: structure and function. Academic Press, San Diego, CA, USA. Moreaux L, Sandre O, Blanchard-Desce M, Mertz J (2000A) Membrane imaging by simultaneous second-harmonic and two-photon microscopy. Opt. Lett. 25:320. Moreaux L, Sandre O, Mertz J (2000B) Membrane imaging by second-harmonic generation microscopy. J. Opt. Soc. Am. B 17:1685. Muller M, Squier J, Wilson KR, Brakenhoff GJ (1998) 3D microscopy of transparent objects using third-harmonic generation. J. Micro. 191:266. New KC, Petroll WM, Boyde A, Martin L, Corcuff P, Leveque JL, Lemp MA, Cavanagh HD, Jester JV (1991) In vivo imaging of human teeth and skin using real-time confocal microscopy. Arch. Dermatol. Res. 13:369. Nielsen KP, Zhao L, Stamnes JJ, Stamnes K, Moan J (2006) The importance of the depth distribution of melanin in skin for DNA protection and other photobiological processes. J. Photochem. Photobiol. B: Biology 82:194. Noguchi H, Gompper G (2005) Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc. Natl. Acad. Sci. USA 102:14159. Okun MR (1997) Silhouette symmetry - an unsupportable histologic criterion for distinguishing Spitz nevi and compound nevi from malignant melanoma. Arc. Pathol. Lab. Med. 121:48. Oram Y, Turhan O, Aydin NE (1997) Diagnostic value of cytology in basal cell and squamous cell carcinomas. Int. J. Dermatol. 36:156. Ortonne JP, Marks R (1999) Photodamaged skin. Martin Dunitz, London, United Kingdom. Pawley JB (1995) Handbook of Confocal Microscopy, 2nd edition. Plenum Press, New York, USA. Pehamberger H, Steiner A, Wolff K (1987) In vivo epiluminescence microscopy of pigmented skin lesions. J. Am. Acad. Dermatol. 17:571. Peleg G, Lewis A, Linial M, Loew LM (1999) Non-linear optical measurement of membrane potential around single molecules at selected cellular sites. Proc. Natl. Acad. Sci. USA 96:6700. Pellacani G, Cesinaro AM, Grana C, Seidenari S (2004) In vivo confocal scanning laser microscopy of pigmented Spitz nevi: comparison of in vivo confocal images with dermoscopy and routine histopathology. J. Am. Acad. Dermatol. 51:371. Plotnikov SV, Millard AC, Campagnola PJ, Mohler WA (2006) Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres. Biophys. J. 90:693. Prasad PN (2003) Introduction to Biophotonics. John Wiley & Sons, Hoboken, NJ, USA. Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp. Dermatol. 17:1063. Ragan TM, Huang H, So PTC (2003) In vivo and ex vivo tissue application of two-photon microscopy. Biophotonics PT B 361:481. Rajadhyaksha M, Grossman M, Esterowitz D, Webb RH, Anderson RR (1995) In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J. Invest. Dermatol. 104:946. Rajadhyaksha M, Gonzalez S, Zavislan JM, Anderson RR, Webb RH (1999) In vivo confocal scanning laser microscopy of human skin II: Advances in instrumentation and comparison with histology. J. Invest. Dermatol. 113:293. Sakai S, Yamanari M, Miyazawa A, Matsumoto M, Nakagawa N, Sugawara T, Kawabata K, Yatagai T, Yasuno Y (2008) In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin. J. Invest. Dermatol. 