Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45374
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳信志(Shinn-Chih Wu)
dc.contributor.authorFelix Shih-Hsiang Hsiaoen
dc.contributor.author蕭士翔zh_TW
dc.date.accessioned2021-06-15T04:16:47Z-
dc.date.available2015-01-11
dc.date.copyright2010-01-11
dc.date.issued2009
dc.date.submitted2009-12-29
dc.identifier.citationAggarwal, S., and M. F. Pittenger. 2005. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105: 1815-1822.
Anjos-Afonso, F., and D. Bonnet. 2007. Nonhematopoietic/endothelial ssea-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood 109: 1298-1306.
Ashton, B. A., T. D. Allen, C. R. Howlett, C. C. Eaglesom, A. Hattori, and M. Owen. 1980. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin. Orthop. Relat. Res. 294-307.
Azizi, S. A., D. Stokes, B. J. Augelli, C. DiGirolamo, and D. J. Prockop. 1998. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats--similarities to astrocyte grafts. Proc. Natl. Acad. Sci. U. S. A. 95: 3908-3913.
Bab, I., B. A. Ashton, D. Gazit, G. Marx, M. C. Williamson, and M. E. Owen. 1986. Kinetics and differentiation of marrow stromal cells in diffusion chambers in vivo. J. Cell Sci. 84: 139-151.
Baddoo, M., K. Hill, R. Wilkinson, D. Gaupp, C. Hughes, G. C. Kopen, and D. G. Phinney. 2003. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J. Cell Biochem. 89: 1235-1249.
Barda-Saad, M., L. A. Rozenszajn, H. Ashush, Y. Shav-Tal, A. Ben Nun, and D. Zipori. 1999. Adhesion molecules involved in the interactions between early t cells and mesenchymal bone marrow stromal cells. Exp. Hematol. 27: 834-844.
Barry, F. P. 2003. Biology and clinical applications of mesenchymal stem cells. Birth. Defects Res. C. Embryo Today 69: 250-256.
Bartholomew, A., C. Sturgeon, M. Siatskas, K. Ferrer, K. McIntosh, S. Patil, W. Hardy, S. Devine, D. Ucker, R. Deans, A. Moseley, and R. Hoffman. 2002. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 30: 42-48.
Baxter, M. A., R. F. Wynn, S. N. Jowitt, J. E. Wraith, L. J. Fairbairn, and I. Bellantuono. 2004. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22: 675-682.
Bearpark, A. D., and M. Y. Gordon. 1989. Adhesive properties distinguish sub-populations of haemopoietic stem cells with different spleen colony-forming and marrow repopulating capacities. Bone Marrow Transplant. 4: 625-628.
Bellino, F. L. 2000. Nonprimate animal models of menopause: Workshop report. Menopause 7: 14-24.
Beresford, J. N., J. H. Bennett, C. Devlin, P. S. Leboy, and M. E. Owen. 1992. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J. Cell Sci. 102 ( Pt 2): 341-351.
Bianco, P., P. G. Robey, and P. J. Simmons. 2008. Mesenchymal stem cells: Revisiting history, concepts, and assays. Cell Stem Cell 2: 313-319.
Bobis, S., D. Jarocha, and M. Majka. 2006. Mesenchymal stem cells: Characteristics and clinical applications. Folia Histochem. Cytobiol. 44: 215-230.
Boggiano, C., R. Moya, C. Pinilla, F. Bihl, C. Brander, J. Sidney, A. Sette, and S. E. Blondelle. 2005. Discovery and characterization of highly immunogenic and broadly recognized mimics of the hiv-1 ctl epitope gag77-85. Eur. J. Immunol. 35: 1428-1437.
Bosnakovski, D., M. Mizuno, G. Kim, S. Takagi, M. Okumura, and T. Fujinaga. 2005. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res. 319: 243-253.
Bruder, S. P., N. Jaiswal, N. S. Ricalton, J. D. Mosca, K. H. Kraus, and S. Kadiyala. 1998. Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin. Orthop. Relat. Res. S247-256.
Castro-Malaspina, H., R. E. Gay, G. Resnick, N. Kapoor, P. Meyers, D. Chiarieri, S. McKenzie, H. E. Broxmeyer, and M. A. Moore. 1980. Characterization of human bone marrow fibroblast colony-forming cells (cfu-f) and their progeny. Blood 56: 289-301.
Chamberlain, G., J. Fox, B. Ashton, and J. Middleton. 2007. Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25: 2739-2749.
Chen, C. Z., L. Li, H. F. Lodish, and D. P. Bartel. 2004. Micrornas modulate hematopoietic lineage differentiation. Science 303: 83-86.
Chen, C. Z., and H. F. Lodish. 2005. Micrornas as regulators of mammalian hematopoiesis. Semin. Immunol. 17: 155-165.
Chen, W. H., H. Y. Liu, W. C. Lo, S. C. Wu, C. H. Chi, H. Y. Chang, S. H. Hsiao, C. H. Wu, W. T. Chiu, B. J. Chen, and W. P. Deng. 2009. Intervertebral disc regeneration in an ex vivo culture system using mesenchymal stem cells and platelet-rich plasma. Biomaterials 30: 5523-5533.
Colter, D. C., R. Class, C. M. DiGirolamo, and D. J. Prockop. 2000. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc. Natl. Acad. Sci. U. S. A. 97: 3213-3218.
Conget, P. A., and J. J. Minguell. 1999. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J. Cell. Physiol. 181: 67-73.
Corcione, A., F. Benvenuto, E. Ferretti, D. Giunti, V. Cappiello, F. Cazzanti, M. Risso, F. Gualandi, G. L. Mancardi, V. Pistoia, and A. Uccelli. 2006. Human mesenchymal stem cells modulate b-cell functions. Blood 107: 367-372.
Dazzi, F., R. Ramasamy, S. Glennie, S. P. Jones, and I. Roberts. 2006. The role of mesenchymal stem cells in haemopoiesis. Blood Rev 20: 161-171.
Deans, R. J., and A. B. Moseley. 2000. Mesenchymal stem cells: Biology and potential clinical uses. Exp. Hematol. 28: 875-884.
Dennis, J. E., and P. Charbord. 2002. Origin and differentiation of human and murine stroma. Stem Cells 20: 205-214.
Deryugina, E. I., and C. E. Muller-Sieburg. 1993. Stromal cells in long-term cultures: Keys to the elucidation of hematopoietic development? Crit. Rev. Immunol. 13: 115-150.
Devine, S. M. 2002. Mesenchymal stem cells: Will they have a role in the clinic? J. Cell. Biochem. Suppl 38: 73-79.
Devine, S. M., A. M. Bartholomew, N. Mahmud, M. Nelson, S. Patil, W. Hardy, C. Sturgeon, T. Hewett, T. Chung, W. Stock, D. Sher, S. Weissman, K. Ferrer, J. Mosca, R. Deans, A. Moseley, and R. Hoffman. 2001. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp. Hematol. 29: 244-255.
Di Nicola, M., C. Carlo-Stella, M. Magni, M. Milanesi, P. D. Longoni, P. Matteucci, S. Grisanti, and A. M. Gianni. 2002. Human bone marrow stromal cells suppress t-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99: 3838-3843.
Digirolamo, C. M., D. Stokes, D. Colter, D. G. Phinney, R. Class, and D. J. Prockop. 1999. Propagation and senescence of human marrow stromal cells in culture: A simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br. J. Haematol. 107: 275-281.
Djouad, F., P. Plence, C. Bony, P. Tropel, F. Apparailly, J. Sany, D. Noel, and C. Jorgensen. 2003. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102: 3837-3844.
Dorheim, M. A., M. Sullivan, V. Dandapani, X. Wu, J. Hudson, P. R. Segarini, D. M. Rosen, A. L. Aulthouse, and J. M. Gimble. 1993. Osteoblastic gene expression during adipogenesis in hematopoietic supporting murine bone marrow stromal cells. J. Cell. Physiol. 154: 317-328.
Eslaminejad, M. B., A. Nikmahzar, L. Taghiyar, S. Nadri, and M. Massumi. 2006. Murine mesenchymal stem cells isolated by low density primary culture system. Dev. Growth Differ. 48: 361-370.
Falla, N., V. Van, J. Bierkens, B. Borremans, G. Schoeters, and U. Van Gorp. 1993. Characterization of a 5-fluorouracil-enriched osteoprogenitor population of the murine bone marrow. Blood 82: 3580-3591.
Fibbe, W. E., and W. A. Noort. 2003. Mesenchymal stem cells and hematopoietic stem cell transplantation. Ann. N. Y. Acad. Sci. 996: 235-244.
Friedenstein, A. J., R. K. Chailakhjan, and K. S. Lalykina. 1970. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 3: 393-403.
Friedenstein, A. J., J. F. Gorskaja, and N. N. Kulagina. 1976. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 4: 267-274.
Galmiche, M. C., V. E. Koteliansky, J. Briere, P. Herve, and P. Charbord. 1993. Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood 82: 66-76.
Gang, E. J., D. Bosnakovski, C. A. Figueiredo, J. W. Visser, and R. C. Perlingeiro. 2007. Ssea-4 identifies mesenchymal stem cells from bone marrow. Blood 109: 1743-1751.
Gimble, J. M., C. Morgan, K. Kelly, X. Wu, V. Dandapani, C. S. Wang, and V. Rosen. 1995. Bone morphogenetic proteins inhibit adipocyte differentiation by bone marrow stromal cells. J. Cell. Biochem. 58: 393-402.
Gindraux, F., Z. Selmani, L. Obert, S. Davani, P. Tiberghien, P. Herve, and F. Deschaseaux. 2007. Human and rodent bone marrow mesenchymal stem cells that express primitive stem cell markers can be directly enriched by using the cd49a molecule. Cell Tissue Res. 327: 471-483.
Giordano, A., U. Galderisi, and I. R. Marino. 2007. From the laboratory bench to the patient's bedside: An update on clinical trials with mesenchymal stem cells. J. Cell. Physiol. 211: 27-35.
Glennie, S., I. Soeiro, P. J. Dyson, E. W. Lam, and F. Dazzi. 2005. Bone marrow mesenchymal stem cells induce division arrest anergy of activated t cells. Blood 105: 2821-2827.
Gotherstrom, C., O. Ringden, C. Tammik, E. Zetterberg, M. Westgren, and K. Le Blanc. 2004. Immunologic properties of human fetal mesenchymal stem cells. Am. J. Obstet. Gynecol. 190: 239-245.
Gregory, C. A., H. Singh, A. S. Perry, and D. J. Prockop. 2003. The wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. J. Biol. Chem. 278: 28067-28078.
Griffiths-Jones, S., R. J. Grocock, S. van Dongen, A. Bateman, and A. J. Enright. 2006. Mirbase: Microrna sequences, targets and gene nomenclature. Nucleic Acids Res. 34: D140-144.
Grinnemo, K. H., A. Mansson, G. Dellgren, D. Klingberg, E. Wardell, V. Drvota, C. Tammik, J. Holgersson, O. Ringden, C. Sylven, and K. Le Blanc. 2004. Xenoreactivity and engraftment of human mesenchymal stem cells transplanted into infarcted rat myocardium. J. Thorac. Cardiovasc. Surg. 127: 1293-1300.
Guo, W., C. Miao, S. Liu, Z. Qiu, J. Li, and E. Duan. 2009. Efficient differentiation of insulin-producing cells from skin-derived stem cells. Cell Prolif. 42: 49-62.
Guo, Z., H. Li, X. Li, X. Yu, H. Wang, P. Tang, and N. Mao. 2006. In vitro characteristics and in vivo immunosuppressive activity of compact bone-derived murine mesenchymal progenitor cells. Stem Cells 24: 992-1000.
Hadjantonakis, A. K., M. E. Dickinson, S. E. Fraser, and V. E. Papaioannou. 2003. Technicolour transgenics: Imaging tools for functional genomics in the mouse. Nat. Rev. Genet. 4: 613-625.
Hartsock, R. J., E. B. Smith, and C. S. Petty. 1965. Normal variations with aging of the amount of hematopoietic tissue in bone marrow from the anterior iliac crest. A study made from 177 cases of sudden death examined by necropsy. Am. J. Clin. Pathol. 43: 326-331.
Hatfield, S. D., H. R. Shcherbata, K. A. Fischer, K. Nakahara, R. W. Carthew, and H. Ruohola-Baker. 2005. Stem cell division is regulated by the microrna pathway. Nature 435: 974-978.
Haynesworth, S. E., M. A. Baber, and A. I. Caplan. 1992. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13: 69-80.
Hoffmann, A., S. Czichos, C. Kaps, D. Bachner, H. Mayer, B. G. Kurkalli, Y. Zilberman, G. Turgeman, G. Pelled, G. Gross, and D. Gazit. 2002. The t-box transcription factor brachyury mediates cartilage development in mesenchymal stem cell line c3h10t1/2. J. Cell Sci. 115: 769-781.
Honczarenko, M., Y. Le, M. Swierkowski, I. Ghiran, A. M. Glodek, and L. E. Silberstein. 2006. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24: 1030-1041.
Horwitz, E. M., P. L. Gordon, W. K. Koo, J. C. Marx, M. D. Neel, R. Y. McNall, L. Muul, and T. Hofmann. 2002. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc. Natl. Acad. Sci. U. S. A. 99: 8932-8937.
Horwitz, E. M., K. Le Blanc, M. Dominici, I. Mueller, I. Slaper-Cortenbach, F. C. Marini, R. J. Deans, D. S. Krause, and A. Keating. 2005. Clarification of the nomenclature for msc: The international society for cellular therapy position statement. Cytotherapy 7: 393-395.
Horwitz, E. M., D. J. Prockop, L. A. Fitzpatrick, W. W. Koo, P. L. Gordon, M. Neel, M. Sussman, P. Orchard, J. C. Marx, R. E. Pyeritz, and M. K. Brenner. 1999. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat. Med. 5: 309-313.
Jan, M.-L., T.-C. Ni, K.-W. Chen, H.-C. Liang, K.-S. Chuang, and Y.-K. Fu. 2006. A combined micro-pet/ct scanner for small animal imaging. Nuclear Instruments and Methods in Physics Research A 569: 314-318.
Javazon, E. H., K. J. Beggs, and A. W. Flake. 2004. Mesenchymal stem cells: Paradoxes of passaging. Exp. Hematol. 32: 414-425.
Jiang, X. X., Y. Zhang, B. Liu, S. X. Zhang, Y. Wu, X. D. Yu, and N. Mao. 2005. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105: 4120-4126.
Johnstone, B., T. M. Hering, A. I. Caplan, V. M. Goldberg, and J. U. Yoo. 1998. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238: 265-272.
Josephson, R., C. J. Ording, Y. Liu, S. Shin, U. Lakshmipathy, A. Toumadje, B. Love, J. D. Chesnut, P. W. Andrews, M. S. Rao, and J. M. Auerbach. 2007. Qualification of embryonal carcinoma 2102ep as a reference for human embryonic stem cell research. Stem Cells 25: 437-446.
Kadiyala, S., R. G. Young, M. A. Thiede, and S. P. Bruder. 1997. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant. 6: 125-134.
Kanellopoulou, C., S. A. Muljo, A. L. Kung, S. Ganesan, R. Drapkin, T. Jenuwein, D. M. Livingston, and K. Rajewsky. 2005. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19: 489-501.
Kawada, H., J. Fujita, K. Kinjo, Y. Matsuzaki, M. Tsuma, H. Miyatake, Y. Muguruma, K. Tsuboi, Y. Itabashi, Y. Ikeda, S. Ogawa, H. Okano, T. Hotta, K. Ando, and K. Fukuda. 2004. Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 104: 3581-3587.
Kerk, D. K., E. A. Henry, A. C. Eaves, and C. J. Eaves. 1985. Two classes of primitive pluripotent hemopoietic progenitor cells: Separation by adherence. J. Cell. Physiol. 125: 127-134.
Klassen, H., K. Warfvinge, P. H. Schwartz, J. F. Kiilgaard, N. Shamie, C. Jiang, M. Samuel, E. Scherfig, R. S. Prather, and M. J. Young. 2008. Isolation of progenitor cells from gfp-transgenic pigs and transplantation to the retina of allorecipients. Cloning Stem Cells 10: 391-402.
Kortesidis, A., A. Zannettino, S. Isenmann, S. Shi, T. Lapidot, and S. Gronthos. 2005. Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood 105: 3793-3801.
Krampera, M., S. Glennie, J. Dyson, D. Scott, R. Laylor, E. Simpson, and F. Dazzi. 2003. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific t cells to their cognate peptide. Blood 101: 3722-3729.
Krampera, M., G. Pizzolo, G. Aprili, and M. Franchini. 2006. Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 39: 678-683.
Kunter, U., S. Rong, Z. Djuric, P. Boor, G. Muller-Newen, D. Yu, and J. Floege. 2006. Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis. J. Am. Soc. Nephrol. 17: 2202-2212.
Kuwabara, T., J. Hsieh, K. Nakashima, K. Taira, and F. H. Gage. 2004. A small modulatory dsrna specifies the fate of adult neural stem cells. Cell 116: 779-793.
Kuznetsov, S. A., P. H. Krebsbach, K. Satomura, J. Kerr, M. Riminucci, D. Benayahu, and P. G. Robey. 1997. Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J. Bone Miner. Res. 12: 1335-1347.
Lakshmipathy, U., and R. P. Hart. 2008. Concise review: Microrna expression in multipotent mesenchymal stromal cells. Stem Cells 26: 356-363.
Le Blanc, K., I. Rasmusson, B. Sundberg, C. Gotherstrom, M. Hassan, M. Uzunel, and O. Ringden. 2004. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 363: 1439-1441.
Le Blanc, K., C. Tammik, K. Rosendahl, E. Zetterberg, and O. Ringden. 2003a. Hla expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol. 31: 890-896.
Le Blanc, K., L. Tammik, B. Sundberg, S. E. Haynesworth, and O. Ringden. 2003b. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J. Immunol. 57: 11-20.
Lee, J. W., S. C. Wu, X. C. Tian, M. Barber, T. Hoagland, J. Riesen, K. H. Lee, C. F. Tu, W. T. Cheng, and X. Yang. 2003. Production of cloned pigs by whole-cell intracytoplasmic microinjection. Biol. Reprod. 69: 995-1001.
Lee, K. H., C. K. Chuang, H. W. Wang, L. Stone, C. H. Chen, and C. F. Tu. 2007. An alternative simple method for mass production of chimeric embryos by coculturing denuded embryos and embryonic stem cells in eppendorf vials. Theriogenology 67: 228-237.
Lee, R. H., M. J. Seo, R. L. Reger, J. L. Spees, A. A. Pulin, S. D. Olson, and D. J. Prockop. 2006. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic nod/scid mice. Proc. Natl. Acad. Sci. U. S. A. 103: 17438-17443.
Lewis, B. P., C. B. Burge, and D. P. Bartel. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microrna targets. Cell 120: 15-20.
Lewis, B. P., I. H. Shih, M. W. Jones-Rhoades, D. P. Bartel, and C. B. Burge. 2003. Prediction of mammalian microrna targets. Cell 115: 787-798.
Li, Z., M. Q. Hassan, S. Volinia, A. J. van Wijnen, J. L. Stein, C. M. Croce, J. B. Lian, and G. S. Stein. 2008. A microrna signature for a bmp2-induced osteoblast lineage commitment program. Proc. Natl. Acad. Sci. U. S. A. 105: 13906-13911.
Lin, Y., X. Chen, Z. Yan, L. Liu, W. Tang, X. Zheng, Z. Li, J. Qiao, S. Li, and W. Tian. 2006a. Multilineage differentiation of adipose-derived stromal cells from gfp transgenic mice. Mol. Cell Biochem. 285: 69-78.
Lin, Y., L. Liu, Z. Li, J. Qiao, L. Wu, W. Tang, X. Zheng, X. Chen, Z. Yan, and W. Tian. 2006b. Pluripotency potential of human adipose-derived stem cells marked with exogenous green fluorescent protein. Mol. Cell Biochem. 291: 1-10.
Ling, L., V. Nurcombe, and S. M. Cool. 2009. Wnt signaling controls the fate of mesenchymal stem cells. Gene 433: 1-7.
Lippincott-Schwartz, J., and G. H. Patterson. 2003. Development and use of fluorescent protein markers in living cells. Science 300: 87-91.
Liu, H., D. M. Kemeny, B. C. Heng, H. W. Ouyang, A. J. Melendez, and T. Cao. 2006. The immunogenicity and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells. J. Immunol. 176: 2864-2871.
Liu, J., M. A. Carmell, F. V. Rivas, C. G. Marsden, J. M. Thomson, J. J. Song, S. M. Hammond, L. Joshua-Tor, and G. J. Hannon. 2004. Argonaute2 is the catalytic engine of mammalian rnai. Science 305: 1437-1441.
Mackay, A. M., S. C. Beck, J. M. Murphy, F. P. Barry, C. O. Chichester, and M. F. Pittenger. 1998. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue. Eng. 4: 415-428.
Mackie, E. J. 2003. Osteoblasts: Novel roles in orchestration of skeletal architecture. Int. J. Biochem. Cell Biol. 35: 1301-1305.
Majumdar, M. K., M. Keane-Moore, D. Buyaner, W. B. Hardy, M. A. Moorman, K. R. McIntosh, and J. D. Mosca. 2003. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J. Biomed. Sci. 10: 228-241.
Makino, S., K. Fukuda, S. Miyoshi, F. Konishi, H. Kodama, J. Pan, M. Sano, T. Takahashi, S. Hori, H. Abe, J. Hata, A. Umezawa, and S. Ogawa. 1999. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103: 697-705.
Mandavilli, A. 2005. Scientists seek simple remedies to cloning conundrums. Nat. Med. 11: 459.
Mansilla, E., G. H. Marin, H. Drago, F. Sturla, E. Salas, C. Gardiner, S. Bossi, R. Lamonega, A. Guzman, A. Nunez, M. A. Gil, G. Piccinelli, R. Ibar, and C. Soratti. 2006. Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: New evidence for their use in regenerative medicine. Transplant Proc. 38: 967-969.
Martin, D. R., N. R. Cox, T. L. Hathcock, G. P. Niemeyer, and H. J. Baker. 2002. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp. Hematol. 30: 879-886.
Meirelles Lda, S., and N. B. Nardi. 2003. Murine marrow-derived mesenchymal stem cell: Isolation, in vitro expansion, and characterization. Br. J. Haematol. 123: 702-711.
Meisel, R., A. Zibert, M. Laryea, U. Gobel, W. Daubener, and D. Dilloo. 2004. Human bone marrow stromal cells inhibit allogeneic t-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103: 4619-4621.
Meunier, P., J. Aaron, C. Edouard, and G. Vignon. 1971. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin. Orthop. Relat. Res. 80: 147-154.
Minguell, J. J., and A. Erices. 2006. Mesenchymal stem cells and the treatment of cardiac disease. Exp Biol Med (Maywood) 231: 39-49.
Minguell, J. J., A. Erices, and P. Conget. 2001. Mesenchymal stem cells. Exp. Biol. Med. (Maywood) 226: 507-520.
Miura, M., Y. Miura, H. M. Padilla-Nash, A. A. Molinolo, B. Fu, V. Patel, B. M. Seo, W. Sonoyama, J. J. Zheng, C. C. Baker, W. Chen, T. Ried, and S. Shi. 2006. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24: 1095-1103.
Mizuno, H., Y. Itoi, S. Kawahara, R. Ogawa, S. Akaishi, and H. Hyakusoku. 2008. In vivo adipose tissue regeneration by adipose-derived stromal cells isolated from gfp transgenic mice. Cells Tissues Organs 187: 177-185.
Modderman, W. E., T. Vrijheid-Lammers, C. W. Lowik, and P. J. Nijweide. 1994. Removal of hematopoietic cells and macrophages from mouse bone marrow cultures: Isolation of fibroblastlike stromal cells. Exp. Hematol. 22: 194-201.
Mosca, J. D., J. K. Hendricks, D. Buyaner, J. Davis-Sproul, L. C. Chuang, M. K. Majumdar, R. Chopra, F. Barry, M. Murphy, M. A. Thiede, U. Junker, R. J. Rigg, S. P. Forestell, E. Bohnlein, R. Storb, and B. M. Sandmaier. 2000. Mesenchymal stem cells as vehicles for gene delivery. Clin. Orthop. Relat. Res. S71-90.
Muraglia, A., R. Cancedda, and R. Quarto. 2000. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J. Cell Sci. 113 ( Pt 7): 1161-1166.
Nadri, S., and M. Soleimani. 2007. Isolation murine mesenchymal stem cells by positive selection. In Vitro Cell Dev. Biol. Anim. 43: 276-282.
Nadri, S., M. Soleimani, R. H. Hosseni, M. Massumi, A. Atashi, and R. Izadpanah. 2007. An efficient method for isolation of murine bone marrow mesenchymal stem cells. Int. J. Dev. Biol. 51: 723-729.
Nauta, A. J., and W. E. Fibbe. 2007. Immunomodulatory properties of mesenchymal stromal cells. Blood 110: 3499-3506.
Niwa, H., K. Yamamura, and J. Miyazaki. 1991. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108: 193-199.
Okabe, M., M. Ikawa, K. Kominami, T. Nakanishi, and Y. Nishimune. 1997. 'green mice' as a source of ubiquitous green cells. FEBS Lett. 407: 313-319.
Ortiz, L. A., M. Dutreil, C. Fattman, A. C. Pandey, G. Torres, K. Go, and D. G. Phinney. 2007. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc. Natl. Acad. Sci. U. S. A. 104: 11002-11007.
Ortiz, L. A., F. Gambelli, C. McBride, D. Gaupp, M. Baddoo, N. Kaminski, and D. G. Phinney. 2003. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc. Natl. Acad. Sci. U. S. A. 100: 8407-8411.
Owen, M., and A. J. Friedenstein. 1988. Stromal stem cells: Marrow-derived osteogenic precursors. Ciba. Found. Symp. 136: 42-60.
Peister, A., J. A. Mellad, B. L. Larson, B. M. Hall, L. F. Gibson, and D. J. Prockop. 2004. Adult stem cells from bone marrow (mscs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103: 1662-1668.
Peled, A., I. Petit, O. Kollet, M. Magid, T. Ponomaryov, T. Byk, A. Nagler, H. Ben-Hur, A. Many, L. Shultz, O. Lider, R. Alon, D. Zipori, and T. Lapidot. 1999. Dependence of human stem cell engraftment and repopulation of nod/scid mice on cxcr4. Science 283: 845-848.
Petite, H., V. Viateau, W. Bensaid, A. Meunier, C. de Pollak, M. Bourguignon, K. Oudina, L. Sedel, and G. Guillemin. 2000. Tissue-engineered bone regeneration. Nat. Biotechnol. 18: 959-963.
Phinney, D. G., K. Hill, C. Michelson, M. DuTreil, C. Hughes, S. Humphries, R. Wilkinson, M. Baddoo, and E. Bayly. 2006. Biological activities encoded by the murine mesenchymal stem cell transcriptome provide a basis for their developmental potential and broad therapeutic efficacy. Stem Cells 24: 186-198.
Phinney, D. G., and I. Isakova. 2005. Plasticity and therapeutic potential of mesenchymal stem cells in the nervous system. Curr. Pharm. Des. 11: 1255-1265.
Phinney, D. G., G. Kopen, W. Righter, S. Webster, N. Tremain, and D. J. Prockop. 1999. Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J. Cell. Biochem. 75: 424-436.
Phinney, D. G., and D. J. Prockop. 2007. Concise review: Mesenchymal stem/multipotent stromal cells: The state of transdifferentiation and modes of tissue repair--current views. Stem Cells 25: 2896-2902.
Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147.
Pittenger, M. F., and B. J. Martin. 2004. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res. 95: 9-20.
Potian, J. A., H. Aviv, N. M. Ponzio, J. S. Harrison, and P. Rameshwar. 2003. Veto-like activity of mesenchymal stem cells: Functional discrimination between cellular responses to alloantigens and recall antigens. J. Immunol. 171: 3426-3434.
Prockop, D. J. 1997. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276: 71-74.
Prockop, D. J. 2007. 'Stemness' Does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (mscs). Clin. Pharmacol. Ther. 82: 241-243.
Prockop, D. J., C. A. Gregory, and J. L. Spees. 2003. One strategy for cell and gene therapy: Harnessing the power of adult stem cells to repair tissues. Proc. Natl. Acad. Sci. U. S. A. 100 Suppl 1: 11917-11923.
Prockop, D. J., and S. D. Olson. 2007. Clinical trials with adult stem/progenitor cells for tissue repair: Let's not overlook some essential precautions. Blood 109: 3147-3151.
Quarto, R., M. Mastrogiacomo, R. Cancedda, S. M. Kutepov, V. Mukhachev, A. Lavroukov, E. Kon, and M. Marcacci. 2001. Repair of large bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med. 344: 385-386.
Quirici, N., D. Soligo, P. Bossolasco, F. Servida, C. Lumini, and G. L. Deliliers. 2002. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp. Hematol. 30: 783-791.
Ramirez, M., A. Lucia, F. Gomez-Gallego, J. Esteve-Lanao, A. Perez-Martinez, C. Foster, A. L. Andreu, M. A. Martin, L. Madero, J. Arenas, and J. Garcia-Castro. 2006. Mobilisation of mesenchymal cells into blood in response to skeletal muscle injury. Br. J. Sports Med. 40: 719-722.
Ren, G., L. Zhang, X. Zhao, G. Xu, Y. Zhang, A. I. Roberts, R. C. Zhao, and Y. Shi. 2008. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2: 141-150.
Reyes, M., T. Lund, T. Lenvik, D. Aguiar, L. Koodie, and C. M. Verfaillie. 2001. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98: 2615-2625.
Ringden, O., M. Uzunel, I. Rasmusson, M. Remberger, B. Sundberg, H. Lonnies, H. U. Marschall, A. Dlugosz, A. Szakos, Z. Hassan, B. Omazic, J. Aschan, L. Barkholt, and K. Le Blanc. 2006. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81: 1390-1397.
Ringe, J., C. Kaps, B. Schmitt, K. Buscher, J. Bartel, H. Smolian, O. Schultz, G. R. Burmester, T. Haupl, and M. Sittinger. 2002. Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. Cell. Tissue Res. 307: 321-327.
Ringe, J., S. Strassburg, K. Neumann, M. Endres, M. Notter, G. R. Burmester, C. Kaps, and M. Sittinger. 2007. Towards in situ tissue repair: Human mesenchymal stem cells express chemokine receptors cxcr1, cxcr2 and ccr2, and migrate upon stimulation with cxcl8 but not ccl2. J. Cell. Biochem. 101: 135-146.
Rochefort, G. Y., B. Delorme, A. Lopez, O. Herault, P. Bonnet, P. Charbord, V. Eder, and J. Domenech. 2006. Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells 24: 2202-2208.
Rosen, E. D., and O. A. MacDougald. 2006. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7: 885-896.
Ruster, B., S. Gottig, R. J. Ludwig, R. Bistrian, S. Muller, E. Seifried, J. Gille, and R. Henschler. 2006. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 108: 3938-3944.
Ryan, J. M., F. P. Barry, J. M. Murphy, and B. P. Mahon. 2005. Mesenchymal stem cells avoid allogeneic rejection. J. Inflamm. (Lond) 2: 8.
Sato, Y., H. Araki, J. Kato, K. Nakamura, Y. Kawano, M. Kobune, T. Sato, K. Miyanishi, T. Takayama, M. Takahashi, R. Takimoto, S. Iyama, T. Matsunaga, S. Ohtani, A. Matsuura, H. Hamada, and Y. Niitsu. 2005. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood 106: 756-763.
Scheideler, M., C. Elabd, L. E. Zaragosi, C. Chiellini, H. Hackl, F. Sanchez-Cabo, S. Yadav, K. Duszka, G. Friedl, C. Papak, A. Prokesch, R. Windhager, G. Ailhaud, C. Dani, E. Z. Amri, and Z. Trajanoski. 2008. Comparative transcriptomics of human multipotent stem cells during adipogenesis and osteoblastogenesis. BMC Genomics 9: 340.
Seale, P., B. Bjork, W. Yang, S. Kajimura, S. Chin, S. Kuang, A. Scime, S. Devarakonda, H. M. Conroe, H. Erdjument-Bromage, P. Tempst, M. A. Rudnicki, D. R. Beier, and B. M. Spiegelman. 2008. Prdm16 controls a brown fat/skeletal muscle switch. Nature 454: 961-967.
Sekiya, I., J. T. Vuoristo, B. L. Larson, and D. J. Prockop. 2002. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc. Natl. Acad. Sci. U. S. A. 99: 43
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45374-
dc.description.abstract間葉幹細胞 (mesenchymal stem cells, MSCs) 於體內為具有自我更新 (self-renew) 與複分化潛能 (multipotency) 的成體幹細胞,彼等細胞具有易於分離培養、體外增生快速與免疫調節等特性,逐年受研究者重視。迄今有關MSCs分化與移植走向之機制尚未完全明瞭,職是之故,本研究嘗試以綠色螢光小鼠與豬為模式,研究重點除建立一穩定之MSCs體外培養系統,並分析MSCs於分化前後基因體表現之差別,冀能以此調控與追蹤MSCs移植與分化走向之使用。一般而言,MSCs可藉骨髓單核細胞 (mononuclear cells) 之收集,經一次培養盤貼附 (single-step plastic-adhesion) 法分離之。然以此分離之小鼠骨髓MSCs (mMSCs) 經常伴隨造血細胞 (hematopoietic cells, HCs) 之干擾,繼使mMSC建立殊為困難。本研究發現參與mMSCs嵌合 (engaged) 的HCs群 (MSCs-engaged HCs) 為造成mMSC培養干擾的主要因素,彼等藉由胰蛋白酶 (trypsin) 之添加,trypsin不敏感之MSCs-engaged HCs仍伴隨MSCs脫離培養盤表面,並保留於下一世代 (passage)。有鑑於此,本研究嘗試藉由下列之一次低密度與短時程培養盤貼附法 (transient lower-density plastic adherence, tLDA),迅速將mMSCs自骨髓貼附細胞群中純化分離:經擴增之小鼠骨髓細胞藉由低密度 (1.25×104 cells/cm2) 之接種可有效區隔整體貼附之mMSCs與HCs群;然為避免長程培養對mMSCs生長與分化能力之影響,研究策略係藉短時程 (3小時) 之貼附,將trypsin敏感之mMSCs群回收分離。試驗結果顯示,tLDA分離之mMSCs (tLDA-mMSCs) 可於體外連續擴增培養 (群體倍增數>20),並具有Sca-1、CD29、CD44、CD80與MHC-I陽性以及CD11b、CD31、CD45、CD86、CD117與MHC-II陰性等抗原表現形式 (antigen profile)。在適當培養條件下,tLDA-mMSCs可分化為脂肪細胞 (adipocyte)、成骨細胞 (osteoblast) 與軟骨細胞 (chondrocyte) 等間葉系細胞,具有複分化潛能 (multipotency)。然將tLDA-mMSCs與T細胞共培養 (co-culture)發現,tLDA-mMSCs可顯著抑制同種異體 (allogeneic) T細胞與concanavalin-A誘發之T細胞增殖,此證明tLDA-mMSCs之免疫抑制 (immunosuppressive) 特性。另外經體內移植後,tLDA-mMSCs可自導引 (homing) 至骨髓並參與骨質疏鬆 (osteoporosis)小鼠骨質之形成,彼等可由追朔EGFP轉殖小鼠tLDA-mMSCs (tLDA-mMSCs-GFP) 於體內之走向證實之,此結果亦為mMSCs一次培養盤貼附分離之確效依據。
已知在骨髓微環境 (niche) 中,自MSCs衍生之骨 (bone) 與脂肪 (fat) 發育呈相互對等 (inverse relationship) 調節,而彼等調節生理與老化誘導之骨質疏鬆及所伴隨之骨髓脂化特性 (marrow adiposity) 息息相關。鑑此能有效定義MSCs於成骨生成 (osteogenesis) 與脂肪生成 (adipogenesis) 過程中參與之調節分子,對於MSCs於骨質疏鬆症研究與治療之策略將有實質之幫助。基於上述建立之HC-free mMSCs培養系統,本研究另比較其所分離之tLDA-mMSCs於早期 (0、2、6與24小時) 成骨分化與脂肪分化過程中具相互對等調控之轉錄體 (transcriptomics) 與微型核醣核酸 (microRNA, miRNAs) 表現之差別;藉由微陣列分析之結果顯示,試驗分別定義共97個與84個具顯著差異對等表現之基因群與miRNAs。另以miRanda、TargetScan與PicTar資料庫進行生物資訊分析與定量PCR確認顯示,6個經成骨分化過程顯著表現之候選miRNAs:miR-20b、miR-25、miR-29b、miR-106b、miR-125a-3p與miR-211可標的於脂肪分化顯著表現之基因群,其中包括PPAR-gamma等脂肪分化訊息路徑因子。此對等分化調節分子之定義為調控MSCs體內與體外分化走向之有效依據。
綜觀再生醫學領域之發展,動物模式之使用於疾病發展歷程中扮演重要樞紐。豬,係具有較大的體型,並與人類有相近的生理特徵,因此,豬在臨床前研究基礎上具極佳之應用價值。基於研究初步定義之功能性mMSCs與彼等參與分化調節分子之結果,另鑑於本研究團隊已成功培育出EGFP基因轉殖豬,本研究亦嘗試由EGFP轉殖豬骨髓分離其MSCs (Green fluorescent protein tagged pig bone marrow mesenchymal stem cells, pMSCs-GFP),且建立一穩定之體外與體內功能性分析系統。研究結果顯示,自EGFP轉殖豬骨髓分離之pMSCs-GFP呈典型纖維母細胞型態,彼等貼附分離之pMSCs-GFP可於體外連續擴增培養 (群體倍增數>40),擁有典型pMSCs抗原表現形式、複分化潛能與免疫抑制等功能,且彼等pMSCs-GFP螢光蛋白之表現亦不受體外分化程序所影響 (>99%為GFP陽性細胞)。進一步將pMSCs-GFP以原位 (in situ) 注射法注入心肌梗塞 (myocardial infarction) 疾病小鼠顯示,pMSCs-GFP可有效改善疾病小鼠之心肌厚度,並顯著提升其心功能 (heart functions)。彼等pMSCs-GFP之修復機制可由光子影像 (photon image) 系統進行追蹤,因此非常適合利用其螢光特性來進行MSCs移植後之走向分析。綜言,吾等定義由EGFP轉殖小鼠與豬骨髓MSCs之分離與分化之調控因子,此等研究成果將有助於未來臨床前以豬為模式進行細胞治療、基因治療與組織工程研究基礎之極佳用途。
zh_TW
dc.description.abstractResearch into mesenchymal stem cells (MSCs) has been fueled because of their capacities to renew themselves and display general multipotentiality. Over the last several years, MSCs have generated a great deal of interest in many clinical settings, including that of regenerative medicine, immune modulation and tissue engineering. Nevertheless, assessment of therapeutics in MSCs remains controversy, largely owning to a lack of efficient MSCs tracker and in-depth understanding of the mechanisms that regulate functions and differentiations of the MSCs. Taking advantage of the green fluorescent protein (GFP) transgenic mice and pigs being generated in our laboratory, the goal of our study was to establish the optimal conditions for culturing MSCs isolated from these fluorescent animals, in which robust levels of GFP are expressed in stem cells and all differentiated progenies. In addition, the detailed mechanisms governing MSCs differentiation will also be evaluated. Classically, MSCs can be relatively easy to isolate from the bone marrow by their physical propensity to adhere to tissue culture plates and flasks. However, in mice, MSCs can be difficult to be isolated from contaminating HCs. Herein, we developed a non-antigenic based, single-step method to deplete HCs within 3 hours using the following transient lower-density plastic adherence (tLDA): cells are plated at a lower-density (1.25 × 104 cells/cm2) to allow all HCs attaching on the plastic surface and avoid overlapping with mMSCs. After a short-term of adherent period of no more than 3 hours followed by trypsin digestion, the HCs are eradicated due to the plastic-adhering HCs can not be lifted by trypsin, whereas mMSCs can. Here we show that these tLDA-isolated mMSCs, termed “tLDA-mMSCs”, can be extensively expanded (approximately 20 doubling populations) and exhibited antigen profiles that positive for Sca-1, CD29, CD44, CD80 and MHC-I and negative for CD11b, CD31, CD45, CD86, CD117 and MHC-II. Under an appropriate induction condition, tLDA-mMSCs can differentiate into adipocytes, chondrocytes and osteoblasts in vitro. When allogeneic tLDA-mMSCs was added to T cells stimulated by allogeneic lymphocytes or the potent T-cell mitogen concanavalin-A, a significant reduction in T-cell proliferation was observed, suggestive of their immunosuppressive effects. After intravenous transplantation, tLDA-mMSCs can migrate into the allogeneic bone marrow and rescued osteoporosis symptoms. We developed a simple and economic method that effectively isolated HCs-free, therapeutically functional mMSCs from marrow adherent cultures using plastic-adhesion. These cells will be suitable for various mechanistic and therapeutic studies in mouse model.
It is well established that an inverse relationship exists between bone and fat development within the marrow cavity. Developmentally, adipocytes and osteoblasts are originated from the same mesenchymal precursors, MSCs or stromal cells, in the bone marrow. Dissecting mechanism concerning the switch between adipocyte and osteoblast differentiation is crucial of treatment for osteoporosis, where an imbalanced bone/fat development in bone marrow is observed. Here, we compared the transcripotmics and microRNA (miRNAs) expression pattern of these HCs-free tLDA-mMSCs at an early step of commitment to adipocytes and osteoblasts (0, 2, 6 and 24 hours), in order to identify master miRNAs regulators responsible for the cell fate determination. Under this approach, we identified 97 genes and 84 miRNAs that showed significantly reciprocal expression during osteogenesis and adipogenesis. Using of several bioinformatic platforms to look for these potential interacted regulators, we identified 6 miRNAs namely: miR-20b, -25, -29b, -106b, 125a-3p and -211, that are activated during osteogenesis while the genes expressed during adipogenesis have target sites of these miRNAs. These candidate regulators possess potential to further elucidate the mechanism governing MSCs differentiation both in vitro and in vivo.
The pig is a very useful model animals for regenerative medicine studies because of their suitable body size and similar physiology compared to human. Since the mMSCs system could be used as references from the other species such as pigs, and in addition, the EGFP transgenic pigs had been successfully produced in our laboratory, all of their body tissues and organs expressed GFP and useful to be as a tracker in vitro and in vivo. Progressively, we would like to establish MSCs system from the bone marrow of those EGFP transgenic pigs. The pig MSCs were initially isolated from the marrow nucleated cultures using plastic-adherence and tagged with green fluorescent protein (pMSCs-GFP). These cells can be extensively expanded for more than 20 passages (approximately 40 doubling populations), exhibited homogeneous antigen profiles and have immunosuppressive effects. Under an appropriate induction condition, pMSCs-GFP can differentiate into adipocytes, chondrocytes, osteoblasts and neural cells, all of the cells expressed unform and high levels of GFP. Moreover, injection of pMSCs-GFP can dramatically increase thickness of the infracted myocardium and improve cardiac function in mice suffering myocardium infarction; these cells can be easily identified through ex vivo fluorescence imaging. In the present dissertation, an efficient, effective and easy way to identify pig MSCs after extended expansion, differentiation and transplantation in vivo has been developed and described in detail. These have further provided the opportunity to reveal the genetic changes of MSCs after transplanting to the preconditioned’ organ/tissue damaged, recipients. Based on strategies described above, optimal conditions for culture of MSCs have been identified and several potential molecular regulators involved in governing the differentiation of MSCs have been confirmed. These results would offer new insights into the biology of MSCs and it is anticipated that results derived from the present studies would have great benefit for the further MSCs therapeutics.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:16:47Z (GMT). No. of bitstreams: 1
ntu-98-D92626002-1.pdf: 3059650 bytes, checksum: 7ca1ec7c4b21fa6dd46331719a8d4829 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書 i
緒言 ii
中文摘要 v
Abstract viii
目錄 xi
Chapter I Mesenchymal stem cells (MSCs): a literature review 1
(I) The discovery of MSCs 1
(II) In vitro characteristics of MSCs 2
(III) Phenotypic characteristics of MSCs 3
(IV) Differentiation potential of MSCs 6
(V) Immunological characteristics of MSCs 9
(VI) Homing and migration of MSCs 12
1. Chemokines and leukocyte traffic 13
2. Chemokine receptor expressions on MSCs 13
3. Adhesion molecules and MSCs 15
(VII) MSCs in tissue repair 16
(VIII) Concluding remarks 17
Chapter II Isolation of therapeutically functional mouse bone marrow mesenchymal stem cells within 3 hours by an effective single-step plastic-adherent method 19
(I) Abstract 19
(II) Introduction 20
(III) Materials and methods 22
1. Animals 22
2. Isolation and culture of mouse marrow adherent cells 22
3. Purification of mMSCs by tLDA approach 23
4. Immunodepletion 23
5. Population doubling time (PDT) 24
6. Immunofluorescence 24
7. Fluorescence-Activated Cell Sorting (FACS) analysis 24
8. Tri-lineage differentiation assays 25
9. Mitogen proliferation assays and allogeneic mixed lymphocyte reaction (MLR) 25
10. Generation of GFP-expressing transgenic mice as mMSC donors for cell transplantation studies 26
11. Therapeutic studies of mMSCs in osteoporosis mice 26
12. Histological evaluation 27
13. Microcomputerized tomography (μCT) 27
14. Statistical analysis 28
(IV) Results 28
1. Development of mouse marrow adherent cultures 28
2. The engaged HCs persistently contaminate the mMSCs cultures 28
3. Isolation of mMSCs by tLDA approach 29
4. Phenotypic characterization of tLDA-mMSCs 31
5. In vitro differentiation of the tLDA-mMSCs 31
6. Immunosuppressive characteristics of the tLDA-mMSCs 32
7. Homing and therapeutic effects of tLDA-mMSCs in an osteoporosis disease model 33
(V) Discussion 34
Chapter III Involvement of microRNAs in adipogenesis/osteogenesis switches of mouse bone marrow mesenchymal stem cells 52
(I) Abstract 52
(II) Introduction 53
(III) Materials and methods 55
1. Isolation of tLDA-mMSCs 55
2. Sample preparation and gene/miRNA array analysis 55
3. Real-time PCR to quantify miRNAs 55
4. Immunoblots 56
5. Statistical analysis 56
(IV) Results 56
1. Reciprocal expression of genes and miRNAs are involved in osteogenesis and osteogenesis of MSCs 56
(V) Discussion 58
Chapter IV Towards an ideal animal model to trace donor cell fates after stem cell therapy: production of stably labeled multipotent mesenchymal stem cells from bone marrow of transgenic pig harboring with EGFP gene 67
(I) Abstract 67
(II) Introduction 68
(III) Materials and methods 70
1. EGFP transgenic pig production 70
2. Analysis of transgene integration of EGFP transgenic pigs 70
3. Isolation and culture of bone marrow-derived fluorescent MSCs (pMSCs-GFP) 71
4. Fluorescence-activated cell sorting (FACS) analysis 72
5. Differentiation assays 72
5-1. Adipogenic differentiation 72
5-2. Osteogenic differentiation 73
5-3. Chondrogenic differentiation 73
5-4. Neuroectoderm differentiation 74
6. Total RNA extraction and RT-PCR analysis of gene expression 74
7. Q-RT-PCR 75
8. Examination of GFP expression in the pMSCs-GFP and differentiated cells 75
9. Immunofluorescence 76
10. Western blot analysis 76
11. Myocardial infarction and intramyocardial pMSCs-GFP injection 77
12. Echocardiography 77
13. Fluorescence imaging for transplanted cell survival 78
14. Histological examination 78
15. Statistical analysis 78
(IV) Results 79
1. Generation of transgenic pigs harboring the EGFP gene 79
2. Expression of exogenous EGFP in the bone marrow-derived MSCs 79
3. FACS analysis 80
4. In vitro differentiation and GFP examination of adipocytes, osteocytes and chondrocytes from the pMSCs-GFP 81
5. In vitro differentiation and GFP examination of neuronal cells from the pMSCs-GFP 82
6. Engraftment and growth of the pMSCs-GFP 83
7. Effects of pMSCs-GFP on cardiac function 84
(V) Discussion 84
Conclusion 97
References 98
Publication list 117
dc.language.isozh-TW
dc.subject小鼠zh_TW
dc.subject豬zh_TW
dc.subject骨髓zh_TW
dc.subject間葉幹細胞zh_TW
dc.subject綠色螢光蛋白質zh_TW
dc.subjectmesenchymal stem cellsen
dc.subjectbone marrowen
dc.subjectgreen fluorescent proteinen
dc.subjectmouseen
dc.subjectpigen
dc.title綠色螢光小鼠與豬骨髓間葉幹細胞之建立與細胞治療研究zh_TW
dc.titleThe cell-based therapeutics of marrow-derived mesenchymal stem cells isolated from transgenic mice and pigs harboring with EGFP geneen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree博士
dc.contributor.coadvisor鄭登貴(Winston Teng-Kuei Cheng)
dc.contributor.oralexamcommittee徐善慧(Shan-hui Hsu),陳全木(Chuan-Mu Chen),黃效民(Shiaw-Min Hwang)
dc.subject.keyword豬,小鼠,骨髓,間葉幹細胞,綠色螢光蛋白質,zh_TW
dc.subject.keywordpig,mouse,bone marrow,mesenchymal stem cells,green fluorescent protein,en
dc.relation.page117
dc.rights.note有償授權
dc.date.accepted2009-12-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved