請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45393完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林啟萬 | |
| dc.contributor.author | Da-Shin Wang | en |
| dc.contributor.author | 王大欣 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:17:46Z | - |
| dc.date.available | 2009-12-29 | |
| dc.date.copyright | 2009-12-29 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-12-10 | |
| dc.identifier.citation | 1. R. A. Ferrell, 'Angular dependence of the characteristic energy loss of electrons passing through metal foils,' Phys. Rev. 101, 554-563 (1956).
2. R. A. Ferrell, and J. J. Quinn, 'Characteristic energy loss of electrons passing through metal foils: momentum-exciton model of plasma oscillations,' Phys. Rev. 108, 570-575 (1957). 3. D. Pines, 'Collective energy losses in solids,' Rev. Mod. Phys. 28, 184-198 (1956). 4. C. Kittel, Introduction to solid state physics (John Wiley & Sons, 2005). 5. C. J. Powell, and J. B. Swan, 'Origin of the characteristic electron energy losses in aluminum,' Phys. Rev. 115, 869 - 875 (1959). 6. R. H. Ritchie, 'Plasma losses by fast electrons in thin films,' Phys. Rev. 106, 874-881 (1957). 7. R. A. Ferrell, 'Predicted radiation of plasma oscillations in metal films,' Phys. Rev.111, 1214-1222 (1958). 8. E. A. Stern, and R. A. Ferrell, 'Surface plasma oscillations of a degenerate electron gas,' Phys. Rev. 120, 130 - 136 (1960). 9. J. A. S. Barker, 'Direct optical coupling to surface excitations,' Phys. Rev. Lett. 28, 892 -895 (1972). 10. J. M. Elson, and R. H. Ritchie, 'Photon interactions at a rough metal surface,' Phys. Rev. B 4, 4129-4138 (1971). 11. E. Hecht, Optics (Addison-Wesley, 1998). 12. A. Otto, 'Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection ' Z. Phys. 216, 398-410 (1968). 13. G. Mie, 'Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,' Ann. Phys. 25, 377 (1908). 14. U. Kreibig, and M. Vollmer, Optical properties of metal clusters (Springer-Verlag, Berlin, 1995). 15. J. D. Jackson, Classical electrodynamics (Wiley, 1998). 16. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, 'Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,' J. Phys. Chem. B 110, 7238-7248 (2006). 17. R. Gans, 'Über die Form ultramikroskopischer Silberteilchen,' Ann. Physik 47, 270 (1915). 18. S. Link, M. B. Mohamed, and M. A. El-Sayed, 'Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,' J. Phys. Chem. B 103, 3073-3077 (1999). 19. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin, 1988). 20. E. Kretschmann, 'Die bestimmung optisher konstanten von metallen durch anregung von oberflachenplasmaschwingungen,' Z. Phys. 241, 313-324 (1971). 21. R. M. A. Azzam, and N. M. Bashara, Ellipsometry and polarized light (North Holland 1987). 22. H. G. Tompkins, A user's guide to ellipsometry (Academic Press, 1993). 23. G. R. Fowles, Introduction to modern optics (Dover Publications, 1989). 24. G. M. Mayer, 'Uber elementarakte mit zwei quantensprungen,' Ann. Phys. (Leipzig) 5, 273-294 (1931). 25. P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, 'Two-photon excitation fluorescence microscopy,' Annu. Rev. Biomed. Eng. 2, 399-429 (2000). 26. W. Denk, J. H. Strickler, and W. W. Webb, '2-Photon Laser Scanning Fluorescence Microscopy,' Science 248, 73-76 (1990). 27. A. Ulman, An Introduction to ultrathin organic films: from Langmuir--Blodgett to self--Assembly (Academic Press 1991). 28. A. Ulman, 'Formation and structure of Sself-Assembled monolayers,' Chem. Rev. 96, 1533-1554 (1996). 29. R. Burns, Immunochemical Protocols (Humana Press, 2004). 30. T. Hauck, A. Ghazani, and W. Chan, 'Assessing the Effect of Surface Chemistry on Gold Nanorod Uptake, Toxicity, and Gene Expression in Mammalian Cells,' Small 4, 153-159 (2008). 31. W. H. Weber, and S. L. McCarthy, 'Surface-plasmon resonance as a sensitive optical probe of metal-film properties,' Phys. Rev. B 12, 5643 - 5650 (1975). 32. C. F. Eagen, and W. H. Weber, 'Modulated surface-plasmon resonance for adsorption studies,' Phys. Rev. B 19, 5068 - 5082 (1979). 33. L. Ward, The Optical Constants of Bulk Materials and Films (IOP Publishing, London, 1994). 34. T. C. Choy, Effective medium theory: principles and applications (Oxford University Press, New York, 1999). 35. A. Einstein, 'Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes,' Ann. Phys. 33, 1275-1298 (1910). 36. J. C. M. Garnett, 'Colours in metal glasses and in metallic films,' Trans. R. Soc. London, Ser.A 203, 385-420 (1904). 37. A. Pinchuk, A. Hilger, G. v. Plessen, and U. Kreibig, 'Substrate effect on the optical response of silver nanoparticles,' Nanotechnology 15, 1890-1896 (2004). 38. T. Okamoto, I. Yamaguchi, and T. Kobayashi, Opt. Lett. 25, 372-374 (2000). 39. E. Hutter, J. H. Fendler, and D. Roy, 'Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol ' J. Phys. Chem. B 105, 11159-11168 (2001 ). 40. E. S. Kooij, H. Wormeester, E. A. M. Brouwer, E. v. Vroonhoven, A. v. Silfhout, and B. Poelsema, 'Optical Characterization of Thin Colloidal Gold Films by Spectroscopic Ellipsometry,' Langmuir 18, 4401-4413 (2002). 41. H. -L. Zhang, S. D. Evans, and J. R. Henderson, 'Spectroscopic Ellipsometric Evaluation of Gold Nanoparticle Thin Films Fabricated by Layer-by-Layer Self-Assembly,' Adv. Mater. 15, 531-534 (2003). 42. P. B. Johnson, and R. W. Christy, 'Optical constants of the noble metals,' Phys. Rev. B 6, 4370-4379 (1972). 43. A. Pinchuk, and G. Schatz, 'Anisotropic polarizability tensor of a dimer of nanospheres in the vicinity of a plane substrate,' Nanotechnology 16, 2209-2217 (2005). 44. L. B. Scaffardi, and J. O. Tocho, 'Size dependence of refractive index of gold nanoparticles,' Nanotechnology 17, 1309-1315 (2006). 45. P. Stoller, V. Jacobsen, and V. Sandoghdar, 'Measurement of the complex dielectric constant of a single gold nanoparticle,' Opt. Lett. 31, 2474-2476 (2006). 46. W. M. Mullett, E. P. C. Lai, and J. M. Yeung, 'Surface plasmon resonance-based immunoassays,' Methods 22, 77-91 (2000). 47. L. A. Lyon, M. D. Musick, and M. J. Natan, 'Colloidal Au-enhanced surface plasmon resonance immunosensing,' Anal. Chem. 70, 5177-5183 (1998). 48. L. A. Lyon, D. J. Pena, and M. J. Natan, 'Surface plasmon resonance of Au colloid-modified Au films:particle size dependence,' J. Phys. Chem. B 103, 5826-5831 (1999). 49. D. Beaglehole, and O. Hunderi, 'Study of the Interaction of Light with Rough Metal Surfaces. I. Experiment,' Phys. Rev. B 2, 309-321 (1970). 50. O. Hunderi, and D. Beaglehole, 'Study of the Interaction of Light with Rough Metal Surfaces. II. Theory,' Phys. Rev. B 2, 321 - 329 (1970). 51. S. Chah, M. R. Hammond, and R. N. Zare, 'Gold nanoparticles as a colorimetric sensor for protein conformational changes,' Chem. Biol. 12, 323-328 (2005). 52. S. Ohba, H. Hosomi, and Y. Ito, 'In situ X-ray observation of pedal-like conformational change and dimerization of trans-cinnamamide in cocrystals with phthalic acid,' J. Am. Chem. Soc 123, 6349-6352 (2001). 53. X. Zhu, D. Yan, and Y. Fang, 'In situ FTIR spectroscopic study of the conformational change of isotactic polypropylene during the crystallization process.,' J. Phys. Chem. B 105, 12461-12463 (2001). 54. H. R. Petty, and B. R. Ware, 'Macrophage response to concanavalin A: Effect of surface crosslinking on the electrophoretic mobility distribution,' Proc. Natl. Acad. Sci. USA 76, 2278-2282 (1979). 55. Gerald M. Edelman, Bruce A. Cunningham, J. George N. Reeke, Joseph W. Becker, Myron J. Waxdal, and J. L. Wang, 'The Covalent and Three-Dimensional Structure of Concanavalin A,' Proc. Natl. Acad. Sci. USA 69, 2580-2584 (1972). 56. D. T. D. Senear, 'Thermodynamic studies of concanavalin a dimer-tetramer equilibria,' Biophys. J. 32, 433-436 (1980). 57. V. Lioubimov, A. Kolomenskii, A. Mershin, D. V. Nanopoulo, and H. A. Schuessler, 'Effect of varying electric potential on surface-plasmon resonance sensing,' Appl. Opt. 43, 3426-3432 (2004). 58. S. A. Kim, K. M. Byun, J. Lee, J. H. Kim, D.-G. A. Kim, H. Baac, M. L. Shuler, and S. J. Kim, 'Optical measurement of neural activity using surface plasmon resonance,' Opt. Lett. 33, 914-916 (2008). 59. A. Mooradian, 'Photoluminescence of metals,' Phys. Rev. Lett. 22, 185-187 (1969). 60. G. T. Boyd, Z. H. Yu, and Y. R. Shen, 'Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,' Phys. Rev. B 33, 7923-7936 (1986). 61. G. T. Boyd, T. Rasing, J. R. R. Leite, and Y. R. Shen, 'Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,' Phys. Rev. B 30, 519-526 (1984). 62. D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, 'Multiphoton plasmon-resonance microscopy,' Opt. Express 11, 1385-1391 (2003). 63. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, 'In vitro and in vivo two-photon luminescence imaging of single gold nanorods,' Proc. Natl. Acad. Sci. USA 102, 15752-15756 (2005). 64. R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, 'Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,' Nano Lett. 5, 1139-1142 (2005). 65. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, 'Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,' Nano Lett. 7, 941-945 (2007). 66. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, 'The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,' Chem. Phys. Lett. 317, 517-523 (2000). 67. N. R. Jana, L. Gearheart, and C. J. Murphy, 'Wet chemical synthesisof high aspect ratio cylindrical gold nanorods,' J. Phys. Chem.B 105, 4065-4067 (2001). 68. C. J. Orendorff, and C. J. Murphy, 'Quantitation of metal content in the silver-assisted growth of gold nanorods,' J. Phys. Chem. B 110, 3990-3994 (2006). 69. C. K. Chen, T. F. Heinz, D. Ricard, and Y. R. Shen, 'Surface-enhanced second-harmonic generation and Raman scattering,' Physical Review B 27, 1965 (1983). 70. S. Eustis, and M. El-Sayed, 'Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study,' J. Phys. Chem. B 109, 16350–16356 (2005). 71. A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Barcia-Vidal, 'Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,' Phys. Rev. B 73, 155404 (2006). 72. K. Imura, T. Nagahara, and H. Okamoto, 'Plasmon mode imaging of single gold nanorods,' J. Am. Chem.Soc 126, 12730-12731 (2004). 73. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, 'Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,' Phys. Rev. Lett. 95, 267405 (2005). 74. J. Park, A. Estrada, K. Sharp, K. Sang, J. A. Schwartz, D. K. Smith, C. Coleman, J. D. Payne, B. A. Korgel, A. K. Dunn, and J. W. Tunnell, 'Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells,' Opt. Express 16, 1590-1599 (2008). 75. L. Bickford, J. Sun, K. Fu, N. Lewinski, V. Nammalvar, J. Chang, and R. Drezek, 'Enhanced multi-spectral imaging of live breast cancer cells using immunotargeted gold nanoshells and two-photon excitation microscopy,' Nanotechnology 19, 315102 (2008). 76. L. Tong, and J.-X. Cheng, 'Gold nanorod-mediated photothermolysis induces apoptosis of macrophages via damage of mitochondria,' Future Medicine 4, 265-276 (2009). 77. T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, and A. Wei, 'Hyperthermic effects of gold nanorods on tumor cells,' Future Medicine 2, 125-132 (2007). 78. J. Yuqiang, H. Noriko Nishizawa, I. Kohei, O. Hiromi, M. Ko, and S. Ryuichi, 'Bioimaging with Two-photon-induced luminescence from triangular nanoplates and nanoparticle aggregates of gold,' Adv. Mater. 21, 2309-2313 (2009). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45393 | - |
| dc.description.abstract | In recent years, surface plasmon resonance (SPR)-based sensor has gained much popularity as a real-time and non-labeling technique to study the interaction between ligands and receptors immobilized on a solid support. The growing applications in biomedical research,in the meanwhile, stimulate the study of underlying factors that affect the SPR signal shifts. The reduction of a gross SPR curve shift to simple physical parameters reveals more physical meanings for the studied molecules. In general, the planar SPR sensor can be viewed as isotropic and homogeneous layers separated by mathematically sharp boundaries. The reflectance can be solved within the framework of the macroscopic Maxwell equations if a local approximation of dielectric constant for each layer can be given. However, the dielectric constant for a nano-scale layer (<30nm) can not be unambiguously referred to as a constant and the exact value may vary from samples to samples, depending on the way of preparations. In most cases where SPR is applied, such as immunoassay, the binding analytes form a discontinuous, inhomogeneous layer on the sensor surface, with dielectric constant hard to be defined. Therefore, in this thesis, the dielectric constant of a discontinuous thin film is first studied in a simple system―a monolayer of distributed gold nanoparticles. The dielectric constant of the nanoparticle monolayer is highly related to its density, and a mathematical description—modified MG model(Maxwell-Garnett effective medium model)— is formulated in this thesis, which gives quite close results to the experiment data. At the wavelength 530nm, both the experiment and calculations indicate the light is in resonance with the gold nanoparticle monolayer at Vr~20.8%.
The modified MG model also predicts the enhancement of SPR immunosensing by gold nanoparticles as the experimental data has shown in the past. As gold nanoparticle monolayer has drastically different optical property from bulk gold, the attachment of the analytes with gold nanoparticles will induce much larger SPR perturbation. Since gold nanoparticles can be easily functionalized as immunoprobes, the gold nanoparticle-enhanced SPR immunosensing can be an ideal detection tool for analytes of small molecules or with ultra-low concentrations. In addition, through the labeling of gold nanoparticle, the analyte surface concentration can be inferred from the SPR angle shift using the modified MG model; it is an improvement over conventional SPR methods in which only external analyte concentration can be obtained using an established standard curve. Another scope in this thesis goes beyond the most popular use of SPR as immunoassay; the basic photoluminescence property of gold nanoparticle is studied. Some gold nanoparticles, such as gold nanorods, emit strong photoluminescence under two-photon excitation The efficient, non-bleaching and non-blinking photoluminescence makes gold nanorods an ideal probe or contrast agent in imaging. As expected, the two photoluminescence of gold nanorods is most efficient when the excitation light is in resonance with the surface plasmon mode of gold nanorods. The use of the gold nanorod as an imaging probe in cells is demonstrated and possible use as a local dynamic sensor is also discussed. The thesis is wrapped up with some lingering problems and prospective applications of SPR technique to some biological systems, such as membrane phase transition and membrane protein conformational changes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:17:46Z (GMT). No. of bitstreams: 1 ntu-98-D94548017-1.pdf: 4621805 bytes, checksum: ec4c507bbbfc2c539ae8f1f91133c28a (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Table of Contents
List of Tables..........................................vii List of Figures.........................................vii Chapter 1 Introduction..............................................1 Chapter 2 Theoretical Background of Plasmon Resonance.....3 2.1 The Free Electron Approximation.......................3 2.2. Plasmon Resonance in Metal Films.....................3 2.2.1 Bulk Plasma Resonance...............................4 2.2.2 Surface Plasmon Resonance..........................5 2.2.3 Dispersion Relation.................................7 2.2.4 Optical Excitation of Surface Plasmons............8 2.3 Plasmon Resonance in Metal Nanoparticles............................................11 2.3.1 Spherical Nanoparticles............................11 2.3.2Nanorods............................................14 Chapter 3 Experimental Methods...........................17 3.1 Prism-Coupled Surface Plasmon Resonance..............17 3.2 Null Ellipsometry....................................20 3.3 Two-Photon Excited Microscopy........................24 Chapter 4 Sample Preparations............................26 4.1 Surface Modification by Self-Assembly Techniques.....26 4.2 Deposition of Gold Nanoparticle Monolayer............27 4.3 Preparation of Immunogold Probes.....................28 4.3.1 Gold Nanoparticles.................................28 4.3.2 Gold Nanorods......................................29 Chapter 5 Surface Plasmon Sensor-Simulation and Design...30 5.1 Simulation Methods...................................30 5.1.1 Multi-layered Fresnel Equation ....................30 5.1.2 The Lorentzian Approximation.......................31 5.1.3 A Database of Material Optical Constant............33 5.2 Discontinuous Thin Films and Effective Medium Approximation............................................34 5.2.1 Effective Medium Approximation ....................34 5.2.2 Substrate Effects..................................35 5.3 The Optical Constant of Discontinuous Gold Nanoparticle Layers......................................38 5.3.1 Methods............................................38 5.3.2 Results and Discussions............................41 Chapter 6 Gold Nanoparticle- Enhanced Surface Plasmon Resonance(SPR) Biosensing .............................44 6.1 The limits of SPR biosensing.........................44 6.2 Gold Nanoparticle-Enhanced SPR Sensing ............. 44 6.3 A Quantitative Estimate of the SPR Enhancement by Gold Nanoparticles- in Comparison with Experimental Results..................................................47 Chapter 7 Emerging Biomedical Applications of Planar SPR Sensors..................................................55 7.1 Conformational Changes of Biomolecules...............55 7.2 Ionic Flux at the Interface..........................57 Chapter 8 Two-Photon Luminescence of Gold Nanoparticle and the Possible Biomedical Applications.....................62 8.1 Photoluminescence from Metal Surfaces................62 8.2 Photoluminescence Enhanced by Surface Plasmons.......62 8.2.1 Strong TPL of Gold Nanorods........................62 8.2.2 Measurement of TPL Efficiency of Various Gold Nanorods.................................................63 8.2.3 Estimation of TPL Efficiency of Various Gold Nanorods.................................................68 8.2.4 Discussion.........................................70 8.3 The Two-Photon Luminescence Spectrum of Gold Nanorods.................................................71 8.4 Gold Nanorods as a Two-Photon Imaging Probe..........74 8.5 Possible Use of Gold Nanorods as a Local Senor.......76 Chapter 9 Conclusions and Perspectives...................79 9.1 Conclusions..........................................79 9.2 Future Works....................................................80 Appendix.................................................82 Reference................................................84 | |
| dc.language.iso | en | |
| dc.subject | 生物感測 | zh_TW |
| dc.subject | 雙光子激發奈米金桿螢光 | zh_TW |
| dc.subject | 奈米金粒子 | zh_TW |
| dc.subject | 表面電漿共振 | zh_TW |
| dc.subject | gold nanoparticle | en |
| dc.subject | Biosensing | en |
| dc.subject | surface plasmon resonance | en |
| dc.subject | two-photon luminescence of gold nanorods | en |
| dc.title | 表面電漿子於生醫應用之分析-從感測定量到細胞影像 | zh_TW |
| dc.title | An Analysis on the Biomedical Use of of Surface Plasmon Resonance: From Immunoassay to Cellular Imaging | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李君浩,王俊凱,魏培坤,周晟,許富銀 | |
| dc.subject.keyword | 生物感測,表面電漿共振,奈米金粒子,雙光子激發奈米金桿螢光, | zh_TW |
| dc.subject.keyword | Biosensing,surface plasmon resonance,gold nanoparticle,two-photon luminescence of gold nanorods, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-12-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 4.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