128:1641. Selkin B, Rajadhyaksha M, Gonzalez S, Langley RG (2001) In vivo confocal microscopy in dermatology. Dermatol. Clin. 19369-77:ix-x. Shen YR (2002) The Principles of Nonlinear Optics. John Wiley & Sons, Hoboken, NF, USA. Sheppard CJR, Shotton DM (1997) Confocal Laser Scanning Microscopy. BIOS Scientific Publisher, Oxford, UK. Singh S, Bradely LT (1964) Three-photon absorption in naphthalene crystals by laser excitation. Phys. Rev. Lett. 12:612. Squier JA, Muller M, Brakenhoff GJ, Wilson KR (1998) Third harmonic generation microscopy. Opt. Express 3:315. Squier JA, Müller M (2001) High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging. Rev. Sci. Instrum. 72: 2855. Squirrell JM, Wokosin DL, White JG, Bavister BD (1999) Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat. Biotechnol. 17:763. Sturm RA, Box NF, Ramsay M (1998) Human pigmentation genetics: the difference is only skin deep. BioEssays 20:712. Sun CK, Chen CC, Chu SW, Tsai TH, Chen YC, Lin BL (2003) Multi-harmonic generation biopsy of skin. Opt. Lett. 28:2488. Sun CK, Chu SW, Chen SY, Tsai TH, Liu TM, Lin CY, Tsai HJ (2004) Higher harmonic generation microscopy for developmental biology. J. Struct. Bio. 147:19. Supatto W, Debarre D, Moulia B, Brouzes E, Martin JL, Farge E, Beaurepaire E (2005) In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proc. Natl. Acad. Sci. USA 102:1047. Tai SP, Tsai TH, Lee WJ, Shieh DB, Liao YH, Huang HY, Zhang K, Liu HL, Sun CK (2005) Optical biopsy of fixed human skin with backward-collected optical harmonics signals. Opt. Express 13:8231. Tai SP, Lee WJ, Shieh DB, Wu PC, Huang HY, Yu CH, Sun CK (2006) In vivo optical biopsy of hamster oral cavity with epi-harmonic-generation microscopy. Opt. Express 14:6178. Tai SP, Yu CH, Liu TM, Wen YC, Sun CK (2007) In vivo molecular-resonant third harmonic generation microscopy of hemoglobin. CLEO/QELS, paper CTuF4, Baltimore, MD, USA. Takeuchi S, Zhang W, Wakamatsu K, Ito S, Hearing VJ, Kraemer KH, Brash DE (2004) Melanin acts as a potent UVB photosensitizer to cause an atypical mode of cell death in murine skin. Proc. Natl. Acad. Sci. USA 101:15076. Tearney GJ, Brezinski ME, Southern JF, Bouma BE, Boppart SA, Fujimoto GJ (1998) Optical biopsy in human pancreatobiliary tissue using optical coherence tomography. Dig. Dis. Sci. 43:1193. Tsai MR, Chen CH, Sun CK (2009A) Chondrocyte and collagen matrix in sectioned human articular cartilage revealed by third and second harmonic generation microscopy. Photonics West, paper 7183-66, San Jose, CA, USA. Tsai MR, Chiou YW, Sun CK (2009B) Second harmonic generation imaging of the collagen in myocardium for atrial fibrillation diagnosis. Photonics West, paper 7161D-414, San Jose, CA, USA. Tsai TH, Tai SP, Lee WJ, Huang HY, Liao YH, Sun CK (2006) Optical signal degradation study in fixed human skin using confocal microscopy and higher-harmonic optical microscopy. Opt. Express 14:749. Tsang TYF (1995) Optical third-harmonic generation at interfaces. Phys. Rev. A 52:4116. Tsukada K, Sekizuka E, Oshio C, Minamitani H (2001) Direct measurement of erythrocyte deformability in diabetes mellitus with a transparent microchannel capillary model and high-speed video camera system. Microvasc. Res. 61:231. Ulrich M, Maltusch A, Rius-Diaz F, Rowert-Huber J, Gonzalez S, Sterry W, Stockfleth E, Astner S (2008) Clinical applicability of in vivo reflectance confocal microscopy for the diagnosis of actinic keratoses. Dermatol. Surg. 34:610. Veiro JA, Cummins PG (1994) Imaging of skin epidermis from various origins using confocal laser scanning microscopy. Dermatology 189:16. Veres G, Matsumoto S, Nabekawa Y, Midorikawa K (2002) Enhancement of third-harmonic generation in absorbing media. Appl. Phys. Lett. 81:3714. Wang CC (1999) Chromium-doped forsterite laser mode-locking and its applications. Master Thesis, National Taiwan University. Whiteman DC, Parsons PG, Green AC (1999) Determinants of melanocyte density in adult human skin. Arch. Dermatol. Res. 291:511. Wickett RR, Visscher MO (2006) Structure and function of the epidermal barrier. Am. J. Infect. Control 34:S98. Yasui T, Takahashi Y, Fukushima S, Ogura Y, Yamashita T, Kuwahara T, Hirao T, Araki T (2009A) Observation of dermal collagen fiber in wrinkled skin using polarization-resolved second-harmonic-generation microscopy. Opt. Express 17:912. Yasui T, Takahashi Y, Ito M, Fukushima S, Araki T (2009B) Ex vivo and in vivo second-harmonic-generation imaging of dermal collagen fiber in skin: comparison of imaging characteristics between mode-locked Cr:forsterite and Ti: sapphire lasers. Appl. Opt. 48:D88. Yelin D, Silberberg Y (1999) Laser scanning third-harmonic-generation microscopy in biology. Opt. Express 3:169. Yelin D, Oron D, Korkotian E, Segal M, Silberberg Y (2002) Third-harmonic microscopy with a titanium-sapphire laser. Appl. Phys. B 74:S97. Yu CH, Tai SP, Kung CT, Wang IJ, Yu HC, Huang HJ, Lee WJ, Chan YF, Sun CK (2007) In vivo and ex vivo imaging of intra-tissue elastic fibers using third-harmonic-generation microscopy. Opt. Express 15:11167. Yu CH, Tai SP, Kung CT, Lee WJ, Chan YF, Liu HL, Lyu JY, Sun CK (2008) Molecular third-harmonic-generation microscopy through resonance enhancement with absorbing dye. Opt. Lett. 33:387. Zoumi A, Yeh A, Tromberg BJ (2002) Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc. Natl. Acad. Sci. USA 99:11014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45409 | - |
| dc.description.abstract | 倍頻顯微術結合了二倍頻及三倍頻顯微術,並以一鉻貴橄欖石為激發光源,因其同時擁有非侵入性、高解析度及高穿透度等優點,在醫學應用上,為一可用來進行非侵入性虛擬光學切片的新技術。在皮膚裡,三倍頻的信號可來自於物質的非同質性、細胞胞器、脂質、血紅素以及黑色素;而二倍頻信號的主要來源則是第一型的膠原蛋白,基於這些豐富多樣的信號來源,倍頻顯微術可被用來觀察細胞型態或是膠原蛋白纖維結構上的病變,此技術在未來很適合應用於皮膚疾病的臨床診斷。
在本論文中,我們用反射式倍頻顯微術〈背向收集訊號〉來活體外觀察手術過程中所切割下來的皮膚樣本,包括病變及正常的皮膚;另外,我們也第一次使用倍頻顯微術在活體內觀察21位健康受試者前臂的皮膚。在手術皮膚樣本的研究中,三倍頻影像被證實與組織切片有相當好的一致性,且皮膚裡多樣的三倍頻信號來源也可經由三倍頻影像與組織染色切片的比對來一一辨認,此研究不但顯示了倍頻顯微術在診斷各種不同皮膚疾病及分辨良性與惡性病變上的能力,更進一步指出三倍頻顯微影像可以用來進行黑色素的分子影像,及早期診斷與黑色素相關的皮膚病變。除了細胞型態上的資訊,經由在三倍頻影像上進行細胞學分析的結果得知,三倍頻影像還可提供更多有醫學診斷價值的細胞學資訊。 另一方面,在活體內的研究中,我們觀察了21位不同膚色及不同年齡的健康受試者的前臂皮膚,在觀察過程中,除取得倍頻影像外還同時進行了本系統的傷害評估,為減低取影像時因呼吸及心跳所導致的振動,我們設計並使用了用來固定手臂皮膚的設備,如注射器幫浦轉接器及真空幫浦吸盤等。取影像時,在雷射通過一數值孔徑為1.2的物鏡後所量得的平均雷射功率為90mW,經過三十分鐘連續的雷射曝射,甚至在膚色最深的受試者皮膚上也沒有觀察到任何的傷害,由此傷害評估的結果可確認倍頻顯微術在人體實驗上的非侵入性及安全性。相較於活體外的倍頻影像只能取得靜態的資訊,皮膚中的寶貴的動態資訊如血流亦可即時地被活體內的倍頻影像記錄下來,即使有振動的影響,在整個300um的穿透深度內不論是二倍頻還是三倍頻顯微術都能保有次微米的橫向解析度,且相較於過去在福馬林固定的皮膚樣本裡所量得解析度隨著影像深度的變化,活體皮膚內解析度隨著深度衰退的程度較為輕微。基於三倍頻在皮膚表皮層有很強的信號且擁有很高的解析度,活體內取得的三倍頻影象亦可被用來進行細胞學的分析,且分析所得的結果和活體外所取得的資訊一致,展現出其結果在疾病診斷上的重要性。 在活體內觀察不同膚色的皮膚的研究中,經由數值分析及與染熱切片的比對,我們進一步確認了黑色素在三倍頻信號增強及衰減所扮演的主要角色,藉著由黑色素引起的三倍頻信號的增強,三倍頻顯微術可提供在黑色素分子影像及追蹤黑色素相關皮膚病變方面的能力。在皮膚老化的活體內的初期研究中,包含了內在及外在〈光〉老化的探討,經由三倍頻顯微術,我們可以觀察到內在老化所導致的細胞擴大,及光老化所引起的黑色素含量增加,而藉由二倍頻顯微術則可觀察到由內在老化及光老化所導致的各種膠原蛋白纖維結構的變化。 | zh_TW |
| dc.description.abstract | With the ability to achieve noninvasiveness, high resolution, and high penetrability at the same time, Cr:forsterite-based harmonic generation microscopy (HGM), combining both second and third harmonic generation (SHG and THG) modalities, is a new paradigm for in vivo non-invasive virtual optical biopsy. Based on various THG contrasts arising from optical inhomogeneity, cytoplasm organelles, lipids, hemoglobin, and melanin, and SHG contrast arising from type I collagen, HGM shows strong capability for revealing the pathological changes of cellular and collagenous morphology and is a promising tool for future noninvasive diagnosis of skin diseases.
In this thesis, ex vivo epi-HGM (HGM with backward-collection geometry) imaging has been performed on freshly excised normal and lesional human skin specimens, and for the first time, in vivo epi-HGM imaging has been demonstrated on 21 health volunteers’ forearm skin. In the ex vivo studies, epi-THG imaging is shown to possess strong histology consistence and various THG contrasts in human skin have been identified through histology comparisons. The ex vivo studies not only demonstrate the ability of epi-HGM to histopathologically distinguish amongst different skin diseases and between benign and malignant lesions; but also indicate the unique capability of THG imaging for molecular-imaging of melanin and early diagnosing the melanocytic lesions. In addition to revealing the morphological information, the results of the epi-THG-based cytological analysis further show that epi-THG can also provide the cytological information for skin disease diagnosis. In the in vivo studies, health forearm skin of volunteers with different skin colors and different ages has been investigated along with damage evaluation. To reduce the vibrations due to breathing and heart beating, devices like syringe-pump adapter and vacuum-pump sucker have been designed and used for sample stabilization. During 30 minutes of continuous laser excitation with an average power of 90 mW after a NA 1.2 objective, no photodamage was reported even in the heavily-pigmented skin and the noninvasiveness and safety of in vivo epi-HGM biopsy are confirmed. In contrast to the ex vivo imaging, in vivo epi-HGM imaging demonstrates the capability to record valuable dynamic information like blood flow in the dermis. Even with vibrations due to breathing and heart beating, sub-micron lateral resolution is possessed by both epi-SHG and epi-THG modalities throughout a ~ 300um imaging depth and less signal degradation is found in live human skin than in fixed human skin. Based on the strong THG contrasts in epidermis and high spatial resolution of the in vivo epi-THG imaging, the epi-THG-based cytological analysis can also be performed in vivo and the in vivo results shows strong consistence with ex vivo results and diagnostic significance. In the in vivo epi-HGM imaging of differently-pigmented skin, the primary role of melanin in THG enhancement and attenuation has been further confirmed through both statistic analyses and histology comparisons. With the melanin-induced THG enhancement, epi-THG modality demonstrates strong capability for molecular-imaging of melanin and screening melanocytic skin lesions. In the preliminary in vivo study of skin aging, both the intrinsic skin aging and photo-aging have been investigated. Epi-THG modality is shown to be able to reveal the enlargement of keratinocytes in intrinsic-aged skin and increasing content of melanin in photo-aged skin; while epi-SHG modality is shown to have the ability to reveal the changes of collagenous structures in dermis due to both intrinsic aging and photo-aging. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:18:36Z (GMT). No. of bitstreams: 1 ntu-98-F92941004-1.pdf: 6764248 bytes, checksum: 420678b160f88131ec54f09cedbad8c1 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 誌謝 I
Abstract III 摘要 V Contents VII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Optical microscopy in dermatology 1 1.3 Thesis organization 10 Chapter 2 Basic Principles and Properties of Harmonic Generation Microscopy 12 2.1 Conventional optical microscopy 12 2.2 Confocal microscopy 15 2.3 Nonlinear optical microscopy 19 2.3.1 Second harmonic generation microscopy 21 2.3.2 Third harmonic generation microscopy 26 2.4 Comparison of different techniques 31 Chapter 3 Design and Setup of Harmonic Generation Microscopy 33 3.1 Selection of excitation laser 33 3.2 Harmonic generation microscope 40 3.2.1 Basic setup of HGM (for ex vivo imaging) 40 3.2.2 HGM for in vivo imaging 44 3.2.3 Rotatable HGM 48 3.3 Advantages of Cr:F-based HGM for clinical trials 52 3.3.1 High penetrability 53 3.3.2 High spatial resolution 55 3.3.3 Noninvasiveness 56 3.3.4 Rich imaging contrasts 57 Chapter 4 Ex Vivo HGM Studies of Dermatology 60 4.1 Basic dermatology 60 4.2 Ex vivo epi-HGM imaging of mouse skin 63 4.3 Ex vivo epi-HGM imaging of human skin 68 4.3.1 Normal human skin 68 4.3.2 Histology consistency 71 4.3.3 Lesional human skin 76 4.3.3.1 Compound nevus 78 4.3.3.2 Superficial spreading melanoma 82 4.3.3.3 Pigmented basal cell carcinoma 87 4.3.3.4 Comparison 92 Chapter 5 In Vivo HGM Imaging of Human skin 95 5.1 In vivo imaging protocol and damage evaluation 96 5.2 In vivo epi-HGM biopsy of Asian skin 97 5.2.1 Epi-THG contrasts 100 5.2.2 In vivo recorded dynamic information 104 5.2.3 Lateral resolution of in vivo epi-THG microscopy 107 5.3 In vivo cytological analysis by epi-HGM biopsy 109 5.3.1 Inter-nuclear distance 109 5.3.2 Nuclear-to-cytoplasm ratio 110 5.4 In vivo epi-HGM imaging of human skin with different colors 113 5.4.1 Basics of skin pigmentation 115 5.4.2 In vivo epi-HGM biopsy of different skin types 116 5.4.3 Melanin-induced THG enhancement 121 5.4.4 Melanin-induced THG attenuation 124 5.5 In vivo epi-HGM studies of skin aging 126 5.5.1 Intrinsic aging 126 5.5.2 Photo-aging 131 Chapter 6 Summary 135 Reference 138 Appendix I – Publication List 151 Appendix II – Copyright of Figures 162 | |
| dc.language.iso | en | |
| dc.subject | 非侵入性 | zh_TW |
| dc.subject | 倍頻顯微術 | zh_TW |
| dc.subject | 皮膚 | zh_TW |
| dc.subject | 虛擬切片 | zh_TW |
| dc.subject | 非線性光學 | zh_TW |
| dc.subject | harmonic generation microscopy | en |
| dc.subject | noninvasive | en |
| dc.subject | nonlinear optics | en |
| dc.subject | virtual biopsy | en |
| dc.subject | human skin | en |
| dc.title | 臨床倍頻顯微術:皮膚之光學虛擬切片 | zh_TW |
| dc.title | In vivo optical virtual biopsy of human skin by using harmonic generation microscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 高甫仁,黃義侑,林頌然,廖怡華,宋孔彬,朱士維 | |
| dc.subject.keyword | 倍頻顯微術,皮膚,虛擬切片,非線性光學,非侵入性, | zh_TW |
| dc.subject.keyword | harmonic generation microscopy,human skin,virtual biopsy,nonlinear optics,noninvasive, | en |
| dc.relation.page | 170 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-11-23 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 6.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
