Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45226
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭登貴(Winston Teng-Kuei Cheng)
dc.contributor.authorHsiu-Chou Liuen
dc.contributor.author劉秀洲zh_TW
dc.date.accessioned2021-06-15T04:09:43Z-
dc.date.available2010-02-24
dc.date.copyright2010-02-24
dc.date.issued2010
dc.date.submitted2010-02-02
dc.identifier.citationAbplanalp, H., J. M. Pisenti, and L. R. Synder. 1983. Inbreeding effects on reproductive traits in the ring-necked pheasant. Poult. Sci. 62:1725-1730.
Baird, T., S. E. Solomon, and D. R. Tedstone. 1975. Localisation and characterisation of egg shell porphyrin in several avian species. Br. Poult. Sci. 16:201-208.
Bakken, G. S., V. C. Vanderbilt, W. A. Buttemer, and W. R. Dawson. 1978. Avian eggs:thermoregulatory value of very high near infra-red reflectance. Science 200:321-323.
Barnett, G. M., M. F. Hudson, and K. M. Smith. 1975. Concerning of meso-tetraphenylporphyrin purification. J Chem Soc 14:1041-1043.
Bartlett, J. R., C. P. Jones, and E. J. Smith. 1996. Linkage analysis of endogenous viral element 1, Blue eggshell and Pea comb loci in chickens. J. Hered. 87:67-70.
Bitgood, J. J., J. S. Otis, and R. N. Shoffner. 1983. Refined linkage value for pea comb and blue egg: Lack of effect of pea comb, blue egg, and naked neck on age at first egg in the domestic fowl. Poult. Sci. 62:235-238.
Bitgood, J. J., R. N. Briles and W. E. Briles. 2000. Further tests for genetic linkage of three orphological traits, three blood groups, and break points of two chromosome translations on chromosome one in the chicken. Poult. Sci. 79:293-295.
Bitgood, J. J., R. N. Shoffner, J. S. Otis, and W. E. Briles. 1980. Mapping of the genes for pea comb, blue egg, barring, silver, and blood groups A, E, H and P in the domestic fowl. Poult. Sci. 59:1686-1693.
Blow, W. L., C. H. Bostian, and E. W. Glazener. 1950. The inheritance of egg shell color. Poult. Sci. 29:381-385.
Boelkins, J. N., W. J. Mueller, and K. L. Hall. 1973. Cardiac output distribution in the laying hen during shell formation. Comp. Biochem. Physiol. 46:735-743.
Briggs, D. M. and E. Teulings. 1974. Correlation and repeatability between chicken egg shell color and breaking strength. Poult. Sci. 53:1904.
Bruckner, J. H. and F. B. Hutt. 1939. Linkage of pea comb and blue egg in the fowl. Science 90:88.
Butcher, G. D. and R. D. Miles. Factors causing poor pigmentation of brown-shelled eggs. 1995. Cooperative Extension Service Fact Sheet VM94. Inst. Food and Agric. Sci., Univ. Florida, Gainesville.
Campo, J. L., and J. Escudero. 1984. Relationship between egg-shell colour and two measurements of shell strength in the Vasca breed. Br. Poult. Sci. 25:467-476.
Carter, T. C. 1975. The hen’s egg: relationship of seven characteristics of the strain of hen to incidence of cracks and other shell defects. Br. Poult. Sci. 16:289-296.
Chen, D. T., S. R. Lee, Y. H. Hu, C. C. Huang, Y. S. Cheng, C. Tai, J. P. Poivey, and R. Rouvier. 2003. Genetic trends for laying traits in the Brown Tsaiya (Anas platyrynchos) selected with restricted genetic selection index. Asian-australas. J. Anim. Sci. 16:1705-1710.
Cook, J. K. A. 1986. Pale shelled eggs can be caused by IB virus. Misset Int. Poult. 2:38-39.
Cornelius, C. E. 1991. Bile pigments in fishes: a review. Vet Clin Pathol 20:106-115.
Crawford, R. J. 1986. Linkage between pea comb and melanotic plumage loci in chickens. Poult. Sci. 65:1859-1862.
Darnell-Middleton, S. L., S. E. Solomon, M. M. Bain, and B. H. Thorp. 1998. Observations on pigmentation, hatchability and ultrastructure in guinea fowls eggshells. Br. Poult. Sci. 39 Suppl:S28-S29.
Dorn, D. A., C. C. Sheppard, and C. J. Flegal. 1982. The influence of storage on hatchability of ring neck pheasant eggs. Poult. Sci. 61:2503-2505.
Etches, R. J. 1996. Reproduction in Poultry, Wallingford press, pp. 10-37.
Farnsworth, G. M. and A. W. Nordskog. 1955. Breeding for egg quality. 3. Genetic differences in shell characteristics and other egg quality factors. Poult. Sci. 34:16-26.
Francesch, A., J. Estancy, L. Alfonso, and M. Iglesias. 1997. Genetic parameters for egg number, egg weight, and eggshell color in three Catalan poultry breeds. Poult. Sci. 76:1627-1631.
Fujita, H. 1997. Molecular mechanism of heme biosynthesis. Tohoka J. Exp. Med. 183:83-99.
Giersberg, H. 1921. Eihullenbildung der Vogel, sowie Entstehung der Farbung der Vogeleier. Biol. Zbl. 41:252-268.
Godfrey, G. F. 1949. Shell color as a measure of egg shell quality. Poult. Sci. 28:150-151.
Gosler. A. G., J. P. Higham, and S. J. Reynolds. 2005. Why are birds' eggs speckled? Ecol. Lett. 8:1105-1113.
Gowe, R. S., H. W. Budde, and P. J. McGann. 1965. On measuring egg shell color in poultry breeding ans selection programs. Poult. Sci. 44:264-270.
Hall, G. O. 1944. Egg shell color in crosses between white- and brown-egg breeds. Poult. Sci. 23:259-265.
Huang, C. W., H. C. Liu, Y. H. Hu, K. T. Yang, C. P. Wu, Y. S. Cheng, R. Rouvier, and M. C. Huang. 2006. The distinction of DNA fingerprints in Tsaiya ducks with different eggshell colors. J. Chin. Soc. Anim. Sci. 35:153-164.
Hughes, B. O., A. B. Gillbert, and M. F. Brown. 1986. Categorisation and causes of abnormal egg shells: Relationship with stress. Br. Poult. Sci. 27:325-337.
Hughes, B. O., and A. B. Gilbert. 1984. Induction of eggshell abnormalities in domestic fowl by administration of adrenaline. IRCS Med. Sci. 12:969-970.
Hulet, R. M., B. J. Marquez, S. Molle, and C. J. Flegal. 1978. The relationship of pheasant egg color and hatchability. Poult. Sci. 57:1146.
Hulet, R. M., C. J. Flegal, G. H. Carpenter, and L. R. Champion. 1985. Effect of eggshell color and thickness on hatchability in Chinese ring-necked pheasants. Poult. Sci. 64:235-237.
Hunton, P. 1962. Genetics of egg shell color in a light Sussex flock. Br. Poult. Sci. 40:1662-1675.
Hurst, C. C. 1905. Experiments with poultry. Rep. Evol. Comm. R. Soc. II:131-154.
Ingram, D. M., L. F. Hatten III, and K. D. Homan. 2008. A Study on the relationship between eggshell color and eggshell quality in commercial broiler breeders. Int. J. Poult. Sci. 7:700-703.
Ito, H., and T. Hanato. 1964. Varation of magnesium and phophorus deposition rates during egg shell formation. Poult. Sci. 43:77-80.
Ito, S., M. Tsudzuki, M. Komort, and M. Mizutani. 1993. Celadon: an eggshell color mutation in Japanese quail. J. Hered. 84:145-147.
Johnson, A. L. 2000. Sturkie’s avian physiology (Whittow, G. C. ed.), Academic press, pp.569-596.
Joseph, N. S., N. A. Robinson, R. A. Renema, and F. E. Robinson. 1999. Shell quality and color variation in broiler breeder eggs. J. Appl. Poult. Res. 8:70-74.
Kennedy, G. Y., and H. G. Vevers. 1973. Eggshell pigments of the Arauano fowl. Comp. Biochem. Physiol. 44B:11-35.
Kennedy, G. Y., and H. G. Vevers. 1976. A survey of avian eggshell pigments. Comp. Biochem. Physiol. 55B:117-123.
Kikuchi, G., T. Yoshida, and M. Noguchi. 2005. Heme oxygenase and heme degradation. Biochem. Biophy. Res. Commun. 338:558-567.
Kopec, S. 1926. An experimental study of xenia in the domestic fowl. J. Genet. 16:269-286.
Lahti, D. C. 2008. Population differentiation and rapid evolution of egg color in accordance with solar radiation. Auk. 125:796-802.
Lang, M. R. and J. W. Wells. 1987. A review of eggshell pigmentation. World's Poult Sci J 43:238-246.
Lemberg, R. 1934. Bile pigments. VI. Biliverdin, uteroverdin and oocyan. Biochem. J. 28:978-987.
Liu, S. C., J. F. Huang, T. J. Sun, S. R. Lee, and C. T. Wang. 1998. The inheritance of blue eggshell in Brown Tsaiya. J. Taiwan Lives. Res. 31:373-382.
M. Viluksela, and J. Tuomisto. 2003. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-induced accumulation of biliverdin and hepatic peliosis in rats. Toxicol. Sci. 71:112-123.
Ma, R. C. S. 1968. The time of release of the luteinizing hormone from the adenohypophysis of laying domestic ducks. Poult. Sci. 47:404-410.
Mashaly, M. M. and M. L. Webb. 1982. Relationship between progesterone and egg production in pheasants. Poult. Sci. 61:982-987.
McCartnay, E. 1989. Infectious bronchitis update. J. Egg Industry 8:12-16.
Mikšík, I., V. Holáň and Z. Deyl. 1994. Quantification and variability of eggshell pigment concentration. Comp. Biochem. Physiol. 109A:769-772.
Mikšík, I., V. Holáň and Z. Deyl. 1996. Avian eggshell pigments and their variability. Comp. Biochem. Physiol. 113B:607-612.
Miller, L. K. and A. Kappas. 1974. The effect of progesterone on activities of delta-aminolevulinic acid synthetase and delta-aminolevulinic acid hydratase in estrogen-primed avian oviduct. Gen. Comp. Endocrinol. 22:238-244.
Morales, J., J. J. Sanz, and J. Moreno. 2006. Egg colour reflects the amount of yolk maternal antibodies and fledging success in a songbird. Biol. Lett. 2:334-336.
Moreno, J. and J. L. Osorno. 2003. Avian egg color and sexual selection: Does eggshell pigmentation reflect female condition and genetic quality? Ecol. Lett. 6:803-806.
Moreno, J., J. Morales, E. Lobato, S. Merino, G. Tomás, and J. M. la Puente. 2005. Evidence for the signaling function of egg color in the pied flycatcher Ficedula hypoleuca. Behav. Ecol. 16:931-937.
Moreno, J., J. Morales, E. Lobato, S. Merino, G. Tomás, and J. M. la Puente. 2006. More colourful eggs induce a higher relative paternal investment in the pied flycatcher Ficedula hypoleuca: a cross-fostering experiment. J. Avian Biol. 37: 555-560.
Murakami, Y., N. Fujihara, and O. Koga. 1991. Arginine vasotocin level in plasma and prostaglandin concentrations in the uterine tissue before and after premature oviposition induced by orthophosphate solution in the hen. Nippon Kakin Gakkaishi 28:11-19.
Nakano, T., N. I. Ikawa, and L. Ozimek. 2003. Chemical composition of chicken eggshell and shell membranes. Poult. Sci. 82:510-514.
Niittynen, M., J. T. Tuomisto, S. Auriola, R. Pohjanvirta, P. Syrjala, U. Simanainen,
Nohl, H., A. V. Kozlov, L. Gille, and K. Staniek. 2003. Cell respiration and formation of reactive oxygen species: Facts and artefacts. Biochem. Soc. Trans. 31:1308-1311.
Nys, Y., J. Zawadzki, J. Gautron, and A. D. Mills. 1991. Whitening of brown-shelled eggs: Mineral composition of uterin fluid and rate of proporphyrin deposition. Poult. Sci. 70:1236-1245.
Odabaşi, A. Z., R. D. Miles, M. O. Balaban, and K. M. Portier. 2007. Changes in brown eggshell color as hen ages. Poult. Sci. 86:356-363.
Ogasawara, T., O. Koga, and H. Nishiyama. 1974. Effect of a shell gland irritant on the secretion rate, calcium and inorganic phosphorus levels of the shell gland fluid in the laying hen. Jpn. J. Zootech. Sci. 45:668-673.
Polin, D. 1957. Formation of porphyrin from delta-aminolevulenic acid by uterine and liver tissue from laying hens. Proc. Soc. Exp. Biol. Med. 94:276-279.
Poole, H. K. 1965. Spectrophotometric identification of eggshell pigments and timing of supercial pigment deposition in the Japanese quail. Proc. Soc. Exp. Biol. Med. 119:547-551.
Poole, H. K. 1967. A micrpscopic study of uterine eggshell pigment in Japanese quail (Coturnix coturnix japonica). J. Hered. 58:200-203.
Potts, P. L. and K. W. Washburn. 1974. Shell evaluation of white and brown egg strains by deformation, breaking strength, shell thickness and specific gravity. Poult. Sci. 53:1123-1128.
Punnett, R. C. 1933. Inheritance of egg colour in the “parasitic” cuckoo. Nature 132:892-893.
Punnett, R. C., and P. G. Bailey. 1920. Genetic studies in poultry. II. Inheritance of colour and broodiness. J. Genet. 10:277-292.
Quintana, C. and D. Sandoz. 1978. Coquille de l/oeuf de caille: étude ultrastructure et cristallographique. Calcif Tissue Res 25:145-159.
Reynolds, S. J., G. R. Graham, and P. Cassey. 2009. Is sexual selection blurring the functional significance of eggshell coloration hypotheses? Anim Behav 78:209-215.
Richards, P. D. G. and D. C. Deeming. 2001. Correlation between shell colour and ultrastructure in pheasant egg. Br. Poult. Sci. 42:338-343.
Roland, D. A., Sr. 1979. Factors influencing shell quality of aging hens. Poult. Sci. 58:774-777.
Roland, D. A., Sr., D. R. Sloan, and R. H. Harms. 1975. The ability of hens to maintain calcium deposition in the egg shell and egg yolk as the hen ages. Poult. Sci. 54:1720-1723.
Ryter, S. W., E. Kvam, and R. W. Tyrrell. 2000. Heme oxygenase activity. Methods Mol. Biol. 99:369-391.
Sadjadi, M., J. A. Renden, F. H. Benoff, and J. A. Harper. 1983. Effects of the blue egg shell allele (O) on egg quality and other economic traits in the chicken. Poult. Sci. 62:1717-1720.
SAS Institute Inc. 2002. SAS Qualification Tools User’s Guide, version 9.1.3 SAS Institute Inc., Cary, North Carolina.
Sasaki, O., S. Odawara, H. Takahashi, K. Nirasawa, Y. Oyamada, R. Yamamoto, K. Ishii, Y. Nagamine, H. Takeda, E. Kobayashi, and T. Furukawa. 2004. Genetic mapping of quantitative trait loci affecting body weight, egg character and egg production in F2 intercross chickens. Anim. Genet. 35:184-194.
Scanes, C., G. Campbell, and R. Griminger. 1987. Control of energy balance during egg production in the laying hen. J. Nutr. 117:605-611.
Schwartz, S. W., A. Raux, B. A. Schacter, B. D. Stephenson and R. N. Shoffner. 1980. Loss of hereditary uterine protoporphyria through chromosomal rearrangement in mutant Rhode Island Red hens. Int. J. Biochem. 12:935-940.
Schwartz, S., B. D. Stephenson, D. H. Sarkar, and M. A. Bracho. 1975. Red, white and blue eggs as models for porphyrin and heme metabolism. Ann. N. Y. Acad. Sci. 244:570-588.
Shafey, T. M., H. A. Al-Batshan, M. M. Ghannam, and M. S. Al-Ayed. 2005. Effect of intensity of eggshell pigment and illuminated incubation on hatchability of brown eggs. Br. Poult. Sci. 46:190-198.
Shafey, T. M., M. M. Ghannam, H. A. Al-Batshan, and M. S. Al-Ayed. 2004. Effect of pigment intensity and region of eggshell on the spectral transmission of light that passes the eggshell of chickens. Intl. J. Poult. Sci. 3:228-233.
Shafey, T. M., T. H. Al-Mohsen, A. A. Al-Sobayel, M. J. Alhassan, and M. M. Ghannam. 2001. Effects of eggshell pigmentation and egg size on the spectral properties and characteristics of eggshell of meat and layer breeder eggs. Asian-australas. J. Anim. Sci. 2:297-302.
Shoffner, R. N. 1981. Marker chromosomes and G-banding for location of genes in the chicken. Poult. Sci. 60:1372-1375.
Siefferman, L., K. J. Navara, and G. E. Hill. 2006. Egg coloration is correlated with female condition in eastern bluebirds (Sialia sialis). Behav. Ecol. Sociobiol. 59:651-656.
Soh, T. and O. Koga. 1994. The effects of sex steroid hormones on the pigment accumulation in the shell gland of Japanese quail. Poult. Sci. 73:179-185.
Soh, T. and O. Koga. 1999. Effects of phosphate, prostaglandins, arachidonic acid and arginine vasotonin on oviposition and pigment secretion from the shell gland in Japanese quail. Br. Poult. Sci. 40:131-134.
Soh, T., N. Fujihara, and O. Koga. 1993. Observation of pigment accumulation in the epithelium of the shell gland and superficial pigmentation on the egg shell in Japanese quail. J. Fac. Agric. Hokkaido Univ. 38:73-80.
Soh, T., N. Fujihara, and O. Koga. 2000. The effect of indomethacin on the superficial pigmentation of Japanese quail eggshell. Nippon Kakin Gakkaishi 37:171-174.
Soh, T., O. Koga, and K. Tanaka. 1989. Research Note: Involvement of ovulation mechanism(s) in the accumulation of pigment in the shell gland of the Japanese quail. Poult. Sci. 68:1156-1158.
Soler, J. J., J. Moreno, J. M. Aviles, and M. P. Moller. 2005. Blue and green egg-color intensity is associated with parental effort and mating system in passerines: Support for the sexual selection hypothesis. Evolution 59:636-644.
Solomon, S. E. 1991. Egg and eggshell quality, Wolfe Publishing Ltd. Press. pp. 123-129.
Solomon, S. E. 1997. Egg and eggshell quality, Manson Press. pp.149-153.
Solomon, S. E. 2002. The oviduct in chaos. World’s Poult Sci J 58:41-48.
Solomon, S. E., B. O. Hughes, and A. B. Gilbert. Effect of a single injection of adrenaline on shell ultrastructure in a series of eggs from domestic hens. Br. Poult. Sci. 28:585-588.
Sorby, H. C. 1875. On the coloring-matters of the shells of birds’ eggs. Processings of the Zoological Society of London. 351-365.
Sukanya, Y. 2007. Influence of shell color, genetic background and hen age on eggshell quality traits of chicken eggs. Master’s thesis. National Chung Hsing University, Taiwan.
Sykes, A. H. 1959. The effect of adrenaline on oviduct motility and egg production in the fowl. Poult. Sci. 34:622-682.
Tai, C., R. Rouvier, and J. P. Poivey. 1989. Genetic parameters of some growth and egg production traits in laying Brown Tsaiya. Genet. Sel. Evol. 21:377-384.
Tamura, T. and S. Fujii. 1967. Comparative observations on the distribution of fluorescent pigments (porphyrins) in the chicken and quail uteri. Journal of the Faculty of Fisheries and Animal Husbandry, Hiroshima University 7:43-49.
Tamura, T., S. Fujii, H. Kunisaki, and M. Yamane. 1965. Histological observation on the quail oviduct; with reference to pigment (porphyrin) in the uterus. Journal of the Faculty of Fisheries and Animal Husbandry, Hiroshima University 6:37-57.
Tanaka, K., T. Imai, and O. Koga. 1977. Superficial pigmentation of egg shell in Japanese quail, Coturnix coturnix japonica. Nippon Kakin Gakkaishi 14:229-231.
Tixier-Boichard, M. 2002. From phenotype to genotype: Major genes in chickens. World’s Poult Sci J 58:35-45.
Tsushima, N. and M. Yamada. 1988. Comparison of sex hormone dependent induction of delta-aminolevulinic acid dehydratase in chick liver and oviduct. Comp. Biochem. Physiol. 90B:187-192.
van Brummelen, R. and S. Bissbort. 1993. Chicken eggshell porphyrins and the glyoxALAS1e pathway: its possible physiological role. Comp. Biochem. Physiol. 104B: 657-662.
Walker, A. W. and B. O. Hughes. 1998. Egg shell color is affected by laying cage design. Br. Poult. Sci. 39:696-699.
Wang, C. T., T. C. Wan, C. M. Pan, and Y. H. Chen. 1997. Comparisons of physical-chemical properties and alkalizing process between greenish and whitish eggs of Brown Tsaiya duck. J. Chin. Agri. Chem. Soc. 35:263-272.
Wang, X. T., C. J. Zhao, J. Y. Li, G. Y. Xu, L. S. Lian, C. X. Wu, and X. M. Deng. 2009. Comparison of the total amount of eggshell pigments in Dongxiang brown-shelled eggs and Dongxiang blue-shelled eggs. Poult. Sci. 88:1735-1739.
Wang, X. T., X. M. Deng, C. J. Zhao, J. Y. Li, G. Y. Xu, L. S. Lian, and C. X. Wu. 2007. Study of the deposition process of eggshell pigments using an improved dissolution method. Poult. Sci. 86:2236-2238.
Wardęcka, B., R. Olszewski, K. Jaszczak, G. Zięba, and M. Pierzchała. 2003. Preliminary mapping of QTLs affecting egg quality on chromosomes 1-5 in chickens. Czech J. Anim. Sci. 48:97-105.
Wardęcka, B., R. Olszewski, K. Jaszczak, G. Zięba, M. Pierzchała, and K. Wicińska. 2002. Relationship between microsatellite markers alleles on chromosomes 1-5 originating from the Rhode Island Red and Green-legged Partrigenous breeds and egg production and quality traits in F2 mapping population. J. Appl. Genet. 43:319-329.
Warren, D. C. and R. M. Conrad. 1942. Time of pigment deposition in brown shelled hen eggs and in turkey eggs. Poult. Sci. 21:515-520.
Wei., R., J. Bitgood, and M. R. Dentine. 1992. Inheritance of tinted eggshell colors in white-shell stocks. Poult. Sci. 71:406-418.
Wicke, W. 1858. Ueber das pigment in den Eischalen der Vögel. Naumannia 8:393-397.
With, T. K. 1973. Porphyrins in egg shells. Biochem. J. 137:597-598.
Woodard, A. E. and A. Morzenti. 1975. Effect of turing and age on hatchability in the pheasant, chukar, and Japanese quail. Poult. Sci. 54:1708-1710.
Woodard, A. E. and R. L. Snyder. 1978. Cycling for egg production in the pheasant. Poult. Sci. 57:349-352.
Woodard, A. E., H. Abplanalp, and R. L. Snyder. 1983. Inbreeding effects on reproductive traits in the ring-necked pheasant. Poult. Sci. 62:1725-1730.
Woodard, A. W. and F. B. Mather. 1964. The timing of ovulation and movement of the ovum through the oviduct, pigmentation and shell deposition in Japanese quail. Poult. Sci. 43:1427-1432.
Yamada, M. 1972. δ-Aminolevulinic acid dehydratases from shell gland and liver of Japanese quail, Coturnix coturnix japonica. I. Purification, properties and hormonal induction. Biochim. Biophys. Acta 279:535-543.
Yang, H. M. and Z. Y. Wang. 2009. Study on the relationship between eggshell colors and egg quality as well as shell ultrastructure in Yangzhou chicken. Afr. J. Biotechnol. 8:2898-2902.
Zartman, D. L. 1973. Location of the pea comb gene. Poult. Sci. 52:1455-1462.
Zhang, L. C., Z. H. Ning, G. Y. Xu, Z. C. Hou, and N. Yang. 2005. Heritabilities and genetic and phenotypic correlations of egg quality traits in brown-egg dwarf layers. Poult. Sci. 84:1209-1213.
Zhao, R., G. Y. Xu, Z. Z. Liu, X. Y. Li, and N. Yang. 2006. A study on eggshell pigmentation: Biliverdin in blue-shelled chickens. Poult. Sci. 85:546-549.
Zhao, R., Z. Z. Liu, G. Y. Xu, and N. Yang. 2007. Analysis of SNP markers for chicken blue-shelled gene using PCR-SSCP. Chin. J. Agric. Biotech. 4:53-56.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45226-
dc.description.abstract構成禽類蛋殼顏色之重要色素成員,已知包括:原吡咯紫質(protoporphyrin)與膽綠質(biliverdin)及其衍生物,例如鋅-膽綠質螯合物(Zn-biliverdin chelate);其中膽綠質為血色質(heme)裂解後之一產物,係構成青色蛋殼之主要色素,而原吡咯紫質環(protoporphyrin ring)則為血色質形成過程之一中間產物,係棕色蛋殼之主要構成色素。褐色菜鴨為台灣本土主要之產蛋品系,其蛋殼顏色可由白色、淡青色至深青色不等。鴨隻之產出青殼蛋者,其殼腺可能較產出白殼蛋者,累積有更高量之膽綠質,然釐清此等假設之有力試驗證據,迄今尚且付之闕如。
本論文旨在探討鴨隻蛋殼色素沉積之作用模式,並嘗試藉由殼腺中相關mRNA表現量及其活性之論證,以釐清鴨隻殼腺中具有較高活性之血基質氧化酶,對於青殼蛋之形成是否扮演關鍵性角色?
應用紫外光分光光度計與高壓液相層析儀偵測產青、白殼蛋鴨產蛋後6、12、18、20及23.5小時之殼腺、子宮液及蛋殼中膽綠質的濃度。結果顯示,就蛋殼及子宮液中含有之膽綠質濃度而言,鴨隻品種間確實呈現有顯著性之差異(P < 0.05),惟就殼腺中之膽綠質濃度而言,則無顯著性之差異。相對地,就殼腺中血基質氧化酶活性而言,兩品種鴨隻分別均於全程排卵周期(Ovulatory cycle)中維持穩定;此外,免疫組織化學染色結果亦顯示,血基質氧化酶多被表現於殼腺複層立體上皮細胞之細胞質,且二品種鴨隻彼此間亦無顯著性之差異。同時,殼腺中胺基酮戊酸合成酶、第一型及第二型血基質氧化酶 mRNA之表現量,在產出青殼與白殼蛋之鴨隻間,彼此亦無顯著性之差異。鴨隻之生產白殼蛋者,其殼腺腔中經外源注入膽綠質後,確能有效增加沉積於蛋殼上之膽綠質濃度,導致蛋殼由白色轉為青色。應用蛋殼逐層溶解法,針對各層蛋殼中含有之膽綠質濃度進行分析結果發現,青殼蛋之蛋殼自第一層至第六層中含有膽綠質之濃度,分別皆顯著高於白殼蛋者;惟青殼蛋者之最外層,並未有大量膽綠質之累積,顯示鴨隻蛋殼色素之累積,確係以逐層持續不斷進行沉積模式而為之。
綜合上述試驗結果顯示,鴨隻蛋殼之為青色或白色,其顏色之差異性深受子宮液中膽綠質濃度高低之影響,而非殼腺中擁有高量膽綠質所使然,蓋殼腺內之膽綠質若未能有效釋出於子宮液中,則各層蛋殼仍然無從累積足量之膽綠質,令白殼蛋轉變成為青殼蛋。此等結果暗示,控制膽綠質自殼腺運輸至子宮液之相關機制,對於調節鴨隻蛋殼顏色,扮演重要之角色。
zh_TW
dc.description.abstractThe pigmentation of avian eggshell is a complex process controling by two types of pigments, biliverdin and protoporphyrines. Biliverdin, a green pigment, is a byproduct of hemoglobin breakdown and will eventually display a blue and/or green color on the eggshell. In contrast to biliverdin, protoporphyrines is an immediate precursor of the heme molecule, and will give eggshells a reddish and/or brown color. The native Brown Tsaiya duck (Anas platyrhynchos) is a major laying duck breed in Taiwan and their eggshell color can vary from white to dark blue. It is possible that the shell gland of blue-shelled ducks (BSD) can accumulate higher concentration of biliverdin than white-shelled ducks (WSD) do. However there is no strong evidence to prove this assumption.
In the present study, attempts were made to identify whether the higher bioactivity of heme oxygenase found in the BSD shell gland was responsible for the higher concentration of biliverdin observed. The processes of pigment deposition of eggshell in ducks were also investigated.
Ultraviolet spectrophotometery and HPLC were applied to determine the concentrations of biliverdin within tissues of shell glands, uterine fluid as well as eggshells from both of BSD and WSD, at 6, 12, 18, 20 and 23.5 h post oviposition, respectively. Significant differences in biliverdin concentrations were found in the eggshell and uterine fluid of BSD and WSD, but not in the shell gland. Comparatively, the activity of heme oxygenase in the shell gland remained constant throughout the ovulatory cycle in both breed. HO1 immunoreactivity was observed in all the shell glands studied and present in the cytoplasma of stratified cuboid epithelial cells in the crypts of shell glands. The mRNA levels of aminolevulenic acid synthase one, heme oxygenase one, and heme oxygenase two in the shell gland were not significantly different between WSD and BSD. The exogenous injection of biliverdin into the shell gland antrum in the WSD resulted in increase of biliverdin deposition in the eggshell. Using the layer-by-layer dissolution assay, it was found that biliverdin concentration in the first to sixth layers of the eggshell in the BSD was significantly higher than that in the white-shelled counterpart. However, the BSD eggshells did not accumulate a large quantity of biliverdin in the most external layer, the deposition tended to increase layer by layer.
Taken together, the data indicated that the color differences between egg shell of BSD and WSD were influenced by the amount of biliverdin in the uterine fluid rather than by the amount of biliverdin in the shell gland. The results imply that a mechanism controlling the biliverdin transportation from the shell gland into the uterine fluid may play a key role in regulating the duck eggshell colors.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:09:43Z (GMT). No. of bitstreams: 1
ntu-99-D92626001-1.pdf: 1522295 bytes, checksum: 4f24331fa7e2b808eb23809343313e40 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 I
致 謝 II
中文摘要 III
ABSTRAC TV
CONTENTS VII
LIST OF FIGURE X
LIST OF TABLE XIII
CHAPTER 1 REVIEW OF LITERATURES 1
1.1 Eggshell color and egg quality 1
1.1.1 Eggshell color and eggshell quality 3
1.1.2 Eggshell color and hatchability 4
1.2 Eggshell pigments 5
1.3 Time for pigments deposition 9
1.4 Genetic regulation of eggshell pigmentation 12
1.5 Factors affect eggshell color 13
1.5.1 Age of bird 13
1.5.2 Stress 14
1.5.3 Disease 15
1.5.4 Chemotherapeutic agents 15
1.5.5 Environmental factors 15
CHAPTER 2 EXPRESSION OF HO AND ALAS1 mRNA IN BLUE-SHELLED AND WHITE-SHELLED DUCKS 17
2.1 Abstract 17
2.2 Introduction 18
2.3 Materials and Methods 20
2.3.1 Animals and samples collection 20
2.3.2 Isolation of total RNA from liver and shell gland 20
2.3.3 Cloning of duck specific heme oxygenase and delta-aminolevulinate synthase gene 20
2.3.4 Reverse transcription real-time polymerase chain reaction 30
2.3.5 Analysis of biliverdin concentrations 32
2.3.6 Statistical analysis 32
2.4 Results 32
2.5 Discussion 34
CHAPTER 3 EGGSHELL PIGMENTATION STUDY IN BLUE-SHELLED AND WHITE-SHELLED DUCKS 46
3.1 Abstract 46
3.2 Introduction 47
3.3 Materials and Methods 47
3.3.1 Animals and sample collection 47
3.3.2 Analysis of biliverdin concentrations 48
3.3.3 Heme oxygenase activity assay 49
3.3.5 Exogenous biliverdin injection and analysis of eggshell pigment deposition process 50
3.3.6 Statistical analysis 51
3.4 Results 51
3.5 Discussion 53
CONCLUSION 70
REFERENCES 71
APPENDIX 84
dc.language.isoen
dc.subject膽綠質zh_TW
dc.subject蛋殼色素沉積作用zh_TW
dc.subject生產青殼蛋鴨隻zh_TW
dc.subject生產白殼蛋鴨隻zh_TW
dc.subjectEggshell pigmentationen
dc.subjectBiliverdinen
dc.subjectWhite-shelled ducken
dc.subjectBlue-shelled ducken
dc.title生產青殼蛋與(或)白殼蛋鴨隻蛋殼色素沉積作用之機制zh_TW
dc.titleMechanisms of Eggshell Pigmentation Found in Blue-Shelled and/or White-Shelled Ducksen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳保基(Bao-Ji Chen),黃木秋(Mu-Chiou Huang),陳全木(Chuan-Mu Chen),胡怡浩(Yi-Hao Hu)
dc.subject.keyword蛋殼色素沉積作用,生產青殼蛋鴨隻,生產白殼蛋鴨隻,膽綠質,zh_TW
dc.subject.keywordEggshell pigmentation,Blue-shelled duck,White-shelled duck,Biliverdin,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2010-02-02
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved