Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45345
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林長平(Chan-Pin Lin)
dc.contributor.authorMeng-Lu Tsaien
dc.contributor.author蔡孟旅zh_TW
dc.date.accessioned2021-06-15T04:15:19Z-
dc.date.available2011-01-21
dc.date.copyright2010-01-21
dc.date.issued2010
dc.date.submitted2010-01-12
dc.identifier.citation陸、參考文獻
1. 車海彥、羅大全、符瑞益、葉莎冰、吳雲峰. 2009. 海南長春花黃化病植原體的 16S rDNA 序列分析研究. 植物病理學報. 39: 212-216.
2. 林翠淳. 1996. 植物菌質體廣效型 PCR 引子之評估及疑似梨衰弱病病原菌質體之檢測. 國立台灣大學植物病理與微生物學研究所碩士論文。
3. 黃耀徵. 2009. 日日春葉片黃化病之病原植物菌質體與其媒介昆蟲之探討. 國立台灣大學植物病理與微生物學研究所碩士論文。
4. 陳武揚、顏義峰、石憲宗、林長平. 2006. 翠菊黃萎病之診斷鑑定與防治. 植物檢疫病蟲害通緝摺頁 3. 行政院農委會動植物防疫檢疫局出版。
5. 蔡宏、孔寶華、陳海如. 2003. 長春花黃化質原體 (PY) 株系的檢測與鑑定. 微生物學報 43: 116-119.
6. Agrios, G. N. 2005. Plant diseases caused by Mollicutes: phytoplasmas and spiroplasmas. Pages 687-703 in: Plant Pathology, 5th ed. Elsevier Academic Press, San Diego, CA.
7. Braun, E. J., and Sinclair, W. A. 1976. Histopathology of phloem necrosis in Ulmus americana. Phytopathology 66: 598-607.
8. Braun, E. J., and Sinclair, W. A. 1978. Translocation in phloem necrosis-diseased American elm seedling. Phytopathology 68: 1733-1737.
9. Bosco, D., Galetto, L., Leoncini, P., Saracco, P., Raccah, B., and Marzachi, C. 2007. Interrelationship between “Candidatus Phytoplasma asteris” and it’s leafhopper vectors (Homoptera: Cicadellidae). J. Econ. Entomol. 100: 1504-1511.
10. Citti, C., Marechal-Drouard, L., Saillard, C., Weil, J. H., and Bove, J. M. 1992. Spiroplasma citri UGG and UGA tryptophan codons: sequence of the two tryptophanyl-tRNAs and organization of the corresponding genes. J. Bacteriol. 174: 6471-6478.
11. Deng, S., and Hiruki, C. 1991. Amplification of 16S rRNA gene from culturable and nonculturable molecules. J. Microbiol. Meth. 14: 53-61.
12. Doi, Y., Teranaka, M., Yora, K., and Asuyama, H. 1967. Mycoplasma-or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows, or paulownia witches’ broom. Ann. Phytopathol. Soc. Japan 33: 259-266.
13. Farris, N. A., Stoupa, R. A., Mendenhall, J. D., and Mazzuca, K. B. 1994. A computerized diabetes education module for documenting patient outcomes. Comput. Nurs. 12: 272-276.
14. Felsenstein, D., Carney, W. P., Iacoviello, V. R., and Hirsch, M. S. 1985. Phenotypic properties of atypical lymphocytes in cytomegalovirus-induced mononucleosis. J. Infect. Dis. 152: 198-203.
15. Gundersen, D. E., and Lee, I.-M. 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathol. Mediterr. 35: 144-151.
16. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41:95-98.
17. Hodgetts, J., Boonham, N., Mumford, R., Harrison, N., and Dickinson, M. 2008. Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of “Candidatus Phytoplasma”. Int. J. Syst. Evol. Microbiol. 58: 1826-1837.
18. Holder, M., and Lewis, P. O. 2003. Phylogeny estimation: traditional and Bayesian approaches. Nat. Rev. Genet. 4: 275-284.
19. Inamine, J. M., Ho, K. C., Loechel, S., and Hu, P. J. 1990. Evidence that UGA is read as a tryptophan codon rather than as a stop codon by Mycoplasma pneumoniae, Mycoplasma genitalium, and Mycoplasma gallisepticum. J. Bacteriol. 172: 504-506.
20. IRPCM Phytoplasma/Spiroplasma Working Team-Phytoplasma Taxonomy Group. 2004. “Candidatus Phytoplasma”, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 54: 1245-1255.
21. Ishiie, T., Doi, Y., Yora, K., and Asuyama, H. 1967. Suppressive effects of antibiotics of tetracycline group on symptom development in mulberry dwarf disease. Ann. Phytopath. Soc. Jpn. 33: 267-275.
22. Kirkpatrick, B. C., Stenger, D. C., Morris, T. J., and Purcell, A. H. 1987. Cloning and detection of DNA from a nonculturable plant pathogenic mycoplasma-like organism. Science 238: 197-200.
23. Lee, I. M., Bottner, K. D., Secor, G., and Rivera-Varas, V. 2006a. “Candidatus Phytoplasma americanum”, a phytoplasma associated with a potato purple top wilt disease complex. Int. J. Syst. Evol. Microbiol. 56: 1593-1597.
24. Lee, I. M., Davis, R. E., and Gundersen-Rindal, D. E. 2000. Phytoplasma: phytopathogenic mollicutes. Annu. Rev. Microbiol. 54: 221-255.
25. Lee, I. M., Davis, R. E., Sinclair, W. A. Dewitt, N. D., and Conti, M. 1993. Genetic relatedness of mycoplasmalike organisms detected in Ulmus spp. In the United States and Italy by means of DNA probes and polymerase chain reactions. Phytopathology 83: 829-833.
26. Lee, I. M., Gundersen-Rindal, D. E., Davis, R. E., and Bartoszyk, I. M. 1998. Revised classification scheme of phytoplasmas based on RFLP analysis of 16S rRNA and ribosomal protein gene sequences. Int. J. Syst. Bacteriol. 48: 1153-1169.
27. Lee, I. M., Gundersen, D. E., Davis, R. E., Bottner, K. D., Marcone, C., and Seemuller, E. 2004. “Candidatus Phytoplasma asteris”, a novel phytoplasma taxon associated with aster yellows and related diseases. Int. J. Syst. Evol. Microbiol. 54: 1037-1048.
28. Lee, I. M., Martini, M., Bottner, K. D., Dane, R. A., Black, M. C., and Troxclair, N. 2003. Ecological implications from a molecular analysis of phytoplasmas involved in an aster yellows epidemic in various crops in Texas. Phytopathology 93: 1368-1377.
29. Lee, I. M., Zhao, Y., and Bottner, K. D. 2006b. SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma groups. Mol. Cell. Probes. 20: 87-91.
30. Lee, I. M., Zhao, Y., Davis, R. E., Wei, W., and Martini, M. 2007. Prospects of DNA-based systems for differentiation and classification of phytoplasmas. Bull. Insectol. 60: 239-244.
31. Lepka, P., Stitt, M., Moll, E., and Seemuller, E. 1999. Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol. Mol. Plant Pathol. 55: 59-68.
32. Lim, P. O. and Sears, B. B. 1991. The genome size of a plant-pathogenic mycoplasmalike organism resembles those of animal mycoplasmas. J. Bacteriol. 173: 2128-2130.
33. Lim, P. O., and Sears, B. B. 1992. Evolutionary relationships of a plant-pathogenic mycoplasmalike organism and Acholeplasma laidlawii deduced from two ribosomal protein gene sequences. J. Bacteriol. 174: 2606-2611.
34. Lim, P. O., Sears, B. B., and Klomparens, K. L. 1992. Membrane properties of a plant-pathogenic mycoplasmalike organism. J. Bacteriol. 174: 682-686.
35. Lin, C. P., and Chen, T. A. 1985. Monoclonal antibodies against the aster yellows agent. Science 227: 1233-1235.
36. Lu, B. Z. 1993. Constructing molecular evolutionary trees. Zool. Res. 14: 186-193.
37. Marcone, C., Lee, I. M., Davis, R. E., Ragozzino, A., and Seemuller, E. 2000. Classification of aster yellows-group phytoplasmas based on combined analyses of rRNA and tuf gene sequences. Int. J. Syst. Evol. Microbiol. 50: 1703-1713.
38. Martini, M., Lee, I. M., Bottner, K. D., Zhao, Y., Botti, S., Bertaccini, A., Harrison, N. A., Carraro, L., Marcone, C., and Osler, R. 2007. Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. Int. J. Syst. Evol. Microbiol. 57: 2037-2051.
39. Marzachi, C., and Bosco, D. 2005. Relative quantification of chrysanthemum yellows (16Sr I) phytoplasma in its plant and insect host using real-time polymerase chain reaction. Mol. Biotechnol. 30: 117-128.
40. McCoy, R. E., Caudwell, A., Chang, C. J., Chen, T. A., Chiykowski, L. N., Cousin, M. T., Dale De Leeuw, G.T.N., Golino, D. A., Hackett, K. J., Kirkpatrick, B. C., Marwitz, R., Petzold, H., Sinha, R. C., Suguira, M., Whitcomb, R. F., Yang, I. L., Zhu, B. M., and Seemuller, E. 1989. Plant diseases associated with mycoplasma-like organisms. Pages 546-640 in: The Mycoplasmas (Whitcomb, R.F. and Tully, J.G., eds). Academic Press, San Diego, CA.
41. Murray, R. G., and Stackebrandt, E. 1995. Taxonomic note: implementation of provisional status Candidatus for incompletely described prokaryotes. Int. J. Syst. Bacteriol. 45: 186-187.
42. Musetti, R., Favali, M. A., and Pressacco, L. 2000. Histopathology and poly- phenol content in plants infected by phytoplasmas. Cytobios 102: 133-147.
43. Nei, M., and Li, W. H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273.
44. Razin, S., Yogev, D., and Naot, Y. 1998. Molecular biology and pathogenicity of mycoplasmas. Microbiol. Mol. Biol. Rev. 62: 1094-1156.
45. Schneider, B., Ahrens, U., Kirkpatrick, B. C., and Seemuller, E. 1993. Classification of plant- pathogenic mycroplasma-like organisms using restriction- site analysis of PCR-amplified 16S rDNA. J. Gen. Microbiol. 139: 519-527.
46. Schneider, B., and Gibb, K. S. 1997. Detection of phytoplasmas in declining pears in southern Australia. Plant Dis. 81: 254-258.
47. Schneider, B., and Seemuller, E. 1994. Presence of two sets of ribosomal genes in phytopathogenic mollicutes. Appl. Environ. Microbiol. 60: 3409–3412.
48. Schneider, B., Seemuller, E., Smart, C. D., and Kirkpatrick, B. C. 1995. Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. Pages 369-380 in: Molecular and diagnostic procedures in mycoplasmology, vol. 1. S. Razin and J. G. Tully eds. Academic Press, San Diego, CA.
49. Seemuller, E., Marcone, C., Lauer, U., Ragozzino. A., and Goschl , M. 1998. Current status of molecular classification of the phytoplasma. J. Plant Pathol. 80: 3-26.
50. Seemuller, E., Schneider, B., Maurer, R., Ahrens, U., Daire, X., Kison, H., Lorenz, K.- H., Firrao, G., Avinent, L., Sears, B. B., and Stackebrandt, E. 1994. Phylogenetic classification of phytopathogenic mollicutes by sequence analysis of 16S ribosomal DNA. Int. J. Sys. Bacteriol. 44: 440-446.
51. Shao, J. Y., Jomantiene, R., Dally, E. L., Zhao, Y., Lee, I.-M., Nuss, D. L., and Davis, R. E. 2006. NusA: comparative properties, phylogeny, and use in detection of group 16Srl phytoplasmas. J. Plant Pathol. 88: 193-201.
52. Smart, C. D., Schneider, B., Blomquist, C. L., Guerra, L. J., Harrison, N. A., Ahrens U, Lorenz, K. H., Seemuller, E., and Kirkpatrick, B. C. 1996. Phytoplasma-specific PCR primers based on sequences of the 16S-23S rRNA spacer region. Appl. Environ. Microbiol. 62: 2988-2993.
53. Tanaka, R., Andachi, Y., and Muto, A. 1989. Nucleotide sequence of tryptophan tRNA gene on Acholeplasma laidlawii. Nucleic Acids Res. 17: 5842.
54. Thompson, J. N., Cunningham, B. M., Segraves, K. A., Althoff, D. M., and Wagner, D. 1997. Plant polyploidy and insect/plant interactions. Am. Nat. 150: 730-743.
55. Tran-Nguyen, L. T., Kube, M., Schneider, B., Reinhardt, R., and Gibb, K. S. 2008. Comparative genome analysis of 'Candidatus Phytoplasma australiense' (subgrouptuf-Australia I; rp-A) and 'Ca. Phytoplasma asteris' Strains OY-M and AY-WB. J. Bacteriol. 190: 3979-3991.
56. Wei, W., Davis, R. E., Lee, I.-M. and Zhao, Y. 2007. Computer simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int. J. Syst. Evol. Microbiol. 57: 1855-1867.
57. Wei, W., Lee, I.-M., Davis, R. E., Suo, X., and Zhao, Y. 2008. Automated RFLP pattern composition and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. Int. J. Syst. Evol. Microbiol. 58: 2368-2377.
58. Weisburg, W. G., Tully, J. G., Rose, D. L., Petzel, J. P., Oyaizu, H., Yang, D., Mandelco, L., Sechrest, J., Lawrence, T. G., and Van Etten, J. et al. 1989. A phylogenetic analysis of the mycoplasmas: basis for their classification. J. Bacteriol. 171: 6455-6467.
59. Yamao, F., Muto, A., Kawauchi, Y., Iwami, M., Iwagami, S., Azumi, Y., and Osawa, S. 1985. UGA is read as tryptophan in Mycoplasma capricolum. Proc. Natl. Acad. Sci. U. S. A. 82: 2306-2309.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45345-
dc.description.abstract日日春葉片黃化病植物菌質體 (periwinkle leaf yellowing phytoplasma, PLY phytoplasma) 為本研究室於 2005 年於台灣桃園縣大園鄉發現並命名之新種植物菌質體,其 16S rDNA, 16S-23S rDNA intergenic spacer region (ISR) 及部分 23S rDNA 序列經初步比對分析後,顯示其親緣關係與第一群 (16SrI group) 植物菌質體最為接近。第一群植物菌質體所涵蓋之菌系種類繁多,可細分成十個亞群,為廣泛分佈於世界各地之重要病原,寄主範圍也相當廣泛。為進一步瞭解日日春葉片黃化病植物菌質體可能之植物寄主,及其在主要疫區之發病季節,本研究以 PCR 檢測方式,完成 2007 年 6 月至 2009 年 10月之主要疫區罹病植株月份監測,及可能之植物寄主調查。結果顯示日日春葉片黃化病植物菌質體之寄主植物除日日春外,尚有菊花、大波斯菊、夏堇、紫芳草、牛筋草及小黃瓜等六種,由上述植株中以 PCR 增幅出之植物菌質體 16S rRNA 基因片段,均經由選殖、定序與比對後確認為日日春葉片黃化病植物菌質體之序列。而月份監測結果顯示日日春葉片黃化病植物菌質體之發病季節於 2007 年為六月至十月;2008年為七月至十月,皆為夏、秋兩季;而2009 年則從四月開始即可在罹病植株中偵測到日日春葉片黃化病菌質體。為進一步釐清日日春葉片黃化病菌質體與第一群植物菌質體其他亞群間之親緣關係,本研究針對日日春葉片黃化病菌質體,及台灣故有且同屬第一群植物菌質體之泡桐簇葉病植物菌質體 (Paulownia witches’-broom phytoplasma PaWB-Taiwan) 選殖與定序體在亞群分類上常用之分子標誌 (molecular marker):16S rRNA 基因,secY 基因,rplV-rpsC 基因及 tuf 基因,並加入第一群植物菌質體其他亞群 (subgroup) 之序列來建構譜系樹 (phylogenetic tree)。於本研究中共完成六棵譜系樹之建構,包括單獨以 16S rRNA 基因,secY 基因,rplV-rpsC 基因及 tuf 基因序列建構之譜系樹;與合併16S rRNA, rplV-rpsC, secY 基因序列,及合併rplV-rpsC, secY基因序列之譜系樹。譜系樹之結果顯示日日春葉片黃化病植物菌質體之親緣關係與 16SrI group 之 B 亞群 (16srI-B) 及 D 亞群 (16srI-D) 較接近;且在以 rplV-rpsC 序列建構之譜系樹中,PLY phytoplasma 自成一獨立支序群 (clade),因此亦不排除其為一獨立之新亞群的可能性;而 PaWB-Taiwan phytoplasma 則與屬於 16SrI-D 之最早登錄於 NCBI 之泡桐簇葉病植物菌質體 (Paulownia witches’-broom phytoplasma PaWB) 較接近。另外,合併序列之譜系樹結果顯示其樹型與以單一基因序列獨立建構之譜系樹樹型具高度一致性,但其樹長 (tree length) 明顯大於以單一基因序列獨立建構之譜系樹,証實合併序列之譜系樹在譜系分析上具有較高的解析度 (resolution)。為釐清 PLY phytoplasma 在 16SrI group 中之亞群地位,及其與地緣相近的 PaWB-Taiwan phytoplasma 間之親緣關係,本研究亦利用植物菌質體不同菌系間,在群及亞群分類上所依據之電腦模擬 (in silico) RFLP (restriction fragment length polymorphism) 分析法,針對 PLY phytoplasma, PaWB-Taiwan phytoplasma 及在譜系分析中與其親緣關係相近菌系之 16S rRNA 基因序列進行分析並計算相似係數 (similarity coefficient)。in silico RFLP 之結果亦支持 PLY phytoplasma 成為 16SrI group 植物菌質體中一獨立之新亞群;而 PaWB-Taiwan phytoplasma 則被歸類到 16SrI-B 亞群,而非原登錄同為泡桐簇葉病病原 PaWB phytoplasma 所屬之 16SrI-D 亞群,顯示在本研究中針對 PaWB-Taiwan phytoplasma 選殖與定序之 16S rRNA 基因,可能為屬於 16SrI-B 之 rrnA,而非屬於 16SrI-D 之 rrnB。另外,本研究也針對上述親緣關係相似之菌系,輔以16S rRNA 基因序列之準限制酵素切位 (putative restriction site) 分析,結果也顯示 PLY phytoplasma 可和其他菌系有所區分。上述親緣分析結果顯示 PLY phytoplasma 應為 16srI group 中之新亞群。zh_TW
dc.description.abstractA new disease named as periwinkle leaf yellowing (PLY) was first observed in a flower production farm in Dayuan Township (Taoyuan county, Taiwan) in August 2005. Sequence analysis of 16S rDNA, 16S-23S rDNA ISR, and partial 23S rDNA sequence revealed that the causative agent of PLY was closely related to the phytoplasmas of the aster yellows (AY) group (16SrI group) which cause diseases in many horticultural and vegetable crops worldwide, and can be delineated into 10 subgroups. Six cultivated plants including periwinkle plant, chrysanthemum, cosmos, torenia, Persian violet, goosegrass and cucumber, were determined to be the host plants of PLY phytolasma. Monthly PCR detection indicated that PLY phytoplasma was detected in host plants from June to October in 2007, and from July to October in 2007. However, it can be detected earlier since April in 2009. To further clarify the phylogenetic relationship of strain PLY among 16SrI phytoplasmas, six phylogenetic trees were constructed in this study. Beside the phylogenetic trees based on the independent analysis of 16S rRNA, rplV-rpsC, secY and tuf gene sequences, two other trees based on the analysis of the comprising gene sequence of 16S rRNA, rplV-rpsC and secY, and the comprising gene sequence of rplV-rpsC and secY were also constructed. The results indicate that the strain PLY was closely related to 16SrI-B and 16SrI-D subgroup, and could be a new subgroup based on the phylogenetic tree constructed by rplV-rpsC gene sequences. In addition, the phylogenetic analysis of the comprised gene sequences showed similar tree topology when compared with sequence analysis of the rplV/ rpsC gene or of the secY gene alone. The main difference is that the branch lengths were elongated in the comprised gene tree. To further confirm the subgroup affiliation of PLY phytoplasma, the 16S rRNA gene sequences of 10 closely related phytoplasma strains were digested in silico, and the similarity coefficients were then calculated. The results also support the conclusion that PLY phytoplasma might belongs to a new 16SrI subgroup. The putative restriction site analysis can also distinguish PLY phytoplasma from other close related phytoplasma strains in phylogenetic analysis.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:15:19Z (GMT). No. of bitstreams: 1
ntu-99-R96633009-1.pdf: 2234832 bytes, checksum: 011e216a25a5f5094bf8af646c108641 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目錄
論文口試委員審定書...................................................................................................II
誌謝..............................................................................................................................III
中文摘要......................................................................................................................IV
英文摘要......................................................................................................................VI
壹、前言........................................................................................................................1
貳、前人研究................................................................................................................3
一、植物菌質體之發現與其植物病理學....................................................................3
(一)、植物菌質體之發現與命名..............................................................................3
(二)、植物菌質體之病理學......................................................................................5
二、植物菌質體鑑定與分類相關技術之發展及其分群現況....................................6
(一)、傳統分類方法及其限制..................................................................................6
(二)、以核酸及血清學為基礎之分類方法..............................................................7
(三)、以軟體分析親緣關係之方法..........................................................................8
1. 譜系分析 (phylogenetic analyses) .....................................................................8
2. 電腦模擬限制酵素酵解片段長度多型性分析 (in silico RFLP analyses).....10
三、第一群 (16SrI group) 植物菌質體之相關研究................................................12
(一)、第一群植物菌質體之發現、分布與其植物病理學....................................12
(二)、分子標誌 (molecular marker) 在第一群植物菌質體亞群分類之應用.....13
(三)、日日春葉片黃化病植物菌質體在臺灣之研究............................................14
參、材料與方法..........................................................................................................17
一、日日春葉片黃化病植物菌質體可能之寄主植物調查......................................17
(一)、試驗植物來源與植物菌質體保存方式........................................................17
1. 可能之寄主植物採集方法................................................................................17
2. 帶菌日日春植株來源與植物菌質體保存方式................................................17
(二)、試驗植物全DNA之純化.............................................................................18
(三)、田間可能罹病植株中日日春葉片黃化病植物菌質體 ribosomal DNA 序列之 PCR 增幅 (amplification)、選殖 (cloning) 與分析.......................19
1. 聚合酵素連鎖反應 (PCR) ..............................................................................19
2. 聚合酵素連鎖反應產物之純化與選殖.........................................................21
3. 聚合酵素連鎖反應產物轉形株之特性分析...................................................23
(1) 以菌落聚合酵素連鎖反應 (colony PCR) 分析轉形株之選殖片段........23
(2) 轉形株選殖片段之核酸定序與序列分析..................................................24
二、田間可能罹病植株中日日春葉片黃化病植物菌質體之 PCR 月份監測......24
(一)、試驗植物來源................................................................................................24
(二)、田間可能罹病植株中日日春葉片黃化病植物菌質體之 PCR月份監測..25
三、日日春葉片黃化病植物菌質體之親緣分析......................................................25
(一)、以16S rRNA, rplV-rpsC, secY 及 tuf 基因建構譜系樹 (phylogenetic tree) .................................................................................................................25
1. 譜系分析序列來源............................................................................................25
2. 最大簡約法 (maximum parsimony, MP) 譜系樹建構...................................27
(二)、日日春葉片黃化病菌質體與臺灣泡桐簇葉病菌質體 16S rRNA基因序列之電腦模擬 (in silico) RFLP 分析及相似係數 (similarity coefficient) 之計算.............................................................................................................28
(三)、日日春葉片黃化病菌質體與臺灣泡桐簇葉病菌質體 16S rRNA 基因序列之準限制酵素切位 (putative restriction site) 分析...............................29
肆、結果.........................................................................................................................31
一、日日春葉片黃化病植物菌質體可能之寄主植物調查......................................31
(一)、田間疑似罹病植株之採集............................................................................31
(二)、試驗植物全 DNA 之純化............................................................................31
(三)、罹病植株中日日春葉片黃化病植物菌質體 ribosomal DNA 序列之 PCR 增幅 (amplification)、選殖 (cloning) 與分析...........................................31
1. 以聚合酵素連鎖反應 (PCR) 偵測疑似罹病株中之植物菌質體..............31
2. 聚合酵素連鎖反應產物之選殖與選殖株之特性分析................................32
3. 由不同罹病植株中選殖出之 rDNA 序列之比對分析.................................33
(四)、日日春葉片黃化病植物菌質體可能寄主植物之病徵觀察.......................34
二、田間日日春葉片黃化病植物菌質體之月份監測.............................................35
三、日日春葉片黃化病植物菌質體之親緣分析.....................................................35
(一)、最大簡約法譜系樹之建構...........................................................................35
1. 第一群植物菌質體 16S rRNA 基因之譜系樹建構......................................35
2. 第一群植物菌質體 rplV-rpsC 基因之譜系樹建構......................................36
3. 第一群植物菌質體 secY 基因之譜系樹建構...............................................37
4. 第一群植物菌質體 tuf 基因序列之譜系樹建構..........................................38
5. 合併 16S rRNA, rplV-rpsC, secY 基因序列之譜系樹建構..........................38
6. 合併 rplV-rpsC, secY 基因序列之譜系樹建構.............................................40
(二)、日日春葉片黃化病菌質體與臺灣泡桐簇葉病菌質體 16S rRNA基因序列之電腦模擬 (in silico) RFLP 分析及相似係數 (similarity coefficient) 之計算............................................................................................................40
(三)、日日春葉片黃化病菌質體與臺灣泡桐簇葉病菌質體 16S rRNA 基因序列之準限制酵素切位 (putative restriction site) 分析.............................42
伍、討論....................................................................................................................44
陸、參考文獻............................................................................................................51
柒、圖表....................................................................................................................59
dc.language.isozh-TW
dc.title日日春葉片黃化病植物菌質體核醣體 RNA, rplV-rpsC, secY 與 tuf 基因之譜系分析zh_TW
dc.titlePhylogenetic Analyses of Periwinkle Leaf Yellowing Phytoplasma Based on Combined Analyses of rRNA, rplV-rpsC, secY and tuf gene sequencesen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee詹富智,張碧芳,徐源泰,洪挺軒
dc.subject.keywordin silico RFLP,日日春葉片黃化病植物菌質體,譜系分析,核醣體RNA基因,rplV-rpsC 基因,secY 基因,tuf 基因,zh_TW
dc.subject.keywordin silico RFLP,periwinkle leaf yellowing phytoplasma,phylogenetic analyses,rRNA gene,rplV-rpsC gene,secY gene,tuf gene,en
dc.relation.page98
dc.rights.note有償授權
dc.date.accepted2010-01-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
2.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved