Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45325
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳靜枝
dc.contributor.authorHsin-Wei Huangen
dc.contributor.author黃心惟zh_TW
dc.date.accessioned2021-06-15T04:14:21Z-
dc.date.available2012-02-04
dc.date.copyright2010-02-04
dc.date.issued2010
dc.date.submitted2010-01-17
dc.identifier.citation[1] 丁恬文,「流通業協同規劃預測補貨解決方案」,臺灣大學資訊管理所碩士論文,民國96年。
[2] 創市際市場研究顧問,(民國2008年6月16日). 八成網友關心美容資訊 評鑑貼紙大增購買意願.民國2008年10月23日,取自: http://www.insightxplorer.com/news/news_06_16_08.html。
[3] 數位時代 Beta 2.0,(民國97年3月1日). 百大網站排名總覽. 民國98年5月1日,取自:http://www.bnext.com.tw/LocalityView_6608。
[4] Amarasiri, R., J. Ceddia and D. Alahakoon, “Exploratory Data Mining Lead by Text Mining Using a Novel High Dimensional Clustering Algorithm,” Proceedings of the Fourth International Conference on Machine Learning and Applications, Los Angeles, USA, 2005.
[5] Arndt, J., “Role of Product Related Conversations in the Diffusion of a New Product,” Journal of Marketing Research, Vol. 4, Issue 3, pp. 291-295, 1967.
[6] Atkinson-Abutridy, J., C. Mellish and S. Aitken, “A Semantically Guided and Domain-Independent Evolutionary Model for Knowledge Discovery from Texts,” IEEE Transactions on Evolutionary Computation, Vol. 7, No. 6, pp. 546-560, 2003.
[7] Bansal, H.S. and P.A. Voyer, “Word-of-Mouth Processes Within a Services Purchase Decision Context,” Journal of Service Research, Vol. 3, No. 2, pp. 166-177, 2000.
[8] Black, K., Business Statistics: for Contemporary Decision Making, 4th Edition, John Wiley & Sons, Inc., Hoboken, USA, 2004.
[9] Buttle, F. A., 'Word of Mouth: Understanding and Managing Referral Marketing,' Journal of Strategic Marketing, Vol. 6, No. 3, pp. 241-254, 1998.
[10] Chase, C. W., “Forecasting Consumer Products,” The Journal of Business Forecasting Methods & Systems, Vol. 10, No. 1, pp. 2-6, 1991.
[11] Chopra, S. and P. Meindl, Supply Chain Management: Strategy, Planning, and Operation, 2nd Edition, Prentice Hall, Upper Saddle River, USA 2004.
[12] Dalrymple, D. J., “Sales Forecasting Practices: Results from a United States Survey,” International Journal of Forecasting, Vol. 3, Issue 3, pp. 379-391, 1987.
[13] Fashion Guide, http://www.fashionguide.com.tw/.
[14] Fisher, M. and K. Rajaram, “Accurate Retail Testing of Fashion Merchandise: Methodology and Application,” Marketing Science, Vol. 19, No. 3, pp. 266-278, 2000.
[15] Geurts, M. and D. B. Whitlark, “Six Ways to Make Sales Forecasts More Accurate,” The Journal of Business Forecasting Methods & Systems, Vol. 18, No. 4, pp. 21-30, 2000.
[16] Gleb, B. and M. Johnson, “Word-of-Mouth Communication: Causes and Consequences,” Journal of Health Care Marketing, Vol. 15, No. 3, pp. 54-58, 1995.
[17] Golder, P. N. and G. J. Tellis, “Will It Ever Fly? Modeling the Takeoff of Really New Consumer Durable,” Marketing Science, Vol. 16, No. 3, pp. 256-270, 1997.
[18] Gremler, D.D., K.P. Gwinner and S.W. Brown, “Generating Positive Word-of-Mouth Communication through Customer-Employee Relationships,” International Journal of Service Industry Management, Vol. 12, No. 1, pp. 44-59, 2001.
[19] Hennig-Thurau, T., K. P. Gwinner, G. Walsh and D. D. Gremler, “Electronic Word-of-Mouth via Consumer-Opinion Platforms: What Motivates Consumers to Articulate Themselves on the Internet?” Journal of Interactive Marketing, Vol. 18, No. 1, pp. 38-52, 2004.
[20] Huang, J., J. Lu and C. X. Ling, “Comparing Naïve Bayes Decision Trees and SVM with AUC and Accuracy”, Proceedings of the Third IEEE International Conference on Data Mining, Melbourne, USA, 2003.
[21] Izumi, K., H. Matsui and Y. Matsuo, “Integration of Artificial Market Simulation and Text Mining for Market Analysis,” Soft Computing. Vol. 11, No. 12, pp. 1199-1205, 2007.
[22] Jain, C. L., “Quick and Easy Way to Monitor Forecasts,” The Journal of Business Forecasting Methods & Systems, Vol. 17, No. 2, pp. 2&30, 1998.
[23] Jiang, T., A. H. Tan and K. Wang, “Mining Generalized Associations of Semantic Relations from Textual Web Content,” IEEE Transactions on Knowledge and Data Engineering, Vol. 19 No. 2, pp. 164-179, 2007.
[24] Kahn, K. B., “Benchmarking Sales Forecasting Performance Measures,” The Journal of Business Forecasting, Vol. 17, Issue. 4, pp. 19-23, 1998/1999.
[25] Kim, H. and J. Y. Lee, “Exploring the Emerging Intellectual Structure of Archival Studies Using Text Mining: 2001-2004,” Journal of Information Science, Vol. 34, No. 3, pp. 356-369, 2008.
[26] Klepper, S., “Entry, Exit, Growth, and Innovation over the Product Life Cycle,” The American Economic Review, Vol. 86, No. 3, pp. 562-583, 1996.
[27] Kodratoff, Y, “Rating the Interest of Rules Induced from Data and within Texts. Database and Expert Systems Applications,” Proceedings of the 12th International Workshop on Database and Expert Systems Applications, Munich, Germany, pp. 265-269, 2001.
[28] Kogan, J., C. Nicholas and V. Volkovich, “Text Mining with Information-Theoretic Clustering,” Computing in Science & Engineering, Vol. 5, Issue 6, pp. 52-59, 2003.
[29] Kroha, P., R. Baeza-Yates and B. Krellner, “Text Mining of Business News for Forecasting,” Proceedings of the 17th International Conference on Database and Expert Systems Applications, Krakow, Poland, pp. 171-175, 2006.
[30] Kuo, R. J. and K. C. Xue, “Fuzzy Neural Networks with Application to Sales Forecasting,” Fuzzy Sets and Systems, Vol. 108, Issue 2, pp. 123-143, 1999.
[31] Lo, S., “Web Service Quality Control Based on Text Mining Using Support Vector Machine,” Expert Systems with Applications, Vol. 34, No. 1, pp. 603-610, 2008.
[32] Norvag, K. and R. Oyri, “News Item Extraction for Text Mining in Web Newspapers,” Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration, Tokyo, Japan, 2005.
[33] Olshavsky, R. W. and D. H. Granbois, “Consumer Decision Making Fact or Fiction?” Journal of Consumer Research, Vol. 6, No. 5, pp. 93-100, 1979.
[34] Polli, R. and V. Cook, “Validity of Product Life Cycle,” The Journal of Business, Vol. 42, No. 4, pp. 385-400, 1969.
[35] Ratchford, B. T., D. Talukdar and M. S. Lee, “A Model of Consumer Choice of the Internet as an Information Source,” International Journal of Electronic Commerce, Vol. 5, Issue 3, pp. 7–22, 2001.
[36] Sakurai, S. and K. Ueno, “Analysis of Daily Business Reports Based on Sequential Text Mining Method,” Proceedings of the 2004 IEEE International Conference on Systems, Man and Cybernetics, Hague, Netherlands, 2004.
[37] Salton, G. and J. M. McGill, Introduction to Modern Information Retrieval, McGraw-Hill, New York, USA, 1983.
[38] Schrieber, J., “Demand Visibility Improves Demand Forecasts,” The Journal of Business Forecasting, Vol. 24, No. 3, pp. 32-37, 2005.
[39] Sebastiani, F., “Machine Learning in Automated Text Categorization,” ACM Computing surveys, Vol. 34, Issue 1, pp. 1-47, 2002.
[40] Sheikh, K., Manufacturing Resource Planning (MRP II) with an Introduction to ERP, SCM, and CRM, McGraw Hill Companies, Inc., 2002.
[41] Strand, G., Linear Algebra and Its Applications, 4th Edition, Thomson Brooks/Cole, Belmont, USA, 2006.
[42] Taylor, B. W. III, Introduction to Management Science, 8th Edition, Pearson Education, Inc., Upper Saddle River, USA, 2004.
[43] Terachi, M., R. Saga and H. Tsuji, “Trends Recognition in Journal Papers by Text Mining,” Proceedings of the 2006 IEEE International Conference on Systems, Man and Cybernetics, Taipei, Taiwan, 2006.
[44] Trad, C. H., Q. Fang and I. Cosic, “Protein sequence comparison based on the wavelet transform approach”, Protein Engineering, Vol. 15, No. 13, pp. 193-203, 2002.
[45] Weka. http://www.cs.waikato.ac.nz/ml/weka/, 2008.
[46] Witten, I. H. and E. Frank, Data Mining, Practical Machine Learning Tools and Techniques, Second Edition, Morgann Kaufmann Publishers, San Francisco, USA 2005.
[47] Yang, H. C. and C. H. Lee, “Automatic Metadata Generation for Web Pages Using a Text Mining Approach,” Proceedings of International Workshop on Challenges in Web Information Retrieval and Integration, Tokyo, Japan 2005.
[48] Yang, H. C. and C. H. Lee, “Image Semantics Discovery from Web Pages for Semantic-Based Image Retrieval Using Self-Organizing Maps.” Expert Systems with Applications, Vol. 34, Issue 1, pp. 266-279, 2008.
[49] Yin, S., G. Wang, Y. Qiu and W. Zhang, “Research and Implement of Classification Algorithm on Web Text Mining,” Proceedings of the Third International Conference on Semantics, Knowledge and Grid, Xi’an, China, 2007.
[50] Yin. S., Y. Qiu and J. Ge, “Research and Realization of Text Mining Algorithm on Web,” Proceedings of the 2007 International Conference on Computational Intelligence and Security Workshops, Washington, USA, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45325-
dc.description.abstract市場瞬息萬變,企業必需不斷調整腳步,才有機會取得先機,而企業的採購與生產計劃源頭即是銷售預測,足見銷售預測的重要性。即使如此,企業在銷售起伏較大的流行性商品上的銷售預測仍不是非常準確。
  從文獻探討中可知,口碑是影響消費者購買的動機之一,消費者可由身邊的親朋好友口中獲得口碑,亦可利用網際網路取得數位口碑。但過去只對口碑形成的因素與影響層面做研究,而未實際量化口碑對銷售數字的影響,故本研究欲將數位口碑實際應用在銷售預測上。
  首先自動抓取網路中的商品相關討論文章,利用簡單貝氏分類器判斷文章的評價,並將其轉換成量化評價以用作預測。除了建立多個目標函式以釐清口碑與銷售量的關係外,同時亦嘗試各種時期的口碑作為自變數,以決定口碑與銷售量的期間差距為何。最後找出所有組合中預測誤差最小,且具效度的模型用作預測,以提升流行性商品銷售預測的準確度。
  以台灣知名連鎖藥妝店的十大熱銷商品為樣本,發現本模型適用具話題性、能在網路上引起足夠的討論量商品,且其預測誤差皆低於常見的移動平均法、指數平滑法、趨勢指數平滑法等。可知將本模型應用於流行性商品銷售預測時,可有效地增進預測準確度。
zh_TW
dc.description.abstractSince market is constantly changing, companies need to continuously adjust the pace to get a head start. Forecasts are essential to the business’s decision making and planning processes. Better forecasting can contribute to better price structuring and better inventory management. However, it is a challenging problem owing to the volatility of demand which depends on many factors. And the situation is prominent in fashion product due to its sales versatility.
Past research shows that disseminating information through word-of-mouth communication is one of the most effective mediums for relaying important product and company information. It not only plays an important role in the evaluation of products but also plays an important role in society as well. Although many companies have found its effectiveness through lots of literature reviews, most of them are limited in focusing on the the frequency and types of word-of-mouth behavior, or the effects of word-of-mouth behavior on product evaluation. Few of them discuss the relationship with sales volume.
In this study, an automatic mining approach is proposed to resolve the aforementioned issues. According to this method, a text mining technique and Naive Bayes classifier will be used to determine the rating of each product-related article extracted from the Internet. Based on the regression model, some target functions have been designed to clarify the relationship between the rating of world-of-mouse and the sales. And a valid forecasting method is generated with the smallest prediction error.
Performances of our model are evaluated by using real data from a cosmetic retailer in Taiwan. The experimental results demonstrate that this model is especially suitable for the fashion product with sufficient discussion on the Internet. In addition, our proposed method is proved to outperform several traditional sales forecasting methods such as moving average, exponential smoothing and exponential smoothing with trend. Therefore, we believe that this model can effectively enhance the prediction accuracy when applied to fashion products.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:14:21Z (GMT). No. of bitstreams: 1
ntu-99-R96725001-1.pdf: 1690043 bytes, checksum: 5039128c16f681b7c69086bf9e026cac (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目錄 一
圖目錄 四
表目錄 六
第一章 緒論 1
第一節 研究動機 1
第二節 研究目的 2
第三節 研究範圍 3
第四節 研究架構 4
第二章 文獻探討 6
第一節 銷售預測 6
1. 預測方法 6
2. 預測準確性 7
第二節 消費者行為與口碑 8
第三節 文本挖掘(Text Mining) 8
1. 資訊抽取(Information Extraction) 8
2. 摘要(Summarization) 10
3. 觀念抽取(Concept Extraction) 11
4. 分類(Classification) 11
5. 叢集(Clustering) 15
第三章 問題描述與迴歸最小方差法模型規劃 17
第一節 問題描述 17
1. 規劃時距(Planning Time Bucket) 18
2. 流行性商品定義 19
3. 量化商品評價 19
4. 銷售量流行與口碑流行之呼應 20
第二節 假設條件 21
1. 商品具歷史銷售數據 21
2. 商品為重要商品 21
3. 商品具流行性與話題性 21
4. 商品具數位口碑 21
5. 商品具地區性 22
6. 口碑流行與銷售流行時間間隔有限 22
第三節 迴歸最小方差法模型 22
1. 參數部分 23
2. 迴歸函式與其變數 24
3. 目標函式 24
第四節 績效評估 30
第四章 以口碑為基礎的銷售預測演算法 32
第一節 演算法概述 32
第二節 演算法主要流程 32
第三節 量化商品評價 33
1. 以網路為基礎的評論收集 34
2. 關鍵字計算 35
3. 建立特徵向量(Feature Vector) 36
4. 簡單貝氏分類 37
第四節 以最小方差法求得最適迴歸模型 38
1. 模型概述 38
2. 單次最小方差法實作 40
第五節 迴歸曲線檢定 41
第六節 演算法複雜度 43
1. 單次最小方差法複雜度 43
2. 標準化殘差複雜度 44
3. MAPE複雜度 44
4. 以最小方差法求得最適迴歸模型複雜度 44
5. 迴歸曲線檢定複雜度 46
6. 以口碑為基礎的銷售預測演算法複雜度 46
第五章 系統說明與實務案例分析 47
第一節 系統說明 47
第二節 實作範例 48
第三節 實務案例分析 50
1. 不適用數位口碑法的商品 53
2. 適用數位口碑法且預測表現佳的商品 56
3. 適用數位口碑法但預測表現不佳的商品 60
第四節 演算法應用與優缺點 61
第六章 結論 62
第一節 總論 62
第二節 未來研究方向 63
參考文獻 64
附錄A、十大熱銷商品關鍵字字典 69
附錄B、十大熱銷商品文章分類屬性次數表 71
dc.language.isozh-TW
dc.subject供應鏈管理zh_TW
dc.subject流行性商品zh_TW
dc.subject簡單貝氏分類zh_TW
dc.subject數位口碑zh_TW
dc.subject銷售預測zh_TW
dc.subject文本挖掘zh_TW
dc.subjectNa&iumlen
dc.subjectText-Miningen
dc.subjectSales Forecastsen
dc.subjectElectronic Word-of-Mouthen
dc.subjectve Bayes Classifieren
dc.subjectFashion Producten
dc.subjectSupply Chain Managementen
dc.title以數位口碑為基礎之流行性商品銷售預測zh_TW
dc.titleA Solution for Sales Forecasts of Fashion Products based on Electronic Word-of-Mouthen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳玲玲,林我聰,蔣明晃,蕭正平
dc.subject.keyword供應鏈管理,流行性商品,數位口碑,銷售預測,文本挖掘,簡單貝氏分類,zh_TW
dc.subject.keywordSupply Chain Management,Fashion Product,Electronic Word-of-Mouth,Sales Forecasts,Text-Mining,Na&iuml,ve Bayes Classifier,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2010-01-18
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved