請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45380完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張美惠(Mei-Hwei Chang),陳惠玲(Hui-Ling Chen) | |
| dc.contributor.author | Chun-Hsien Yu | en |
| dc.contributor.author | 余俊賢 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:17:06Z | - |
| dc.date.available | 2011-03-12 | |
| dc.date.copyright | 2010-03-12 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-12-24 | |
| dc.identifier.citation | 1. Agarwal S, Holton KL, Lanza R. Efficient differentiation of functional hepatocytes from human embryonic stem cells. Stem Cells 2008; 26: 1117–27.
2. Alison MR, Poulson R, Jeffrey R, et al. Hepatocytes from non-hepatic adult stem cells. Nature 2000;406:257. 3. Alonso EM, Superina RA, Whitington PF. Fulminant hepatitis and acute liver failure. In: Kelly, D. A., ed. Diseases of the Liver and Biliary System in Children. London: Blackwell Science Ltd.; 1999:77-94. 4. Aw MM., Mitry RR, Hughes RD, Dhawan A. Serum hepatocyte growth factor and vascular endothelial growth factor in children with acute liver failure. J. Pediatr. Gastroenterol. Nutr. 44:224-227; 2007. 5. Baumgartner D, LaPlante-O’Neill PM, Sutherland DE, Najarian JS. Effect of intrasplenic injection of hepatocyte culture supernatants on D-galactosamine-induced liver failure. Eur. Surg. Res. 15:129-135; 1983. 6. Benten D, Kumaran V, Joseph B, Schattenberg J, Popov Y, Schuppan D, Gupta S. Hepatocyte transplantation activates hepatic stellate cells with beneficial modulation of cell engraftment in the rat. Hepatology 42:1072-1081; 2005. 7. Bilir BM, Guinette D, Karrer F, Kumpe DA, Krysl J, Stephens J, McGavran L, et al. Hepatocyte transplantation in acute liver failure. Liver Transplant 2000;6:32-40. 8. Braun KM, Degen JL, Sandgren EP. Hepatocyte transplantation in a model of toxin-induced liver disease: variable therapeutic effect during replacement of damaged parenchyma by donor cells. Nat. Med. 6:320-326; 2000. 9. Chen HL, Chang CJ, Kong MS, Hunag FC, Lee HC, Lin CH, Liu CC, Lee IH, Wu TC, Wu SF, Ni YH, Hsu HY, Chen DS, Chang MH. Pediatric fulminant hepatic failure in endemic areas of hepatitis B infection: 15 years after universal hepatitis B vaccine. Hepatology 39:58-63; 2004. 10. Chojkier M. Toxicity of pyrrolizidine alkaloids. J. Hepatol. 39:437-446; 2003. 11. Clouston AD, Powell EE, Walsh MJ, Richardson MM, Demetris AJ, Jonsson JR. Fibrosis correlates with a ductular reaction in hepatitis C: roles of impaired replication, progenitor cells and steatosis. Hepatology 41:809-818; 2005. 12. Cutrin JC, Perrelli MG, Cavaleri B, et al. Microvascular dysfunction induced by reperfusion injury and protective effect of ischemic preconditioning. Free Rad Biol Med 2002;33:1200-1208. 13. Dabeva MD, Shafritz DA. Activation, proliferation, and differentiation of progenitor cells into hepatocytes in the D-galactosamine model of liver regeneration. Am. J. Pathol. 143:1606-1620; 1993. 14. Dagher I, Boudechiche L, Branger J et al. Efficient hepatocyte engraftment in a nonhuman primate model after partial portal vein embolization. Transplantation 2006; 82: 1067–73. 15. De Vree JM, Ottenhoff R, Bosma PJ, Smith AJ, Aten J, Oude Elferink RP. Correction of liver disease by hepatocyte trans-plantation in a mouse model of progressive familial intrahepatic cholestasis. Gastroenterology 2000; 119: 1720–30. 16. Demetriou AA, Reisner A, Sanchez J, Levenson SM, Moscioni AD, Chowdhury JR. Transplantation of microcarrier-attachedhepatocytes into 90% partially hepatectomized rats. Hepatology 1988; 8: 1006–9. 17. Dhawan A, Mitry RR, Hughes RD et al. Hepatocyte transplantation for inherited factor VII deficiency. Transplantation 2004; 78: 1812–4. 18. Eleazar JA, Memeo L, Jhang JS. Progenitor cell expansion: an important source of hepatocyte regeneration in chronic hepatitis. Hepatology 2004; 41: 983-91. 19. Evarts RP, Nagy P, Marsden E, Thorgeirsson SS. A precursor-product relationship exists between oval cells and hepatocytes in rat liver. Carcinogenesis 1987;8:1737-1740. 20. Falkowski O, An HJ, Ianus IA, Chiriboga L, Yee H, West AB, Theise ND. Regeneration of hepatocyte ‘buds’ in cirrhosis from intrabiliary stem cells. J. Hepatol. 39:357-364; 2003. 21. Farber E. Similarities of the sequence of the early histological changes induced in the liver of the rat by ethionine, 2-acetylaminofluorene, and3_-methyl-4-dimethylaminoazobenzene. Cancer Res 1956;16:142-148. 22. Fausto N, Campbell JS. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech. Dev. 120:117-130; 2003. 23. Fausto N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology 39:1477-1487; 2004. 24. Fisher RA, Strom SC. Human hepatocyte transplantation: worldwide results. Transplantation 82:441-449; 2006. 25. Fitzpatrick E, Mitry RR, Dhawan A. Human hepatocyte transplantation: state of the art. J Intern Med 2009;266:339-357. 26. Fox IJ, Chowdhury JR, Kaufman SS, et al. Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. New Engl J Med 1998;338:1422-1426. 27. Fukuda K, Sugihara A, Nakasho K, Tsujimura T, Yamada N, Okaya A, Sakagami M, Terada N. The origin of biliary ductular cells that appear in the spleen after transplantation of hepatocytes. Cell Transplant. 13:27-33; 2004. 28. Gordon GJ, Coleman WB, Grisham JW. Liver regeneration in rats with retrorsine-induced hepatocellular injury proceeds through a novel cellular response. Am. J. Pathol. 156:607-619; 2000. 29. Grossman M, Rader DJ, Muller DWM, et al. A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolemia. Nat Med 1995;1:1148-1154. 30. Gupta S, Rajvanshi P, Malhi H, Slehria S, Sokhi RP, Vasa SRG, Dabeva MD, Shafritz DA, Kerr A. Cell transplantation causes loss of gap junctions and activates GGT expression permanently in host liver. Am. J. Physiol. 279:G815-G826; 2000. 31. Gupta S, Rajvanshi P, Sokhi RP, Slehria S, Yam A, Kerr A, Novikoff PM. Entry and integration of transplanted hepatocytes in liver plates occur by disruption of hepatic sinusoidal endothelium. Hepatology 29:509-519; 1999. 32. Gupta S, Yerneni PR, Vemuru RP, Lee CD, Yellin EL, Bhargava KK. Studies on the safety of intrasplenic hepatocyte transplantation: relevance to ex vivo gene therapy and liver repopulation in acute hepatic failure. Hum Gene Ther 1993;4:249-257. 33. Horslen SP, Fox IJ. Hepatocyte transplantation. Transplantation 2004; 77: 1481-6. 34. Horslen SP, McCowan TC, Goertzen TC et al. Isolated hepatocyte transplantation in an infant with a severe urea cycle disorder. Pediatrics 2003; 111: 1262–7. 35. Huang G, Diakur J, Xu Z, Wiebe LI. Asialoglycoprotein receptor-targeted superparamagnetic iron oxide nanoparticles. Int J Pharm 2008; 360: 197–203. 36. Ikeda S, Mitaka T, Harada K, et al. Proliferation of rat small hepatocytes after long-term cryopreservation. J Hepatol 2002;37:7-14. 37. Ito M, Nagata H, Yamamoto T, Yoshihara D, Fox IJ, Miyakawa S. Intrasplenic Hepatocyte Transplantation Prolonged the Survival in Nagase Analbuminemic Rats With Liver Failure Induced by Common Bile Duct Ligation. Cell Transplant. 16:547-553; 2007. 38. Jaeschke H. Molecular mechanisms of hepatic ischema-reperfusion injury and preconditioning. Am J Physiol Gastrointest Liver Physiol 2003;284:G15-G26. 39. Jamal H, Weglarz T, Sandgren EP. Cryopreserved mouse hepatocytes retain regenerative capacity in vivo. Gastroenterology 2000;118:390-394. 40. Joseph B, Kumaran V, Berishvili E, Bhargava KK, Palestro CJ, Gupta S. Monocrotaline promotes transplanted cell engraftment and advances liver repopulation in rats. Hepatology 44:1411-1420; 2006. 41. Joseph B, Malhi H, Bhargava KK, Palestro CJ, McCuskey RS, Gupta S. Kupffer cells participate in early clearance of syngeneic hepatocytes transplanted in the rat liver. Gastroenterology 123:1677-1685; 2002. 42. Jungermann K. Metabolic zonation of liver parenchyma. Semin. Liver Dis. 8:329-341; 1998. 43. Kabayashi N, Fujiwara T, Westerman KA, et al. Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science 2000;287:1258-1262. 44. Katoonizadeh A, Nevens F, Verslype C, Pirenne J, Roskams T. Liver regeneration in acute severe liver impairment: a clinicopathological correlation study. Liver Int. 26:1225-1233; 2006. 45. Kelly DA. Managing liver failure. Postgrad Med J 2002;78:660-667. 46. Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Zenke M, Scholer HR. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 2008;454:646-650. 47. Kim TH, Mars WM, Stolz DB, Michalopoulos GK. Expression and activation of pro-MMP-2 and pro-MMP-9 during rat liver regeneration. Hepatology 30:75-82; 2000. 48. Knittel T, Mehde M, Kobold D, Saile B, Dinter C, Ramadori G. Expression patterns of matrix metalloproteinases and their inhibitors in parenchyma and non-parynchymal cells of rat liver: regulation by TNF-q and TGF-b1. J. Hepatol. 30:48-60; 1999. 49. Kobayashi N, Fujiwara T, Westerman KA, Inoue Y, Sakaguchi M, Noguchi H, Miyazaki M, Cai J, Tanaka N, Fox IJ, Leboulch P. Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science 287:1258-1262; 2000. 50. Kocken JM, Borel Rinkes IH, Bijma AM et al. Correction of an inborn error of metabolism by intraportal hepatocyte transplantation in a dog model. Transplantation 1996; 62: 358–64. 51. Koenig S, Krause P, Schmidt TK et al. Irradiation as preparative regimen for hepatocyte transplantation causes prolonged cell cycle block. Int J Radiat Biol 2008; 84: 285–98. 52. Koenig S, Stoesser C, Krause P, Becker H, Markus PM. Liver repopulation after hepatocellular transplantation: integration and interaction of transplanted hepatocytes in the host. Cell Transplant. 14:31-40; 2005. 53. Korbling M, Katz RL, Khanna A, et al. Hepatocytes and epithelial cells of donor origin in recipients of peripheral blood stem cells. New Engl J Med 2002; 346: 738-746. 54. Laconi E, Oren R, Mukhopadhyay DK, Hurston E, Laconi S, Pani P, Dabeva MD, Shafritz DA. Long term, near total liver replacement by transplantation of hepatocytes in rats treated with retrorsine. Am. J. Pathol. 158:319-329; 1998. 55. Lagasse E, Connors H, Al Dhalimy M, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 2000;6:1229-1234. 56. Lainas P, Boudechiche L, Osorio A et al. Liver regeneration and recanalization time course following reversible portal vein embolization. J Hepatol 2008; 49: 354–62. 57. Lee KW, Lee JH, Shin SW, Kim SJ, Joh JW, Lee DH, Kim JW, Park HY, Lee SY, Lee HH, Park JW, Kim SY, Yoon HH, Jung DH, Choe YH, Lee SK. Hepatocyte Transplantation for Glycogen Storage Disease Type Ib. Cell Transplant. 16:629-637; 2007. 58. Lemire JM, Shiojiri N, Fausto N. Oval cell proliferation and the origin of small hepatocytes in liver injury induced by D-galactosamine. Am. J. Pathol. 139:535-552; 1991. 59. Libbrecht L, Desmet V, Van Damme B, Roskams T. Deep intralobular extension of human hepatic ”progenitor cells” correlates with parenchymal inflammation in chronic viral hepatitis: can “progenitor cells” migrate? J. Pathol. 192:373-378; 2000. 60. Lowes KN, Brennan BA, Yeoh GC, Olynyk JK. Oval cell numbers in human chronic liver diseases are directly related to disease severity. Am. J. Pathol. 154:537-541; 1999. 61. Mabuchi A, Mullaney I, Sheard PW, Hessian PA, Mallard BL, Tawadrous MN, Zimmermann A, Senoo H, Wheatley AM. Role of hepatic stellate cell/hepatocyte interaction and activation of hepatic stellate cells in the early phase of liver regeneration in the rat. J. Hepatol. 40:910-916; 2004. 62. Makowka L, Falk RE, Rotstein LE, et al. Cellular transplantation in the treatment of experimental hepatic failure. Science 1980; 210:901-3. 63. Makowka L, Rotstein LE, Falk RE, Falk JA, Zuk R, Langer B, Blendis LM, Phillips MJ. Studies into the mechanism of reversal of experimental acute hepatic failure by hepatocyte transplantation. Can. J. Surg. 24:39-44; 1981. 64. Malhi H, Annamaneni P, Slehria S, Joseph B, Bhargava KK, Palestro CJ, Novikoff PM, Gupta S. Cyclophosphamide disrupts hepatic sinusoidal endothelium and improves transplanted cell engraftment in rat liver. Hepatology 36:112-121; 2002. 65. Matas AJ, Sutherland DE, Steffes MW et al. Hepatocellular transplantation for metabolic deficiencies: decrease of plasms bilirubin in Gunn rats. Science 1976; 192: 892–4. 66. Michalopoulos GK, Barua L, Bowen W. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic bile duct injury. Hepatology 41:535-544; 2005. 67. Michalopoulos GK, DeFrances MC. Liver regeneration. Science 276:60-66; 1997. 68. Michel JL, Rabier D, Rambaud C et al. [Intrasplenic transplantation of hepatocytes in spf-ash mice with congenital ornithine transcarbamylase deficiency]. Chirurgie 1993; 119: 666–71. 69. Minato M, Houssin D, Demma I et al. Transplantation of hepatocytes for treatment of surgically induced acute hepatic failure in the rat. Eur Surg Res 1984; 16: 162–9. 70. Mito M, Ebata H, Kusano M, Onishi T, Hiratsuka M, Saito T. Studies on ectopic liver utilizing hepatocyte transplantation into the rat spleen. Transplant Proc 1979; 11: 585–91. 71. Mito M, Kusano M, Kawaura Y. Hepatocyte transplantation in man. Transplant Proc 1992;24:3052-3053. 72. Mito M, Kusano M, Sawa M. Hepatocyte transplantation for hepatic failure. Transplant. Rev. 7:35-43; 1993. 73. Mitry RR, Hughes RD, Dhawan A. Progress in human hepatocytes: isolation, culture and cryopreservation. Sem Cell Dev Biol 2002;13:463-467. 74. Mokowka L, Falk RE, Rotstein LE, Falk JA, Nossal N, Langer B, Blendis LM, Phillips MJ. Reversal of experimental acute hepatic failure in the rat. J. Surg. Res. 29:479-487; 1980. 75. Muraca M, Gerunda G, Neri D, et al. Hepatocyte transplantation as a treatment for glycogen storage disease type 1a. Lancet 2002;359:317-318. 76. Nagata H, Ito M, Cai J, et al. Treatment of cirrhosis and liver failure in rats by hepatocyte xenotransplantation. Gastroenterology 2003;124:422-431. 77. Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of inducible pluripotent stem cells without Myc from mouse and human fibroblast. Nat Biotechnol 2008;26:101-106. 78. Newsome PN, Plevris JN, Nelson LJ, Hayes PC. Animal models of fulminanat hepatic failure. Liver Transplant. 6:21-31; 2000. 79. Ng VL, Sabla GE, Melin-Aladna H, Kelly-Loughnane N, Degen JL, Bezerra JA. Plasminogen deficiency results in poor clearance of non-fibirn matrix and persistent activation of hepatic stellate cells after an acute injury. J. Hepatol. 35:781-789; 2001. 80. Nieto N, Dominguez-Rosales JA, Fontana L, Salazar A, Armendariz-Borunda J, Greenwel P, Rojkind M. Rat hepatic stellate cells contribute to the acute-phase response with increased expression of 1(I) and 1(IV) collagens, tissue inhibitor of metalloproteinase-1, and matrix-metalloproteinase-2 messenger RNAs. Hepatology 33:597-607; 2001. 81. Nonome K, Li XK, Takahara T et al. Human umbilical cord blood-derived cells differentiate into hepatocyte-like cells in the Fas-mediated liver injury model. Am J Physiol Gastrointest Liver Physiol 2005; 289: G1091–9. 82. Oertel M, Menthena A, Dabeva MD, Shafritz DA. Cell competition leads to a high level of normal liver reconstitution by transplanted fetal liver stem/progenitor cells. Gastroenterology 130:507-520; 2006. 83. Oertel M, Shafritz DA. Stem cells, cell transplantation and liver repopulation. Biochim. Biphys. Acta. 1782:61-74; 2008. 84. Overturf K, al-Dhalimy M, Ou CN, Finegold M, Grompe M. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am J Pathol 1997; 151: 1273–80. 85. Overturf K, Al-Dhalimy M, Tanguay R, Brantly M, Ou CN, Finegold M, Grompe M. Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinemia type I. Nat. Genet. 12:266-273; 1996. 86. Paku S, Dezso K, Kopper L, Nagy P. Immunohistochemical analysis of cytokeratin 7 expression in resting and proliferating biliary structures of rat liver. Hepatology 42:863-870; 2005. 87. Paku S, Nagy P, Kopper L, Thorgeirsson SS. 2-acetylaminofluorene dose-dependent differentiation of rat oval cells into hepatocytes: confocal and electron microscopic studies. Hepatology 39:1353-1361; 2004. 88. Paku S, Schnur J, Nagy P, Kopper L, Thorgeirsson SS. Origin and structural evolution of the early proliferating oval cells in rat liver. Am. J. Pathol. 158:1313-1323; 2001. 89. Petersen BE, Bowen WC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells. Science 1999;284:1168-1170. 90. Rajvanshi P, Kerr A, Bhargava KK, Burk RD, GuptaS. Studies of liver repopulation using the dipeptidyl peptidase IV deficient rats. Hepatology 23:482-496; 1996. 91. Rajvanshi P, Kerr A, Bhargava KK, et al. Efficacy and safety of repeated hepatocyte transplantation for significant liver repopulation in rodents. Gastroenterology 1996;111:1092-1102. 92. Rhim JA, Sandgren EP, Palmiter RD, Brinster RL. Complete reconstitution of mouse liver with exogenic hepatocytes. Proc. Natl. Acad. Sci. USA. 92:4942-4946; 1995. 93. Richardson MM, Jonsson JR, Powell EE, Brunt EM, Neuschwander-Tetri BA, Bhathal PS, Dixon JB, Weltman MD, Tilg H, Moschen AR, Purdie DM, Demetris AJ, Clouston AD. Progressive fibrosis in nonalcoholic steatohepatitis: association with altered regeneration and a ductular reaction. Gastroenterology 133:80-90; 2007. 94. Rozga J, Holzman M, Moscioni AD, Fujioka H, Morsiani E, Demetriou AA. Repeated intraportal hepatocyte transplantation in analbuminemic rats. Cell Transplant 1995; 4: 237–43. 95. Rutenburg AM, Kim H, Fischbein JW, Hanker JS, Wassekrug HL, Seligman AM. Histochemical and ultrastructural demonstration of gamma-glutamyl transpeptidase activity. Histochem. Cytochem. 17:517-526; 1969. 96. Sasaki K, Mizuguchi T, Chen Q, Ooe H, Oshima H, Hirata K, Mitaka T. Proliferation of hepatocyte progenitor cells isolated from adult human livers in serum-free medium. Cell Transplant. 17:1221-1230; 2008. 97. Schmelzer E, Zhang L, Bruce A et al. Human hepatic stem cells from fetal and postnatal donors. J Exp Med 2007; 204:1973–87. 98. Selden C, Calnan D, Morgan N, Wilcox H, Carr E, Hodgson HJ. Histidinemia in mice: a metabolic defect treated using a novel approach to hepatocellular transplantation. Hepatology 1995; 21: 1405–12. 99. Sell S. Heterogeneity and plasticity of hepatocyte lineage cells. Hepatology 33:738-750; 2001. 100. Serracino-Inglott F, Habib NA, Mathie R. Hepatic ischemia-reperfusion injury. Am J Surg 2002;181:160-166. 101. Shafritz DA, Dabeva MD. Liver stem cells and model systems for liver repopulation. J. Hepatol. 36:552-564; 2002. 102. Shafritz DA, Oertel M, Menthena A, Nierhoff D, Dabeva MD. Liver stem cells and prospects for liver reconstitution by transplanted cells. Hepatology 43:S89-S98; 2006. 103. Sharma AD, Cantz T, Vogel A, Schambach A, Haridass D, Iken M, Bleidibel M, Manns MP, Scholer HR, Ott M. Murine embryonic stem cell-derived hepatic progenitor cells engraft in recipient livers with limited capacity of liver tissue formation. Cell Transplant. 17:313-323; 2008. 104. Slehria S, Rajvanshi P, Ito Y, et al. Hepatic sinusoidal vasodilators improve transplanted cell engraftment and ameliorate microcirculatory perturbations in the liver. Hepatology 2002;35:1320-1328. 105. Sommer BG, Sutherland DE, Matas AJ, Simmons RL, Najarian JS. Hepatocellular transplantation for treatment of D-galactosamine-induced acute liver failure. Transplant. Proc. 11:578-584; 1979. 106. St Peter SD, Moss AA, Mulligan DC. Effects of Tacrolimus on ischemia-reperfusion injury. Liver Transpl 2003:9:105-116. 107. Sterling RK, Fisher RA. Liver transplantation. Living donor, hepatocyte, and xenotransplantation. ClincLiv Dis 2001;5:431-460. 108. Strom SC, Fisher RA, Rubinstein WS, Barranger JA, Towbin RB, Charron M, Mieles L, et al. Transplantation of human hepatocyte. Transplant Proc 1997;29:2103-2106. 109. Strom SC, Fisher RA, Thompson MT, Sanyal AJ, Cole PE, Ham JM, Posner MP. Hepatocyte transplantation as a bridge to orthotopic liver transplantation in terminal liver failure. Transplantation 1997;63:559-569. 110. Sutherland DE, Numata M, Matas AJ, Simmons RL, Najarian JS. Hepatocyte transplantation in acute liver failure. Surgery 82:124-132; 1997. 111. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from human fibroblasts by defined factors. Cell 2007;131: 861-872. 112. Takeshita K, Ishibashi H, Suzuki M, Kodama M. Hepatocellular transplantation for metabolic support in experimental acute ischemic liver failure in rats. Cell Transplant 1993; 2: 319–24. 113. Taub R. Liver regeneration: from myth to mechanism. Nat. Rev. 5:836-847; 2004. 114. Theise ND, Nimmakayalu M, Gardner R, et al. Liver from bone marrow in humans. Hepatology 2000;32:11-16. 115. Theise ND, Saxena R, Portmann BC et al. The canals of Hering and hepatic stem cells in humans. Hepatology 1999; 30: 1425–33. 116. Tsamandas AC, Syrokosta I, Thomopoulos K, Zolota V, Dimitropoulou D, Liava A, Coupoulou AA, Siagris D, Petsas T, Karatza C, Gogos CA. Potential role of hepatic progenitor cells expression in cases of chronic hepatitis C and their relation to response to therapy: a clinicopathologic study. Liver Int. 26:817-826; 2006. 117. Tsubouchi H, Niitani Y, Hirono S, Nakayama H, Gohda E, Arakaki N, Sakiyama O, Takahashi K, Kimoto M, Kawakami S. Levels of the human hepatocyte growth factor in serum of patients with various liver diseases determined by an enzymelinked immunosorbent assay. Hepatology 13:1-5; 1991. 118. Van Thiel DH, Brems J, Nadir A, Idilman R, Colantoni A, Holt D, Edelstein S. Liver transplantation for fulminant hepatic failure. J Gastroenterol 2001;36:1-4. 119. Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion. Nature 2003;422:901-905. 120. Vidal I, Blanchard N, Alexandre E, Gandillet A, Chenard-Neu MP, Staedtler F, Schumacher M, Bachellier P, Jaeck D, Firat H, Heyd B, Richert L. Improved Xenogenic Hepatocyte Implantation Into Nude Mouse Liver Parenchyma With Acute Liver Failure When Followed by Repeated Anti-Fas Antibody (Jo2) Treatment. Cell Transplant. 17:507-524; 2008. 121. Wang X, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M. The origin and liver repopulation capacity of murine oval cells. Proc. Natl. Acad. Sci. USA 100:11881-11888; 2003. 122. Wang X, Montini E, Al Dhalimy M, et al. Kinetics of liver repopulation after bone marrow transplantation. Am J Pathol 2002;161:565-574. 123. Wang X, Willenbring H, Aldcari Y, et al. Cell fusion is the principal source of bone marrow derived hepatocytes. Nature 2003;422:897-901. 124. Wege H, Le HT, Chui MS, et al. Telomerase reconstitution immortalizes human fetal hepatocytes without disrupting their differentiation potential. Gastroenterology 2003;124:432-444. 125. Wiederkehr JC, Kondos GT, Pollak R. Hepatocyte transplantation for the low-density lipoprotein receptor-deficient state. A study in the Watanabe rabbit. Transplantation 1990; 50: 466–71. 126. Yamamoto H, Quinn G, Asari A, et al. Differentiation of embryonic stem cells into hepatocytes: biological functions and therapeutic application. Hepatology 2003;37:987-993. 127. Yamanouchi K, Zhou H, Roy-Chowdhury N, Macaluso F, Liu L, Yamamoto T, Rao Yannam G, Enke C, Solberg TD, Adelson AB,Platt JL, Fox IJ, Roy-Chowdhury J, Guha C. Hepatic Irradiation Augments Engraftment of Donor Cells Following Hepatocyte Transplantation. Hepatology 2008:48. 128. Yoshida Y, Tokusashi Y, Lee GH, Ogawa K. Intrahepatic transplantation of normal hepatocytes prevents Wilson’s disease in Long-Evans cinnamon rats. Gastroenterology 1996; 111: 1654–60. 129. Yovchev MI, Grozdanov PN, Zhou H, Racherla H, Guha C, Dabeva MD. Identification of adult hepatic progenitor cells capable of repopulating injured rat liver. Hepatology 47:636-647; 2008. 130. Yu CH, Chen HL, Chen WT, Ni YH, Lin YL, Chang MH. Portal hemodynamic changes after hepatocyte transplantation in acute hepatic failure. J. Biomed. Sci. 11:756-763; 2004. 131. Yu CH, Chen HL, Chen YH, Chien CS, Chang MF, Chang MH. Impaired Hepatocyte Regeneration in Acute Severe Hepatic Injury Enhances Effective Repopulation by Transplanted Hepatocytes. Cell Transplant. In Press; 2009. 132. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318:1917-1920. 133. Yuan RH, Ogawa A, Ogawa E, Neufeld D, Zhu L, Shafritz DA. P27Kip1 inactivation provides a proliferative advantage to transplanted hepatocytes in DPPIV/Rag2 double knockout mice after repeated host liver injury. Cell Transplant. 12:907-919; 2003. 134. Zhao Y, Glesne D, Huerman E. A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc Natl Acad Sci USA 2003;100:2426 –2431. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45380 | - |
| dc.description.abstract | 肝細胞移植一直被期待可以取代肝臟移植來治療急性肝衰竭病人。然而,肝細胞移植要能成為可以被信賴的治療方法,前提是移植的肝細胞要能夠在急性肝衰竭的肝臟中有效率的增生。因此,我們主要研究的問題是:(1)移植的肝細胞是否可以在急性肝衰竭受損的肝臟中有效率的增生?如果可以,是透過什麼機轉?(2)肝細胞移植對於急性肝衰竭肝臟的再生過程中被活化的卵圓幹細胞會產生什麼影響?
為了探討第一個問題,我們使用Retrorsine加上D-galactosamine或單獨使用 D-galactosamine,在雄性的DPPIV-deficient F-344 大鼠誘發急性肝傷害,另外一組則單獨接受retrorsine處理,作為肝細胞移植的接受者。在這些處置中,retrorsine是用來抑制本土肝細胞的增生,而D-galactosamine是用來引發急性肝傷害。這些大鼠在D-galactosamine處置後24小時接受由原生種F-344 大鼠所分離下來的肝細胞移植(1x107/ml)。然後在不同的時間點,對移植肝細胞增生的動力學,肝臟中細胞激素與生長因子基因表現的動力學,肝臟中星狀細胞被活化的動力學,以及matrix metalloproteinase (MMP2)表現的動力學等進行分析。 我們發現,在Retrorsine加上D-galactosamine誘發急性肝傷害組,移植的肝細胞快速的穿過肝竇進入肝臟實質組織中,並且可以進行大量的增生,在第四週時可以取代54.6+7.1%的肝臟實質組織;這些現象在單獨使用 D-galactosamine或單獨接受retrorsine處理組則不會發生。同樣的,在Retrorsine加上D-galactosamine誘發急性肝傷害組,生長因子TGF-α 和HGF的基因表現則顯著的增加,而且持續到肝細胞移植後的第四週。這些生長因子基因表現的動力學和移植肝細胞增生的動力學相一致。肝臟星狀細胞也快速的被啟動活化,其數目顯著的增加直到第四週,然後開始減少;同時間,生長因子基因表現和移植肝細胞的增生也開始減少。MMP2基因表現的動力學,MMP2蛋白質表現的動力學以及在肝臟組織中分佈的位置都和星狀細胞活化反應的動力學以及在肝臟組織中分佈的位置相一致。 為了探討第二個問題,我們使用Retrorsine加上D-galactosamine,在雄性的DPPIV-deficient F-344 大鼠誘發急性肝傷害以及廣泛的卵圓幹細胞活化反應,在D-galactosamine處置後24小時接受由原生種F-344 大鼠所分離下來的肝細胞移植(1x107/ml)。然後在不同的時間點,使用組織化學染色法,免疫組織化學染色法,以及免疫螢光染色法來分析卵圓幹細胞的活化反應及他們分化的命運。 我們發現,在Retrorsine加上D-galactosamine誘發急性肝傷害後,在沒有接受肝細胞移植的時候,卵圓幹細胞很快的在第一天即被啟動活化,進行增生,在第四至五天達到高峰,然後分化成為肝細胞。在接受肝細胞移植後,卵圓幹細胞在第七天開始被啟動增生,在第四週達到高峰。卵圓幹細胞增生動力學和移植肝細胞增生的動力學相一致。卵圓幹細胞增生並以小管狀排列,然後分化成為膽道細胞。我們進一步在Retrorsine加上D-galactosamine處理後的第四天,當卵圓幹細胞活化增生的高峰期,進行肝細胞移植,我們發現,這些已被活化的卵圓幹細胞停止分化為肝細胞,維持小管狀排列,然後分化成為膽道細胞。當我們再度使用Retrorsine將移植肝細胞的增生能力也抑制之後,這些成小管狀排列的卵圓幹細胞又可再度分化成為肝細胞。 總結我們的研究,在急性肝傷害後合併剩餘本土肝細胞的增生能力受損會啟動一系列代償性的肝臟修補機制,這樣的環境提供移植肝細胞進行大量增生的有利條件。此外,肝細胞移植會將本來由卵圓幹細胞主導的肝臟修補機制改變為由移植肝細胞主導的修補機制。而且,肝細胞移植會影響並改變卵圓幹細胞的分化命運。肝細胞移植具有有效治療急性肝衰竭病人的發展性。 | zh_TW |
| dc.description.abstract | Efficient repopulation by transplanted hepatocytes in the severely injured liver is essential for their clinical application in the treatment of acute hepatic failure. We studied here (1) whether and how the transplanted hepatocytes are able to efficiently repopulate the toxin-induced acute injured liver, and (2) the impacts of hepatocyte transplantation on the response and fate of oval cells that are activated to proliferate in acute severe hepatic injury. To address the first issue, we used retrorsine-plus-D- galactosamine (R+D-gal) treatment or D-galactosamine alone (D-gal-alone) to induce acute hepatic injury, or retrorsine-alone in male Dipeptidyl peptidase IV-deficient F-344 rats. In these models, retrorsine was used to inhibit the proliferation of endogenous hepatocytes while D-galactosamine induced acute hepatocyte damage. Wild-type hepatocytes (1x107/ml) were transplanted intraportally 24 hours after D-galactosamine or saline injection. The kinetics of proliferation and repopulation of transplanted cells and the kinetics of cytokine response, hepatic stellate cell (HSC) activation, and matrix metalloproteinase (MMP2) expression were analyzed. We observed that early entry of transplanted hepatocytes into the hepatic plates and massive repopulation of the liver by transplanted hepatocytes occurred in acute hepatic injury induced by R+D-gal treatment but not by D-gal-alone or retrorsine-alone. The expressions of transforming growth factor-α and hepatocyte growth factor genes in the R+D-gal injured liver were significantly up-regulated and prolonged up to 4 weeks after hepatocyte transplantation. The expression kinetics were parallel with the efficient proliferation and repopulation of transplanted hepatocytes, which replaced 54.6+7.1% of damaged parenchyma by four weeks. HSC was activated rapidly, markedly, and prolongedly up-to 4 weeks after hepatocyte transplantation, when the expression of HGF gene and repopulation of transplanted hepatocytes were reduced afterward. Furthermore, the expression kinetics of MMP2 and its specific distribution in the host areas surrounding the expanding clusters of transplanted hepatocytes are consistent with those of activated HSC.
To address the second issue, we used retrorsine-plus-D-galactosamine (R+D-gal) treatment to induce acute hepatic injury and to elicit extensive activation of oval cells in male Dipeptidyl-peptidase-IV-deficient F-344 rats. These rats were then randomized to receive wild-type hepatocyte transplantation or vehicle intraportally. The kinetics of oval cell response and their differentiation fate were analyzed using histochemical, immunohistochemical, and immunofluorescent stainings for DPPIV, OV6, CK19, laminin, γ-glutamyl-transpeptidase, and glucose-6-phosphotase. We observed that oval cells were activated early and differentiated into hepatocytes in R+D-gal-treated rats without hepatocyte transplantation. With hepatocyte transplantation, the oval cells were recruited later and continued to proliferate in parallel with the massive proliferation of transplanted hepatocytes. They formed ductules and differentiated into biliary cells. When hepatocytes were transplanted at the day when oval cells were at their peak response, the numerous activated oval cells ceased to differentiate into hepatocytes and remained in ductular form. The ductular oval cells were capable of differentiating into hepatocytes again when the donor hepatocytes were inhibited to proliferate. In conclusion, impaired hepatocyte regeneration after acute severe hepatic injury may initiate serial compensatory repair mechanisms which facilitate the extensive repopulation by transplanted hepatocytes that enter early the hepatic plates. In addition, hepatocyte transplantation changes the mechanism of liver reconstitution from oval cell-mediated to donor hepatocyte-mediated and affects the differentiation fate of host oval cells in acute severe hepatic injury. Hepatocyte transplantation has a great potential in the treatment of patients with acute hepatic failure. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:17:06Z (GMT). No. of bitstreams: 1 ntu-98-Q89421007-1.pdf: 4406100 bytes, checksum: 053a771203312a9bf0ca05bad037a6ba (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………… v
誌謝………………………………………………………………… vi 中文摘要…………………………………………………………… 1 英文摘要…………………………………………………………… 3 博士論文內容 第一章 緒論……………………………………………………… 6 第二章 研究方法與材料………………………………………… 17 第三章 結果……………………………………………………… 25 第四章 討論……………………………………………………… 39 第五章 展望……………………………………………………… 51 論文英文簡述……………………………………………………… 56 參考文獻…………………………………………………………… 67 圖表………………………………………………………………… 82 附錄………………………………………………………………… 108 | |
| dc.language.iso | zh-TW | |
| dc.subject | 卵圓幹細胞 | zh_TW |
| dc.subject | 肝細胞移植 | zh_TW |
| dc.subject | 急性肝傷害 | zh_TW |
| dc.subject | 細胞分化 | zh_TW |
| dc.subject | 肝臟再生 | zh_TW |
| dc.subject | progenitor cell | en |
| dc.subject | retrorsine | en |
| dc.subject | regeneration | en |
| dc.subject | Cell differentiation | en |
| dc.subject | oval cell | en |
| dc.subject | liver failure | en |
| dc.subject | growth factor | en |
| dc.subject | D-galactosamine | en |
| dc.title | 肝細胞移植應用於急性肝傷害之治療潛能與機制 | zh_TW |
| dc.title | Hepatocyte Transplantation and Acute Hepatic Injury
-- Therapeutic Potential and Mechanism of Liver Remodeling after Hepatocyte Transplantation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.advisor-orcid | ,陳惠玲(hlchen9@ntu.edu.tw) | |
| dc.contributor.oralexamcommittee | 游正博(John Yu),趙有誠(You-Chen Chao),李發耀(Fa-Yauh Lee),倪衍玄(Yen-Hsuan Ni) | |
| dc.subject.keyword | 急性肝傷害,肝細胞移植,卵圓幹細胞,肝臟再生,細胞分化, | zh_TW |
| dc.subject.keyword | Cell differentiation,D-galactosamine,growth factor,liver failure,oval cell,progenitor cell,regeneration,retrorsine, | en |
| dc.relation.page | 109 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-12-25 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 4.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
