請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45346
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林長平 | |
dc.contributor.author | Yu-Yang Cheng | en |
dc.contributor.author | 程諭揚 | zh_TW |
dc.date.accessioned | 2021-06-15T04:15:22Z | - |
dc.date.available | 2011-01-21 | |
dc.date.copyright | 2010-01-21 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-01-12 | |
dc.identifier.citation | 1.林翠淳. 1996. 植物菌質體廣效型PCR引子之評估及疑似梨衰弱病病原菌質體之檢測. 國立台灣大學植物病理與微生物學研究所碩士論文。
2.Agrios, G. N. 2005. Plant diseases caused by Mollicutes: phytoplasmas and spiroplasmas. Pages 687-703 in: Plant Pathology, 5th ed. Elsevier Academic Press, San Diego, CA. 3.Ammar, E. D., Fulton, D., Bai, X., Meulia, T., and Hogenhout, S. A., 2004. An attachment tip and pili-like structures in insect-and plantpathogenic spiroplasmas of the class Mollicutes. Arch. Microbiol. 181: 97-105. 4.Arashida, R., Kakizawa, S., Ishii, Y., Hoshi, A., Jung, H.-Y., Kagiwada, S., Yamaji, Y., Oshima, K., and Namba, S. 2008. Cloning and characterization of the antigenic membrane protein (Amp) gene and in situ detection of Amp from malformed flowers infected with Japanese hydrangea phyllody phytoplasma. Phytopathology 98: 769-775. 5.Bai, X., Zhang, J., Ewing, A., Miller, S. A., Radek, A. J., Shevchenko, D. V., Tsukerman, K., Walunas, T., Lapidus, A., Campbell, J. W., and Hogenhout, S. A. 2006. Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J. Bacteriol. 188: 3682-3696. 6.Barbara, D. J., Morton, A., Clark, M. F., and Davies, D. L. 2002. Immunodominant membrane proteins from two phytoplasmas in the aster yellows clade (chlorante aster yellows and clover phyllody) are highly divergent in the major hydrophilic region. Microbiology 148: 157-167. 7.Berg, M., Davies, D. L., Clark, M. F., Vetten, H. J., Maier, G., Marcone, C., and Seemüller, E. 1999. Isolation of the gene encoding an immunodominant membrane protein of the apple proliferation phytoplasma, and expression and characterization of the gene product. Microbiology 145: 1937-1943. 8.Berg, M., Melcher, U., and Fletcher, J. 2001. Characterization of Spiroplasma citri adhesion related protein SARP1, which contains a domain of a novel family designated sarpin. Gene 275: 57-64. 9.Berho, N., Duret, S., and Renaudin, J. 2006a. Absence of plasmids encoding adhesion-related proteins in non-insect-transmissible strains of Spiroplasma citri. Microbiology 152: 873-886. 10.Berho, N., Duret, S., Danet, J. L., and Renaudin, J. 2006b. Plasmid pSci6 from Spiroplasma citri GII-3 confers insect transmissibility to the non-transmissible strain S. citri 44. Microbiology 152: 2703-2716. 11.Blomquist, C. L., Barbara, D. J., Davies, D. L., Clark, M. F., and Kirkpatric, B. C. 2001. An immunodominant membrane protein gene from the Western X-disease phytoplasma is distinct from those of other phytoplasmas. Microbiology 147: 571-580. 12.Braun, E. J., and Sinclair, W. A. 1976. Histopathology of phloem necrosis in Ulmus americana. Phytopathology 66: 598-607. 13.Braun, E. J., and Sinclair, W. A. 1978. Translocation in phloem necrosis-diseased American elm seedling. Phytopathology 68: 1733-1737. 14.Chang, F. L., Chen, C. C., and Lin, C. P. 1995. Monoclonal antibody for the detection and identification of a phytoplasma associated with rice yellow dwarf. Eur. J. Plant Pathol. 101: 511-518. 15.Citti, C., Marechal-Drouard, L., Saillard, C., Weil, J. H., and Bove, J. M. 1992. Spiroplasma citri UGG and UGA tryptophan codons: sequence of the two tryptophanyl-tRNAs and organization of the corresponding genes. J. Bacteriol. 174: 6471-6478. 16.Clark, M. F., Morton, A., and Buss, S. L. 1989. Preparation of mycoplasma immunogens from plants and a comparison of polyclonal and monoclonal antibodies made against primula yellows MLO-associated antigens. Ann. Appl. Biol. 114: 111-124. 17.Cossart, P., Pizarro-Cerdá, J., and Lecuit, M. 2003. Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends Cell Biol. 13: 23-31. 18.Denes, A. S., and Sinha, R. C. 1992. Alteration of clover phyllody mycoplasma DNA after in vitro culturing of phyllody-diseased clover. Can. J. Plant Pathol. 14: 189-196. 19.Doi, Y., Teranaka, M., Yora, K., and Asuyama, H. 1967. Mycoplasma-or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows, or paulownia witches'-broom. Ann. Phytopathol. Soc. Japan 33: 259-266. 20.Duret, S., Berho, N., Danet, J. L., Garnier, M., and Renaudin, J. 2003. Spiralin is not essential for helicity, motility, or pathogenicity but is required for efficient transmission of Spiroplasma citri by its leafhopper vector Circulifer haematoceps. Appl. Environ. Microbiol. 69: 6225-6234. 21.Galetto, L., Fletcher, J., Bosco, D., Turina, M., Wayadande, A., and Marzachì, C. 2008. Characterization of putative membrane protein genes of the “Candidatus Phytoplasma asteris”, chrysanthemum yellows isolate. Can. J. Microbiol. 54: 341-351. 22.Garnier, M., Zreik, L., and Bove, J. 1991. Witches'-broom, a lethal mycoplasma disease of lime trees in the sultanate of Oman and the United Arab Emirates. Plant Dis. 75: 546-551. 23.Gu, P. W., Wu, Y. F., Wang, H. N., and An, F.Q. 2008. Clone and molecular characterization of immunodominant membrane protein gene from wheat blue dwarf phytoplasma. Zhongguo Nong Ye Ke Xue 41: 405-411. 24.Gundersen, D. E., and Lee, I.-M. 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathol. Mediterr. 35: 144-151. 25.Hayward, R.D., and Koronakis, V. 2002. Direct modulation of the host cell cytoskeleton by Salmonella actin-binding proteins. Trends Cell Biol. 12: 15-20. 26.Hogenhout, S., Oshima, K., Ammar, E., Kakizawa, S., Kingdom, H., and Namba, S. 2008. Phytoplasma: bacteria that manipulate plants and insects. Mol. Plant Pathol. 9: 403-423. 27.Inamine, J. M., Ho, K. C., Loechel, S., and Hu, P. J. 1990. Evidence that UGA is read as a tryptophan codon rather than as a stop codon by Mycoplasma pneumoniae, Mycoplasma genitalium, and Mycoplasma gallisepticum. J. Bacteriol. 172: 504-506. 28.IRPCM Phytoplasma/ Spiroplasma Working Team-Phytoplasma Taxonomy Group. 2004. “Candidatus Phytoplasma”, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 54: 1245-1255. 29.Ishii, Y., Oshima, K., Kakizawa, S., Hoshi, A., Maejima, K., Kagiwada, S., Yamaji, Y., and Namba, S. 2009. Process of reductive evolution during 10 years in plasmids of a non-insect-transmissible phytoplasma. Gene 446: 51-57. 30.Ishiie, T., Doi, Y., Yora, K., and Asuyama, H. 1967. Suppressive effects of antibiotics of tetracycline group on symptom development in mulberry dwarf disease. Ann. Phytopath. Soc. Jpn. 33: 267-275. 31.Jiang, Y. P., Lei, J. D., and Chen, T. A. 1988. Purification of aster yellows agent from diseased lettuce using affinity chromatography. Phytopathology 78: 828-831. 32.Jomantiene, R., Davis, R. E., Valiunas, D., Alminaite, A. and Staniulis, J. 2002. New group 16SrIII phytoplasma lineages in Lithuania exhibit interoperon sequence heterogeneity. Eur. J. Plant Pathol. 108: 507-517. 33.Kakizawa, S., Oshima, K., Nishigawa, H., Jung, H.-Y., Wei, W., Suzuki, S., Tanaka, M., Miyata, S., Ugaki, M., and Namba, S. 2004. Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology 150: 135-142. 34.Kakizawa, S., Oshima, K., and Namba, S. 2006a. Diversity and functional importance of phytoplasma membrane proteins. Update. Trends Microbiol. 14: 254-256. 35.Kakizawa, S., Oshima, K., Jung, H. Y., Suzuki, S., Nishigawa, H., Arashida, R., Miyata, S. I., Ugaki, M., Kishino, H., and Namba, S. 2006b. Positive selection acting on a surface membrane protein of the plant-pathogenic phytoplasmas. J. Bacteriol. 188: 3424-3428. 36.Kakizawa, S., Oshima, K., Ishii, Y., Hoshi, A., Maejima, K., Jung, H. Y., Yamaji, Y., and Namba, S. 2009. Cloning of immunodominant membrane protein genes of phytoplasmas and their in planta expression. FEMS Microbiol. Lett. 293: 92-101. 37.Killiny, N., Batailler, B., Foissac, X., and Saillard, C. 2006. Identification of a Spiroplasma citri hydrophilic protein associated with insect transmissibility. Microbiology 152: 1221-1230. 38.Killiny, N., Castroviejo, M., and Saillard, C. 2005. Spiroplasma citri spiralin acts in vitro as a lectin binding to glycoproteins from its insect vector Circulifer haematoceps. Phytopathology 95: 541-548. 39.Kirkpatrick, B. C., Stenger, D. C., Morris, T. J., and Purcell, A. H. 1987. Cloning and detection of DNA from a nonculturable plant pathogenic mycoplasma-like organism. Science 238: 197-200. 40.Ko, J. C., and Lin, C. P. 1994. Development and application of cloned DNA probe for a mycoplasmalike organism associated with sweet potato witches'-broom. Phytopathology 84: 468-473. 41.Kube, M., Schneider, B., Kuhl, H., Dandekar, T., Heitmann, K., Migdoll, A. M., Reinhardt, R., and Seemuller, E. 2008. The linear chromosome of the plant-pathogenic mycoplasma “Candidatus Phytoplasma mali”. BMC Genomics 9: 306. 42.Kwon, M., Wayadande, A., and Fletcher, J. 1999. Spiroplasma citri movement into the intestines and salivary glands of its leafhopper vector, Circulifer tenellus. Phytopathology 89: 1144-1151. 43.Lee, I.-M., Bottner, K. D., Secor, G., and Rivera-Varas, V. 2006a. “Candidatus Phytoplasma americanum”, a phytoplasma associated with a potato purple top wilt disease complex. Int. J. Syst. Evol. Microbiol. 56: 1593-1597. 44.Lee, I.-M., Gundersen-Rindal, D. E., Davis, R. E., and Bartoszyk, I.-M. 1998. Revised classification scheme of phytoplasmas based on RFLP analysis of 16S rRNA and ribosomal protein gene sequences. Int. J. Syst. Bacteriol. 48: 1153-1169. 45.Lee, I.-M., Hammond, R. W., Davis, R. E., and Gundersen, D. E. 1993. Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms. Phytopathology 83: 834-842. 46.Lee, I.-M., Zhao, Y., and Bottner, K. D. 2006b. SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma groups. Mol. Cell. Probes 20: 87-91. 47.Lepka, P., Stitt, M., Moll, E., and Seemuller, E. 1999. Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol. Mol. Plant Pathol. 55: 59-68. 48.Liefting, L. W., and Kirkpatrick, B. C. 2003. Cosmid cloning and sample sequencing of the genome of the uncultivable mollicute, Western X-disease phytoplasma, using DNA purified by pulsed-field gel electrophoresis. FEMS Microbiol. Lett. 221: 203-211 49.Lim, P. O., and Sears, B. B. 1991. The genome size of a plant-pathogenic mycoplasmalike organism resembles those of animal mycoplasmas. J. Bacteriol. 173: 2128-2130. 50.Lim, P. O., and Sears, B. B. 1992. Evolutionary relationships of a plant-pathogenic mycoplasmalike organism and Acholeplasma laidlawii deduced from two ribosomal protein gene sequences. J. Bacteriol. 174: 2606-2611. 51.Lim, P. O., Sears, B. B., and Klomparens, K. L. 1992. Membrane properties of a plant-pathogenic mycoplasmalike organism. J. Bacteriol. 174: 682-686. 52.Lin, C. P., and Chen, T. A. 1985. Monoclonal antibodies against the aster yellows agent. Science 227: 1233-1235. 53.Lin, C. L., Zhou, T., Li, H. F., Fan, Z. F., Li, Y., Piao, C. G., and Tian, G. Z. 2009. Molecular characterisation of two plasmids from paulownia witches'-broom phytoplasma and detection of a plasmid-encoded protein in infected plants. Eur. J. Plant Pathol. 123: 321-330. 54.Markham, P. J., and Townsend, R. 1979. Experimental vectors of spiroplasmas: leafhopper vectors and plant disease agents. Pages 413-445 in: Maramorosch, K., and Harris, K. F., eds. New York: Academic Press. 55.Martini, M., Lee, I.-M., Bottner, K. D., Zhao, Y., Botti, S., Bertaccini, A., Harrison, N. A., Carraro, L., Marcone, C., and Osler, R. 2007. Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. Int. J. Syst. Evol. Microbiol. 57: 2037-2051. 56.McCoy, R. E., Caudwell, A., Chang, C. J., Chen, T. A., Chiyowski, L. N., Cousin, M. T., Dale, J. L., de Leeuw, G. T. N., Golino, D. A., Hackett, K. J., Kirkpatrick, B. C., Marwitz, R., Petzold, H., Sinha, R. C. Sugiura, M., Whitcomb, R. F., Yang, I. L., Zhu, B. M., and Seemüller, E. 1989. Plant diseases associated with mycoplasma-like organisms, and Mycoplasmas of plants and Arthropods. Pages 545-640 in: R. F. Whitcomb and J. G. Tully, eds. The Mycoplasmas, Vol. V. Academic Press, San Diego, CA. 57.Milne, R. G., Ramasso, E., Lenzi, R., Masenga, V., Sarindu, N., and Clark, M. F. 1995. Pre- and post-embedding immunogold labeling and electron microscopy in plant host tissues of three antigenically unrelated MLOs: primula yellows, tomato big bud and bermudagrass white leaf. Eur. J. Plant Pathol. 101: 57-67. 58.Morton, A., Davies, D. L., Blomquist, C. L., and Barbara, D. J. 2003. Characterization of homologues of the apple proliferation immunodominant membrane protein gene from three related phytoplasmas. Mol. Plant Pathol. 4: 109-114. 59.Murray, R. G., and Stackebrandt, E. 1995. Taxonomic note: implementation of provisional status Candidatus for incompletely described prokaryotes. Int. J. Syst. Bacteriol. 45: 186-187. 60.Musetti, R., Favali, M. A., and Pressacco, L. 2000. Histopathology and poly- phenol content in plants infected by phytoplasmas. Cytobios 102: 133-147. 61.Nielson, M. W. 1979. Taxonomic relationships of leafhopper vectors of plant pathogens: leafhopper vectors and plant disease agents. Pages 3-27 in: Maramorosch, K., and Harris, K. F., eds. New York: Academic Press. 62.Onuki, M., Hayashi, T., and Sakai, J. 1992. Detection of antigenic proteins of mycoplasmalike organism (MLO) associated with rice yellow dwarf from infected rice plants. Ann Phytopathol. Soc. Japan 58: 613. 63.Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H. Y., Wei, W., Suzuki, S., Arashida, R., Nakata, D., Miyata, S., Ugaki, M., and Namba, S. 2004. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat. Genet. 36: 27-29. 64.Özbek, E., Miller, S. A., Meulia, T., and Hogenhout, S. A. 2003. Infection and replication sites of Spiroplasma kunkelii (Class: Mollicutes) in midgut and Malpighian tubules of the leafhopper Dalbulus maidis. J. Invertebr. Pathol. 82:167-175. 65.Purcell, A., Richardson, J., and Finlay, A. 1981. Multiplication of the agent of X-disease in a non-vector leafhopper Macrosteles fascifrons. Ann. Appl. Biol. 99: 283. 66.Saeed, E., Rage, P., and Cousin, M. T. 1992. Determination of the antigenic protein size associated with faba bean phyllody MLO by using (SDS-PAGE) electrophoresis and immunotransfer. J. Phytopathol. 136: 1-8. 67.Schneider, B., Ahrens, U., Kirkpatrick, B. C., and Seemüller, E. 1993. Classification of plant-pathogenic mycroplasma-like organisms using restriction-site analysis of PCR-amplified 16S rDNA. J. Gen. Microbiol. 139: 519-527 68.Schneider, B., Gibb, K. S., and Seemuller, E. 1997. Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasma. Microbiology 143: 3381-3389. 69.Schneider, B., and Seemüller, E. 1994. Presence of two sets of ribosomal genes in phytopathogenic mollicutes. Appl. Environ. Microbiol. 60: 3409-3412. 70.Schneider, B., Seemüller, E., Smart, C. D., and Kirkpatrick, B. C. 1995. Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. Pages 369-380 in: Molecular and diagnostic procedures in mycoplasmology, vol. 1. S. Razin, and J. G. Tully eds. Academic Press, San Diego, CA. 71.Sears, B. B., Klomparens, K. L., Wood, J. I., and Schewe, G. 1997. Effect of altered levels of oxygen and carbon dioxide on phytoplasma abundance in Oenothera leaftip cultures. Physiol. Mol. Plant Pathol. 50: 275-287. 72.Seemüller, E., Marcone, C., Lauer, U., Ragozzino. A., and Göschl , M. 1998. Current status of molecular classification of the phytoplasma. J. Plant Pathol. 80: 3-26. 73.Shao, J. Y., Jomantiene, R., Dally, E. L., Zhao, Y., Lee, I.-M., Nuss, D. L., and Davis, R. E. 2006. NusA: comparative properties, phylogeny, and use in detection of group 16Srl phytoplasmas. J. Plant Pathol. 88: 193-201. 74.Shen W. C., and Lin C. P. 1993. Production of monoelonal antibodies against a mycoplasmalike organism associated with sweet potato witches' broom. Phytopathology 83: 671-675. 75.Smart, C. D., Schneider, B., Blomquist, C. L., Guerra, L. J., Harrison, N. A., Ahrens, U., Lorenz, K.-H., Seemüller, E., and Kirkpatrick, B. C. 1996. Phytoplasma-specific PCR primers based on sequences of 16S-23S rRNA spacer region. Appl. Environ. Microbiol. 62: 2988-2993. 76.Suzuki, S., Oshima, K., Kakizawa, S., Arashida, R., Jung, H.Y., Yamaji, Y., Nishigawa, H., Ugaki, M., and Namba, S. 2006. Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proc. Natl. Acad. Sci. U.S.A. 103: 4252-4257. 77.Tanaka, R., Andachi, Y., and Muto, A. 1989. Nucleotide sequence of tryptophan tRNA gene on Acholeplasma laidlawii. Nucleic Acids Res. 17: 5842. 78.Tran-Nguyen, L. T., Kube, M., Schneider, B., Reinhardt, R., and Gibb, K. S. 2008. Comparative genome analysis of “Candidatus Phytoplasma australiense” (subgroup tuf-Australia I; rp-A) and 'Ca. Phytoplasma asteris' Strains OY-M and AY-WB. J. Bacteriol. 190: 3979-3991. 79.Vivian, A., Murillo, J., and Jackson, R.W. 2001. The roles of plasmids in phytopathogenic bacteria: mobile arsenals? Microbiology 147: 763-780. 80.Wei, W., Davis, R. E., Lee, I.-M., and Zhao, Y. 2007. Computer simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int. J. Syst. Evol. Microbiol. 57: 1855-1867. 81.Wei, W., Lee, I.-M., Davis, R. E., Suo, X., and Zhao, Y. 2008. Automated RFLP pattern composition and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. Int. J. Syst. Evol. Microbiol. 58: 2368-2377. 82.Yamao, F., Muto, A., Kawauchi, Y., Iwami, M., Iwagami, S., Azumi, Y., and Osawa, S. 1985. UGA is read as tryptophan in Mycoplasma capricolum. Proc. Natl. Acad. Sci. U.S.A. 82: 2306-2309. 83.Ye, F., Melcher, U. and Fletcher, J. 1997. Molecular characterization of a gene encoding a membrane protein of Spiroplasma citri. Gene. 189: 95-100. 84.Yu, Y. L., Yeh, K. W., and Lin, C. P. 1998. An antigenic protein gene of a phytoplasma associated with sweet potato witches' broom. Microbiology 144: 1257-1262 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45346 | - |
dc.description.abstract | 在植物菌質體優勢免疫膜蛋白相關之研究中顯示,其為植物菌質體細胞膜之主要蛋白。優勢免疫膜蛋白基因已陸續由多種植物菌質體中被選殖出來,這些基因所編碼之膜蛋白依據其嵌入於細胞膜上之構型,計可區分為不同的三個類型,分別為第一型優勢免疫膜蛋白 Imp (immunodominant membrane protein, Imp)、第二型優勢免疫膜蛋白 IdpA (immunodominant membrane protein A, IdpA) 以及第三型優勢免疫膜蛋白 Amp (antigenic membrane protein, Amp)。此三型優勢免疫膜蛋白之間在胺基酸序列上不具相似性。此外,在植物菌質體中之優勢免疫膜蛋白基因之序列相同度,亦被證實是低於其上下游基因或是 non-coding regions。本研究利用聚合酵素連鎖反應並配合基因選殖技術,由本實驗室現有之植物菌質體中,選殖獲得花生簇葉病菌質體之第一型 imp 優勢免疫膜蛋白基因之全長序列及台灣梨衰弱病第二群菌質體之第一型 imp 優勢免疫膜蛋白基因之部分序列 、聖誕紅叢枝誘導性植物菌質體之第二型 idpA 及第一型 imp 優勢免疫膜蛋白基因之全長序列以及日日春葉片黃化病及台灣泡桐簇葉病菌質體之第三型 amp 及第一型 imp 優勢免疫膜蛋白基因之全長序列。依序列比對分析之結果,顯示同一型各優勢免疫膜蛋白基因間之序列相同度甚低,尤其在 hydrophilic domain 間之序列相同度更低於其他 domain 間之序列相同度。儘管為同一 16Sr group 中之植物菌質體,其彼此間之優勢免疫膜蛋白基因序列亦具有差異性之區域,因此可據以區分不同 16Sr group 或 subgroup 之植物菌質體。針對台灣目前僅有之同屬 16SrI group 之日日春葉片黃化病菌植體及台灣泡桐簇葉病菌質體,就其第三型優勢免疫膜蛋白基因 amp 序列間具差異性之區域,所設計出之專一性 PCR 引子對 ampf5/Amp1R 及 Amp1F/ampr4,以 PCR 反應可成功區分此二親緣關係相近之植物菌質體。此外,由反轉錄聚合酵素連鎖反應 (RT-PCR) 之結果顯示,日日春葉片黃化病菌質體第一型 imp 及第三型 amp 優勢免疫膜蛋白基因以及花生簇葉病菌質體第一型 imp 優勢免疫膜蛋白基因均可轉錄出 mRNA。 | zh_TW |
dc.description.abstract | Previous studies have shown that an immunodominant membrane protein is a major portion of the total cellular membrane proteins in most phytoplasmas. Genes encoding immunodominant membrane proteins have been identified and sequenced from several taxonomic groups of phytoplasmas and have been classified into three distinct types: type 1 immunodominant membrane protein Imp, type 2 immunodominant membrane protein IdpA, and type 3 immunodominant membrane protein Amp. No amino acid similarity was revealed among different type of immunodominant membrane proteins. The sequence identity of immunodominant membrane protein genes between phytoplamas was also evidenced to be lower than those of their upstream or downstream genes or non-coding regions. In this study, cloning and sequencing of these three types immunodominant membrane protein genes in Taiwan were performed for three groups of phytoplasmas including the pear decline phytoplasma (PDTWII phytoplasma) and peanut witches'-broom (PnWB) phytoplasma in 16SrII group which have imp genes, poinsettia branch-inducing (PoiBI) phytoplasma in 16SrIII group which has idpA gene, and periwinkle leaf yellowing (PLY) phytoplasma and paulownia witches'-broom (PaWB-Taiwan) phytoplasma in 16SrI group which have amp genes. Sequence analysis of these cloned immunodominant membrane protein gene fragments revealed that the sequence identities were very low, especially among the sequences of hydrophilic domains. Each phytoplasmal immunodominant membrane protein gene has their own distinct sequence even the phytoplasmas belong to the same group. These distinct immunodominant membrane protein gene sequences can be used for the differentiation of groups or subgroups of various phytoplasmas. Specific PCR primer pairs ampf5/Amp1R and Amp1F/ampr4 were designed based on distinct regions of PLY phytoplasma and PaWB-Taiwan phytoplasma amp gene sequences for their identification and classification. RT-PCR analysis showed that the imp, amp genes of PLY phytoplasma and the imp gene of PnWB phytoplasma were transcribed in PLY phytoplasma and PnWB phytoplasma. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:15:22Z (GMT). No. of bitstreams: 1 ntu-99-R96633015-1.pdf: 2802211 bytes, checksum: bca8e9b458bd38bfe2239648dc56e80f (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 論文口試委員審定書……………………………………………………II
誌謝……………………………………………………………………III 中文摘要…………………………………………………………………IV 英文摘要…………………………………………………………………VI 壹、前言…………………………………………………………………1 貳、前人研究……………………………………………………………4 一、植物菌質體之發現與其植物病理學 (plant pathology)………4 二、植物菌質體之分群…………………………………………………7 三、植物菌質體之生物特性與其分子生物學上之研究 ………………9 四、植物菌質體之優勢免疫膜蛋白之相關研究及其應用 …………11 參、材料與方法 ………………………………………………………18 一、研究材料來源與植物全 DNA (total DNA) 之純化 ……………18 (一) 試驗植物來源與繁殖……………………………………………18 (二) 健康及受植物菌質體感染之罹病植物全 DNA 之純化…………19 1. 大量抽取植物全 DNA ………………………………………………19 2. 微量抽取植物全DNA ………………………………………………20 二、植物菌質體之優勢免疫膜蛋白基因之選殖與分析 ……………21 (一) 第一型優勢免疫膜蛋白基因 imp (type 1 immunodominant membrane protein gene: imp) 之選殖與分析………………………21 1. 聚合酵素連鎖反應引子之設計……………………………………21 2. 聚合酵素連鎖反應 (polymerase chain reaction, PCR)………22 3. 聚合酵素連鎖反應產物之純化與選殖……………………………23 (1) 聚合酵素連鎖反應產物之純化……………………………………23 (2) 聚合酵素連鎖反應產物之選殖……………………………………23 (3) 嵌入片段菌落聚合酵素連鎖反應 (colony PCR) 分析…………24 (二) 第二型優勢免疫膜蛋白基因 idpA (type 2 immunodominant membrane protein gene: idpA) 之選殖與分析……………………26 1. 聚合酵素連鎖反應引子之設計……………………………………26 2. 聚合酵素連鎖反應 (PCR) …………………………………………26 3. 聚合酵素連鎖反應產物之純化與選殖……………………………27 (1) 聚合酵素連鎖反應產物之膠體萃取 (gel extraction)………27 (2) 聚合酵素連鎖反應產物之選殖……………………………………28 (3) 嵌入片段菌落聚合酵素連鎖反應 (colony PCR) 分析…………28 (三) 第三型優勢免疫膜蛋白基因 amp (type 3 immunodominant membrane protein gene: amp) 之選殖與分析………………………28 1. 聚合酵素連鎖反應引子之設計……………………………………28 2. 聚合酵素連鎖反應 (PCR) …………………………………………28 3. 聚合酵素連鎖反應產物之純化與選殖……………………………29 (1) 聚合酵素連鎖反應產物之純化……………………………………29 (2) 聚合酵素連鎖反應產物之選殖……………………………………30 (3) 嵌入片段菌落聚合酵素連鎖反應 (colony PCR) 分析…………30 三、由含第二型、第三型優勢免疫膜蛋白基因之植物菌質體中選殖之第一型優勢免疫膜蛋白基因 …………………………………………30 (一) 聚合酵素連鎖反應引子對之設計………………………………30 (二) 聚合酵素連鎖反應 ………………………………………………31 (三) 聚合酵素連鎖反應產物之純化與選殖 …………………………31 1. 聚合酵素連鎖反應產物之純化……………………………………32 2. 聚合酵素連鎖反應產物之選殖 ……………………………………32 3. 嵌入片段菌落聚合酵素連鎖反應 (colony PCR) 分析…………32 四、以 imp 基因序列及 16S rDNA 序列建構譜系樹 (phylogenetic tree)……………………………………………………………………32 五、花生簇葉病菌質體之第一型、日日春葉片黃化病菌質體之第一型及第三型優勢免疫膜蛋白基因 mRNA 之偵測…………………………33 (一) 健康與罹病植物全 RNA 之純化…………………………………33 (二) 反轉錄聚合酵素連鎖反應 (reverse transcription PCR, RT-PCR)…………………………………………………………………34 1. 反轉錄反應引子與聚合酵素連鎖反應引子對之設計……………34 2. 以反轉錄 (reverse transcription) 反應進行花生簇葉病菌質體第一型優勢免疫膜蛋白基因 imp 、日日春葉片黃化病菌質體第一型及第三型優勢免疫膜蛋白基因 imp 及 amp cDNA 之合成…………35 3. 聚合酵素連鎖反應…………………………………………………35 4. 聚合酵素連鎖反應產物之純化與選殖……………………………36 六、植物菌質體之優勢免疫膜蛋白基因推衍之胺基酸序列之特性分析…………………………………………………………………………37 七、以植物菌質體之第三型優勢免疫膜蛋白基因 amp 核酸序列設計專一性 PCR 引子對……………………………………………………37 (一) 16SrI group 植物菌質體專一性引子對之設計與應用………37 (二) 16SrI group之日日春葉片黃化病及台灣泡桐簇葉病菌質體專一性引子對之設計與應用…………………………………………………38 (三) 利用第三型優勢免疫膜蛋白基因 amp 核酸序列從事多重聚合酵素連鎖反應 (multiplex PCR)…………………………………………38 肆、結果…………………………………………………………………40 一、研究材料來源與全 DNA (total DNA) 之純化…………………40 二、植物菌質體優勢免疫膜蛋白基因之選殖與分析…………………40 (一) 第一型優勢免疫膜蛋白基因 imp 核酸序列、推衍之胺基酸序列、親疏水性及穿膜區域之分析………………………………………40 (二) 第二型優勢免疫膜蛋白基因 idpA 核酸序列、推衍之胺基酸序列、親疏水性及穿膜區域之分析………………………………………47 (三) 第三型優勢免疫膜蛋白基因 amp 核酸序列、推衍之胺基酸序列、親疏水性及穿膜區域之分析………………………………………48 三、以 imp 基因序列建構之譜系樹與 16S rDNA 序列建構之譜系樹之比較……………………………………………………………………52 四、花生簇葉病菌質體之第一型、日日春葉片黃化病菌質體之第一型及第三型優勢免疫膜蛋白基因mRNA 之偵測…………………………52 五、以植物菌質體之第三型優勢免疫膜蛋白基因 amp 核酸序列設計專一性 PCR 引子對……………………………………………………54 (一) 16SrI group 植物菌質體專一性引子對之測定………………54 (二) 16SrI group 之日日春葉片黃化病及台灣泡桐簇葉病菌質體專一性引子對之測定………………………………………………………55 (三) 利用第三型優勢免疫膜蛋白基因 amp 核酸序列從事之多重聚合酵素連鎖反應 …………………………………………………………55 伍、討論…………………………………………………………………56 陸、參考文獻……………………………………………………………64 柒、圖表…………………………………………………………………76 | |
dc.language.iso | zh-TW | |
dc.title | 植物菌質體之優勢免疫膜蛋白基因 imp, idpA 與 amp 之選殖與分析 | zh_TW |
dc.title | Cloning and Analysis of Phytoplasmal Immunodominant Membrane Protein Genes imp, idpA and amp | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 徐源泰,詹富智,張碧芳,洪挺軒 | |
dc.subject.keyword | 優勢免疫膜蛋白,聚合酵素連鎖反應,imp 基因,idpA 基因,amp 基因,反轉錄聚合酵素連鎖反應, | zh_TW |
dc.subject.keyword | immunodominant membrane protein,polymerase chain reaction,imp gene,idpA gene,amp gene,RT-PCR, | en |
dc.relation.page | 123 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-01-12 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 2.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。