Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45364
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝之真(Chih-Chen Hsieh)
dc.contributor.authorHsin-Wei Chenen
dc.contributor.author陳信瑋zh_TW
dc.date.accessioned2021-06-15T04:16:16Z-
dc.date.available2016-08-20
dc.date.copyright2011-08-20
dc.date.issued2011
dc.date.submitted2011-08-17
dc.identifier.citation1. Chan, E.Y., et al., DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags. Genome Research, 2004. 14(6): p. 1137-1146.
2. Lin, P.K., et al., Static conformation and dynamics of single DNA molecules confined in nanoslits. Physical Review E, 2007. 76(1): p. -.
3. Turner, P.C., et al., 分子生物學速成. 2002, 臺北市: 合記書局總經銷.
4. Perkins, T.T., et al., Stretching of a Single Tethered Polymer in a Uniform-Flow. Science, 1995. 268(5207): p. 83-87.
5. Zimm, B.H., Extension in flow of a DNA molecule tethered at one end. Macromolecules, 1998. 31(18): p. 6089-6098.
6. Olive, D.M. and P. Bean, Principles and applications of methods for DNA-beased typing of microbial organisms. Journal of Clinical Microbiology, 1999. 37(6): p. 1661-1669.
7. Brown, T.A., Genomes 3. 2007, New York: Garland Science Pub.
8. Schafer, D.A., et al., Transcription by Single Molecules of Rna-Polymerase Observed by Light-Microscopy. Nature, 1991. 352(6334): p. 444-448.
9. Chu, S., Laser Manipulation of Atoms and Particles. Science, 1991. 253(5022): p. 861-866.
10. Smith, S.B., L. Finzi, and C. Bustamante, Direct Mechanical Measurements of the Elasticity of Single DNA-Molecules by Using Magnetic Beads. Science, 1992. 258(5085): p. 1122-1126.
11. Kim, J.H., W.X. Shi, and R.G. Larson, Methods of stretching DNA molecules using flow fields. Langmuir, 2007. 23(2): p. 755-764.
12. Balducci, A. and P.S. Doyle, Conformational preconditioning by electrophoresis of DNA through a finite obstacle array. Macromolecules, 2008. 41(14): p. 5485-5492.
13. Randall, G.C., K.M. Schultz, and P.S. Doyle, Methods to electrophoretically stretch DNA: microcontractions, gels, and hybrid gel-microcontraction devices. Lab on a Chip, 2006. 6(4): p. 516-525.
14. Douville, N., D. Huh, and S. Takayama, DNA linearization through confinement in nanofluidic channels. Analytical and Bioanalytical Chemistry, 2008. 391(7): p. 2395-2409.
15. Reisner, W., et al., Statics and dynamics of single DNA molecules confined in nanochannels. Physical Review Letters, 2005. 94(19).
16. Bow, H.C., Characterization of Nanofilter Arrays for Small Molecule Separation, in Electrical Engineering and Computer Sciences. 2004.
17. Athmakuri, K., et al., Influence of Chain Length on the Diffusion and Electrophoresis of DNA Adsorbed on Heterogeneous Supported Lipid Bilayers. Langmuir, 2010. 26(16): p. 13393-13398.
18. Balducci, A., Studies of DNA Dynamics in Slit-Like Nanochannel Confinement, in Chemical Engineering. 2003, Carnegie-Mellon University.
19. TANG, J., Singal Molecule DNA Dynamics in Micro- and Nano-Fluidic Device, in Chemical Engineering. 2009, Massachusetts Institute of Technology.
20. Hsieh, C.C., A. Balducci, and P.S. Doyle, An experimental study of DNA rotational relaxation time in nanoslits. Macromolecules, 2007. 40(14): p. 5196-5205.
21. Maier, B. and J.O. Radler, DNA on fluid membranes: A model polymer in two dimensions. Macromolecules, 2000. 33(19): p. 7185-7194.
22. Olson, D.J., et al., Electrophoresis of DNA adsorbed to a cationic supported bilayer. Langmuir, 2001. 17(23): p. 7396-7401.
23. Maier, B. and J.O. Radler, Conformation and self-diffusion of single DNA molecules confined to two dimensions. Physical Review Letters, 1999. 82(9): p. 1911-1914.
24. Kahl, V., et al., Conformational dynamics of DNA-electrophoresis on cationic membranes. Electrophoresis, 2009. 30(8): p. 1276-1281.
25. Koltover, I., K. Wagner, and C.R. Safinya, DNA condensation in two dimensions. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(26): p. 14046-14051.
26. Mennicke, U. and T. Salditt, Preparation of solid-supported lipid bilayers by spin-coating. Langmuir, 2002. 18(21): p. 8172-8177.
27. Hochrein, M.B., et al., Structure and mobility of lipid membranes on a thermoplastic substrate. Langmuir, 2006. 22(2): p. 538-545.
28. Hohner, A.O., M.P.C. David, and J.O. Radler, Controlled solvent-exchange deposition of phospholipid membranes onto solid surfaces. Biointerphases, 2010. 5(1): p. 1-8.
29. Axelrod, D., et al., Mobility Measurement by Analysis of Fluorescence Photobleaching Recovery Kinetics. Biophysical Journal, 1976. 16(9): p. 1055-1069.
30. Koppel, D.E., et al., DYNAMICS OF FLUORESCENCE MARKER CONCENTRATION AS A PROBE OF MOBILITY. Biophysical Journal, 1976. 16(2): p. A216-A216.
31. Soumpasis, D.M., THEORETICAL-ANALYSIS OF FLUORESCENCE PHOTOBLEACHING RECOVERY EXPERIMENTS. Biophysical Journal, 1983. 41(1): p. 95-97.
32. Perkins, T., et al., Relaxation of a single DNA molecule observed by optical microscopy. Science, 1994. 264(5160): p. 822-826.
33. Maier, B. and J.O. Rädler, Shape of Self-Avoiding Walks in Two Dimensions. Macromolecules, 2001. 34(16): p. 5723-5724.
34. Randall, G.C. and P.S. Doyle, Collision of a DNA polymer with a small obstacle. Macromolecules, 2006. 39(22): p. 7734-7745.
35. Chem, M., SU-8 2000 Permanent Epoxy Negative Photoresist Processing Guidelines. www.microchem.com.
36. 龍文安, 半導體奈米技術. 五南圖書出版, 2004: p. p. 129-200.
37. Doyle, P.S. and J.M. Kim, Design and numerical simulation of a DNA electrophoretic stretching device. Lab on a Chip, 2007. 7(2): p. 213-225.
38. Tang, J. and P.S. Doyle, Electrophoretic stretching of DNA molecules using microscale T junctions. Applied Physics Letters, 2007. 90(22): p. -.
39. Maier, B., U. Seifert, and J.O. Radler, Elastic response of DNA to external electric fields in two dimensions. Europhysics Letters, 2002. 60(4): p. 622-628.
40. Israelachvili, J.N., Intermolecular and surface forces. 2011, Burlington, MA: Academic Press.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45364-
dc.description.abstract本研究探討如何利用非均勻的電場將吸附於脂質雙層膜上之DNA拉伸。近年來,開發DNA快速基因定位技術一直是重要的研究課題。在快速基因定位技術所使用的直接線性分析法中,穩定並有效地拉伸DNA是提升其準確度的關鍵。為了達到這個目的我們提出先將帶負電的DNA吸附在帶正電的脂質雙層膜上,再利用非均勻的電場以表面電泳的方式將DNA拉伸。這個方法不同一般利用非均勻的流場或電場將DNA拉伸之處,在於DNA被限制於二維平面而不是三維空間。侷限於二維平面下的DNA具有較大的平衡型態。在拉伸的過程中,二維型態的DNA也比三維型態下的DNA損失較少亂度。基於這些因素,我們預期拉伸二維型態下的DNA要比拉伸三維型態下的DNA容易很多。本實驗在漸縮微流道中進行,非均勻的電場是利用改變微流道的寬度來產生。
在實驗的觀察中,我們發現DNA雖然能夠被拉伸至其輪廓長度的70~75%,但並不是因為非均勻電場的效應。原本預期DNA會因電場梯度而產生拉伸的現象並沒有出現。我們觀察到當DNA在脂雙層上移動時,會出現拉伸到一定程度後快速鬆弛的現象,造成DNA在漸縮處無法有效地受到電場梯度的作用。我們在有漸縮和非漸縮的微流道部位中,比較不同脂質雙層膜之帶電程度、電場強度和電場梯度下的DNA拉伸型態,並對不同拉伸型態所造成的伸長量和出現機率來討論DNA在脂雙層上的動態行為。此外,在分析DNA拉伸時,我們觀察到過去文獻中沒有提到過的拉伸型態-Tethered型,Tethered型出現時為DNA的末端會吸附於脂雙層上。我們檢驗DNA末端為黏接端或是鈍端對脂雙層的作用,發現原本具有兩黏接端的DNA會較容易產生Tethered型拉伸。
zh_TW
dc.description.abstractWe perform DNA stretching on supported lipid bilayer (SLB) set on the surface of glass by electric field and electric field gradient. This study is inspired by the recent development of the technology for direct DNA gene mapping. It has received much attention because it enables efficient determination of useful genomic information from DNA. However, the ability to stably and efficiently stretch DNA is the key to the success of this technology.
The proposed method is different from typical DNA stretching techniques because in our case DNA is adsorbed on a lipid bilayer, and therefore DNA stretching happens on 2-dimensional (2D) plane, not in 3-dimensional (3D) space. DNA confined in 2D has a larger equilibrium size and also relaxes slower. In addition, a DNA molecule loses less entropy if it is stretched from 2D configuration relative to from 3D configuration. Therefore, it is expected that stretching DNA on 2D plane will be easier than stretching DNA in 3D space.
Our experiments were performed in a microfluidic channel, and the field gradient was generated by a microcontraction. We find that DNA can be stretched to 70~75% of its contour length. Surprisingly, however, DNA stretching is not caused by the electric field gradient but by other mechanisms. We have observed three different types of DNA stretching. DNA can be hooked by a fixed post, hooked by mobile imprints or tethered to stretch. The formal two have been reported in literatures, while the later is first found in this study. The presence of tethered DNA has been found to be caused by the overhangs of our DNA. We have also studied how the average DNA extension and the probability distribution vary with the electric field strength for different types of DNA stretching. The influence of the charge density of lipid bilayer to DNA stretching has also been investigated.
The cause of the failure to stretch DNA by electric field gradient is still unclear. However, DNA has often been observed to rapidly retract once it is stretched over a certain degree. We believe this is strongly related to the breakdown of our expectation, and more investigation is required to resolve this mystery.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:16:16Z (GMT). No. of bitstreams: 1
ntu-100-R98524087-1.pdf: 3704051 bytes, checksum: 10bd89d56cbdbbee4d23bee0c38f133e (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 ix
表目錄 xvii
符號表 xviii
一、緒論 1
1.1前言 1
1.2研究動機與目的 1
二、文獻回顧 3
2.1 DNA高分子特性 3
2.1.1 DNA分子介紹 3
2.1.2 DNA高分子物性 6
2.2 DNA序列分析及圖譜比對技術的發展 7
2.2.1限制酶酵素(Restriction Enzymes) 9
2.2.2聚合酵素鏈鎖反應(Polymerase chain reaction,PCR) 10
2.2.3 DNA片段處理和序列分析 11
2.2.4 限制酶圖譜 14
2.2.5 直接線性分析法 15
2.2.5.1 栓扯拉伸法 17
2.2.5.2 分子梳拉伸法 18
2.2.5.3 流電場梯度拉伸法 19
2.2.5.4 奈米孔道侷限拉伸法 21
2.2.5.5 總結 23
2.3 電荷動力學之相關現象 23
2.3.1 電雙層 23
2.3.2 電泳 25
2.3.3 電滲透 27
2.4 高分子侷限技術 28
2.4.1各種不同維度的空間侷限 28
2.5 DNA吸附於磷脂質雙層上之行為 30
2.5.1 脂質高分子 30
2.5.2架設脂質雙層之技術 32
2.5.2.1 旋轉塗佈法 33
2.5.2.2 脂小球融合法(Small Unilamellar Vesicle Fusion) 34
2.5.2.3 溶劑交換法 35
2.5.3光漂白螢光回收率的測定技術(Fluorescence Recovery After Photobleaching,FRAP) 36
2.5.4 DNA於磷脂質上之靜態行為 39
2.5.5在電場下DNA於脂質雙層上之動態行為 40
2.5.5.1 勾住拉伸之J與X型 40
2.5.5.2 DNA延著帶正電脂雙層之移動拉伸-U型 42
2.5.5.3 DNA於脂質雙層上的遷移率 43
2.6 本實驗的新設計-流電場梯度+改良式侷限拉伸法 45
三、實驗設備與步驟 47
3.1 儀器設備 47
3.2 實驗藥品 48
3.3 實驗方法 49
3.3.1 微影光蝕刻製程 49
3.3.2 製作脂小球水溶液 54
3.3.3 製作微流體孔道 55
3.3.4 緩衝溶液製備與DNA染色 57
3.3.5以多核醣體來修飾λ-DNA的末端 59
四、實驗結果與討論 61
4.1孔道設計及電場計算 62
4.2利用光漂白螢光回收率測定技術來檢測脂質雙層於微流道中的擴散係數 66
4.3 DNA於不同DOTAP濃度之脂質雙層上的遷移率 69
4.3.1 實驗結果與討論 69
4.4 DNA各種拉伸型態在不同DOTAP濃度下於孔道各部位中的拉伸與出現機率 72
4.4.2 DNA各種不同的拉伸型態 73
4.4.2.1 勾住拉伸之J型和X型 73
4.4.2.2 DNA延著帶正電脂雙層之移動拉伸-U型 74
4.4.2.4 DNA末端吸附於脂雙層上之拉伸-栓扯型 76
4.4.3 DNA各種拉伸型態在不同DOTAP濃度下以固定電場和電場梯度驅動的拉伸量和出現機率 79
4.4.3.1 DNA在固定電場下的伸長量及各項拉伸型態的出現機率 79
4.4.3.2 DNA在電場梯度下的伸長量及各項拉伸型態的出現機率 82
4.4.4 DNA在不同DOTAP濃度下於孔道各位的平均拉伸量 84
4.4.5 總結 86
4.5 DNA末端處理後與脂雙層上的行為 88
4.5.1有無末端處理的DNA對孔道中出現Tethered形的影響 88
4.5.2 DNA有無末端處理在孔道中的遷移率 91
4.5.3 實驗結果與討論 92
五、結論與未來展望 93
5.1 結論 93
5.2 未來展望 94
六、參考文獻 95
dc.language.isozh-TW
dc.subjectDNA拉伸zh_TW
dc.subject電泳zh_TW
dc.subject漸縮微流道zh_TW
dc.subject脂雙層zh_TW
dc.subjectDNA stretchingen
dc.subjectsupported lipid bilayeren
dc.subjectmicrocontractionen
dc.subjectelectrophoresisen
dc.title於漸縮微流道以電場拉伸吸附於脂雙層上DNA之研究zh_TW
dc.titleElectrophoretic stretching of DNA adsorbed on supported lipid bilayer in a microcontractionen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳賢燁(Hsien-Yeh Chen),童世煌(Shih-Huang Tung)
dc.subject.keywordDNA拉伸,脂雙層,漸縮微流道,電泳,zh_TW
dc.subject.keywordDNA stretching,supported lipid bilayer,microcontraction,electrophoresis,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2011-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved