Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45268
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃鼎偉(Ding-Wei Huang)
dc.contributor.authorYu-Hsuan Hoen
dc.contributor.author何羽軒zh_TW
dc.date.accessioned2021-06-15T04:11:36Z-
dc.date.available2010-02-04
dc.date.copyright2010-02-04
dc.date.issued2010
dc.date.submitted2010-01-27
dc.identifier.citation[1.01] E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, “Transparent conducting oxides for photovoltaics”, MRS Bull. 32,242 (2007)
[1.02] B. O'Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films”, Appl. Phys. Lett. 93, 223304 (2008)
[1.03] M. Izaki, T. Omi, “Transparent zinc oxide films prepared by electrochemical reaction”, Appl. Phys. Lett. 68, 2439 (1996)
[1.04] X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices”, Appl. Phys. Lett. 83, 1875 (2003)
[1.05] R. L. Hoffman, B. J. Norris and J. F. Wager, “ZnO-based transparent thin-film transistors”, Appl. Phys. Lett. 82, 733 (2003)
[1.06] G. Jain, and R. Kumar, “Electrical and optical properties of tin oxide and antimony doped tin oxide films”, Opt. Mater. 26, p. 27 (2004)
[1.07] F. Yang, S. R. Forrest, “Organic Solar Cells Using Transparent SnO2-F Anodes”, Adv. Mater. 18, 2018 (2006)
[1.08] S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354,56 (1991)
[1.09] P. J. Britto, K. S. V. Santhanam, A. Rubio, J. A. Alonso and P. M. Ajayan, “Improved Charge Transfer at Carbon Nanotube Electrodes”, Adv. Mater. 11, 154 (1999)
[1.10] S. A. Carter, M. Angelopoulos, S. Karg, P. J. Brock and J. C. Scott, “Polymeric anodes for improved polymer light-emitting diode performance”, Appl. Phys. Lett. 70, 2067 (1997)
[1.11] T. H. Reilly, III, J. Lagemaat, R. C. Tenent, A. J. Morfa and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics”, Appl. Phys. Lett. 92, 243304 (2008)
[1.12] M. Winzer, M. Kleiber, N. Dix and R. Wiesendanger, “Fabrication of nano-dot- and nano-ring-arrays by nanosphere lithography”, Appl. Phys. A 63, 617 (1996)
[1.13] D. Wang and H. Mohwald, “Rapid fabrication of binary colloidal crystals by stepwise spin-Coating”, Adv. Mater. 16, 244 (2004)
[1.14] C. L. Cheung, R. J. Nikolic, C. E. Reinhardt and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography”, Nanotechnology 17, 1339 (2006)
[1.15] C. X. Cong, T. Yu, Z. H. Ni, L. Liu, Z. X. Shen and W. Huang, “Fabrication of Graphene Nanodisk Arrays Using Nanosphere Lithography”, J. Phys. Chem. C, 113 (16), 6529 (2009)
[1.16] K. Fuchs, “The conductivity of thin Metallic. films according to the electron theory of metals”, Proc. Cambridge Philos. Soc. 34, 100 (1938)
[1.17] E. H. Sondheimer, “The mean free path of electrons in metals”, Adv. Phys. 1, 1 (1952)
[1.18] A. F. Mayadas, M. Shatzkes, and M. Janak, “Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces”, Appl. Phys. Lett. 14, 345 (1969)
[1.19] A. F. Mayadas and M. Shatzkes, “Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces”, Phys. Rev. B 1, 1382 (1970)
[1.20] T. Sun, B. Yao, A. P. Warren, K. Barmak, M. F. Toney, R. E. Peale, and K. R. Coffey, “Dominant role of grain boundary scattering in the resistivity of nanometric Cu films”, Phys. Rev. B 79, 041402(R) (2009)
[1.21] J. Dong and B. A Parviz, “Using noise for controlled disassembly of nanoscale gold wires”, Nanotechnology 17, 5124 (2006)
[1.22] D. R. Strachan, D. E. Smith, D. E. Johnston, T.-H. Park and M. J. Therien, “Controlled fabrication of nanogaps in ambient environment for molecular electronics”, Appl. Phys. Lett. 86, 043109 (2005)
[1.23] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, “Interacting electrons in disordered wires: Anderson localization and Low-T Transport”, Phys. Rev. Lett. 95, 206603 (2005)
[1.24] C. Durkan and M. E. Welland, “Size effects in the electrical resistivity of polycrystalline nanowires”, Phys. Rev. B 61, 14215 - 14218 (2000)
[1.25] H. Marom, J. Mullin, and M. Eizenberg, “Size-dependent resistivity of nanometric copper wires”, Phys. Rev. B 74, 045411 (2006)
[1.26] J. M. Camacho and A. I. Oliva, “Surface and grain boundary contributions in the electrical resistivity of metallic nanofilms”, Thin Solid Films 515, 1881 (2006)
[1.27] S. A. Maier, “Plasmonics: fundamentals and applications”, Springer (2007)
[1.28] C. F. Bohren and D. R. Huffman, “Absorption and scattering of light by small particles”, Wiley, New York (1998)
[1.29] Shen-Yu Hsu, Ming-Chang Lee, Kuang-Li Lee and Pei-Kuen Wei, “Extraction enhancement in organic light emitting devices by using metallic nanowire arrays”, Appl. Phys. Lett. 92, 013303 (2008)
[1.30] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays”, Nature, 391 667 (1998)

[2.1] U. C. Fischer, H. P. Zingsheim, “Submicroscopic pattern replication with visible light”, J. Vac. Sci. Technol., 19, 881 (1981)
[2.2] H. W. Deckman, J. H. Dunsmuir, ” Applications of surface textures produced with natural lithography”, J. Vac. Sci. Technol. B 1, 1109 (1983)
[2.3] P. Jiang and M.J. McFarland, ”Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating”, J. Am. Chem. Soc. 126, 13778 (2004)
[2.4] M. C. Hersam, M. Phil. Thesis, University of Cambridge (1997)
[2.5] C. Durkan and M. E. Welland, “Size effects in the electrical resistivity of polycrystalline nanowires”, Phys. Rev. B 61, 14215 - 14218 (2000)
[2.6] T. Sun, B. Yao, A. P. Warren, K. Barmak, M. F. Toney, R. E. Peale, and K. R. Coffey, “Dominant role of grain boundary scattering in the resistivity of nanometric Cu films”, Phys. Rev. B 79, 041402(R) (2009)
[2.7] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics”, Nature (London) 424,824-830 (2003)
[2.8] T. H. Reilly, III, J. Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-Plasmon Enhanced Transparent Electrodes in Organic Photovoltaics”, Appl. Phys. Lett. 92, 243304 (2008)
[2.9] Shen-Yu Hsu, Ming-Chang Lee, Kuang-Li Lee and Pei-Kuen Wei, “Extraction Enhancement in Organic Light Emitting Devices by Using Metallic Nanowire Arrays”, Appl. Phys. Lett. 92, 013303 (2008)

[3.01] C. Durkan and M. E. Welland, “Size effects in the electrical resistivity of polycrystalline nanowires”, Phys. Rev. B 61, 14215 - 14218 (2000)
[3.02] H. Marom, J. Mullin and M. Eizenberg, “Size-dependent resistivity of nanometric copper wires”, Phys. Rev. B 74, 045411 (2006)
[3.03] K. Fuchs, “The conductivity of thin Metallic. films according to the electron theory of metals”, Proc. Cambridge Philos. Soc. 34, 100 (1938)
[3.04] E. H. Sondheimer, “The mean free path of electrons in metals”, Adv. Phys. 1, 1 (1952)
[3.05] A. F. Mayadas, M. Shatzkes, and M. Janak, “Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces”, Appl. Phys. Lett. 14, 345 (1969)
[3.06] A. F. Mayadas and M. Shatzkes, “Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces”, Phys. Rev. B 1, 1382 (1970)
[3.07] R. G. Chambers, “The conductivity of thin wires in a magnetic field”, Proc. R. Soc London, Ser. A 202, 378 (1950)
[3.08] B. O'Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films”, Appl. Phys. Lett. 93, 223304 (2008)
[3.09] M. C. Hersam, M. Phil. Thesis, University of Cambridge (1997)
[3.10] B. O'Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films”, Appl. Phys. Lett. 93, 223304 (2008)
[3.11] Wikipedia for Silver, http://en.wikipedia.org/wiki/Silver

[4.01] H. Marom, J. Mullin and M. Eizenberg, “Size-dependent resistivity of nanometric copper wires”, Phys. Rev. B 74, 045411 (2006)
[4.02] Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids”, Nature Photonics 2, 483 - 487 (2008)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45268-
dc.description.abstract透明導電電極是光電元件中最重要且最基礎的元件之ㄧ,銦錫氧化物(ITO)則是目前最廣為大家使用的透明電極材料。但構成銦錫氧化物中的重要元素「銦」有許多的迫切的問題,一是銦的蘊藏量在地球上極為有限,二則是伴隨著低蘊藏量隨之而來銦錫氧化物的高價格問題,自2003年至今,銦錫氧化物的價格已經高漲了十倍之多。因此尋求銦錫氧化物的透明電極替代品就成為眼前極為迫切的問題。
在此篇論文中,我們使用奈米模板技術和高真空熱退火製備了一系列高導電度與高穿透度的導電薄膜。在此類奈米結構設計中,穿透度與導電度是兩難的取捨權衡,在薄膜上挖出越高比例的金屬材料,將導致電性的急速下降,反之若是留下越多的金屬成分,則是無法兼顧到電極的光穿透度。在我們最佳化的設計(厚度10奈米,週期590奈米和54.69−58.341%填充率)中,能夠同時達到八成以上的穿透度與片電阻的35Ω/□。在討論完透明電極的的光電特性後,我們挑選了一適當的結構(厚度20奈米,週期590奈米和32.154%填充率)撘配上表面平坦化技術作為測試的透明導電電極,完成一綠光的有機發光二極體,使得元件起始電壓較傳統ITO元件下降0.4V,而電流效率更是增加了84%。
zh_TW
dc.description.abstractTransparent conductive electrode is one of the most important and basic components of the optoelectronics. Indium tin oxide (ITO) has been the most widely employed to fabricate the transparent electrode. But Indium metal itself that is the ingredient that comprises the largest portion in the ITO raw material has problems including extremely limited quantity, high price and unstable supply and demand. So ITO alternatives have become the subject of intense investigation for applications as transparent electrodes in optoelectronic devices.
In this work, we used the nanosphere lithography and annealing process to create the patterned Ag thin film to achieve high transparency and conductivity. The optimization between transparency and conductivity is always a trade-off. Our optimized cases (10-nm-thick silver, 590-nm period, and 54.69−58.341% filling factor*) allow for a transparency of 80−85% and a sheet resistance lower than 35Ω/□. Using the patterned Ag thin film as the anode (20-nm thick, 590-nm period, and 32.154% filling factor) coated with SAM (Self-Assembly Monolayer), we successfully fabricated Alq3-based OLED devices. Compared with traditional ITO-based devices, the patterned Ag anode had a turn-on voltage decreased by 0.4V, and the current efficiency was increased by 84%.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:11:36Z (GMT). No. of bitstreams: 1
ntu-99-R94941044-1.pdf: 20368780 bytes, checksum: b8b33bef732b0a7f6e5f3e1d82d87cac (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsChapter 1 introduction....................................p1
1.1 Introduction of nanosphere lithography............p2
1.2 The size-dependent electrical resistivity of the nanostructure.............................................p5
1.3 The optical property of the nanoscale openwork...p11
Reference................................................p14
Chapter 2 Experiment and Measurement System..............p17
2.1 Experiment setup for nanospheres lithography.....p17
2.2 Electrical measurement with four-point probe.....p28
2.3 Setup of transparency measurement................p35
2.4 OLED devices fabrication.........................p44
Reference................................................p45
Chapter 3 Result and discussion..........................p47
3.1 Electrical models of patterned silver thin film..p48
3.1.1 Surface scattering component of resistivity........p48
3.1.2 Grain-boundary scattering component of resistivity.p53
3.1.3 Combined model of resistivity and sheet resistance of the patterned silver thin film...........................p55
3.1.4 Electrical results and modeling....................p58
3.2 Evaluation for the optoelectronic properties.....p62
3.3 Testing OLED devices with the anode of patterned metal thin film..........................................p67
Reference................................................p77
Chapter 4 Conclusions and future works...................p78
4.1 Conclusions......................................p78
4.2 Future works.....................................p79
4.2.1 Flexible optoelectronic devices....................p79
4.2.2 Optimized light extraction efficiency..............p79
4.2.3 Solar cells........................................p80
Reference................................................p80
Appendix.................................................p81
dc.language.isoen
dc.title以奈米球模板技術製備透明導電電極之光性與電性研究zh_TW
dc.titleElectrical and optical properties of transparent conductive electrode based on patterned metal thin film by nanoshpere lithographyen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.coadvisor魏培坤(Pei-Kuen Wei)
dc.contributor.oralexamcommittee林晃巖(Hoang-Yan Lin),朱治偉(Chih-Wei Chu)
dc.subject.keyword奈米球模板,透明電極,有機發光二極體,zh_TW
dc.subject.keywordNanosphere lithography,transparent anode,organic light-emitting-diode,en
dc.relation.page107
dc.rights.note有償授權
dc.date.accepted2010-01-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
19.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved