Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45177
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方俊民(Jim-Min Fang)
dc.contributor.authorWei-Che Hsiehen
dc.contributor.author謝瑋哲zh_TW
dc.date.accessioned2021-06-15T04:07:36Z-
dc.date.available2012-02-10
dc.date.copyright2010-02-10
dc.date.issued2010
dc.date.submitted2010-02-06
dc.identifier.citation1. Lowen, A. C.; Palese, P. Infect. Disord. Drug Targets 2007, 7, 318–328. Influenza virus transmission: basic science and implications for the use of antiviral drugs during a pandemic.
2. Webster R. G. ; Bean W. J. ; Gorman O. T. ; Chambers T. M. ; Y., K. Microbiological Rev. 1992, 152–179. Evolution and ecology of influenza A viruses.
3. Suzuki, Y. Biol. Pharm. Bull. 2005, 28, 399–408. Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses.
4. Subbarao, K.; Joseph, T. Nat. Rev. Immunol. 2007, 7, 267–278. Scientific barriers to developing vaccines against avian influenza viruses.
5. Hay, A. J. Semin. Virol. 1992, 3, 21–30. The action of adamantanamines against influenza a viruses: inhibition of the M2 ion channel protein.
6. Pinto, L. H.; Holsinger, L. J.; Lamb, R. A. Cell 1992, 69, 517–528. Influenza virus M2 protein has ion channel activity.
7. Oxford, J. S. Rev. Med. Virol. 2000, 10, 119–133. Influenza A pandemics of the 20th century with special reference to 1918: virology, pathology and epidemiology.
8. Nakajima, K.; Desselberger, U.; Palese, P. Nature 1978, 274, 334–339. Recent human influenza A (H1N1) viruses are closely related genetically to strains isolated in 1950.
9. Pandemic (H1N1) 2009 - update 85. http://www.who.int/csr/don/2010_01_29/en/index.html.
10. 世 衞 將 全 球 流 感 大 流 行 警 戒 級 別 升 至 6 級 http://app2.rthk.org.hk/pda/news/content.php?id=588469.
11. Cumulative Number of Confirmed Human Cases of Avian Influenza A/(H5N1) Reported to WHO. http://www.who.int/csr/disease/avian_influenza/
country/cases_table_201001_28/en/index.html.
12. http://www.who.int/csr/disease/avian_influenza/country/cases_table_2009 07_01/en/index.html.
13. Matrosovich, M. N.; Krauss, S.; Webster, R. G. Virology 2001, 281, 156–162. H9N2 influenza A viruses from poultry in asia have human virus-like receptor specificity.
14. Saito, T.; Lim, W.; Suzuki, T.; Suzuki, Y.; Kida, H.; Nishimura, S.-I.; Tashiro, M. Vaccine 2001, 20, 125–133. Characterization of a human H9N2 influenza virus isolated in Hong Kong.
15. Fouchier, R. A. M.; Schneeberger, P. M.; Rozendaal, F. W.; Broekman, J. M.; Kemink, S. A. G.; Munster, V.; Kuiken, T.; Rimmelzwaan, G. F.; Schutten, M.; van Doornum, G. J. J.; Koch, G.; Bosman, A.; Koopmans, M.; Osterhaus, A. D. M. E. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 1356–1361. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome.
16. Koopmans, M.; Wilbrink, B.; Conyn, M.; Natrop, G.; Nat, H. v. d.; Vennema, H.; Meijer, A.; Steenbergen, J.; Fouchier, R.; Osterhaus, A.; Bosman, A. Lancet 2004, 363, 587–593. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands.
17. Tweed, S. A.; Skowronski, D. M.; David, S. T.; Larder, A.; Petric, M.; Lees, W.; Li, Y.; Katz, J.; Krajden, M.; Tellier, R.; Halpert, C.; Hirst, M.; Astell, C.; Lawrence, D.; Mak, A. Emerg. Infect. Dis. 2004, 10, 2196–2199. Human illness from avian influenza H7N3, British Columbia.
18. Hirst, M.; Astell, C. R.; Griffith, M.; Coughlin, S. M.; Moksa, M.; Zeng, T.; Smailus, D. E.; Holt, R. t. A.; Jones, S.; Marra, M. A.; Petric, M.; Krajden, M.; Lawrence, D.; Mak, A.; Chow, R.; Skowronski, D. M.; Tweed, S. A.; Goh, S.; Brunham, R. C.; Robinson, J.; Bowes, V.; Sojonky, K.; Byrne, S. K.; Li, Y.; Kobasa, D.; Booth, T.; Paetzel, M. Emerg. Infect. Dis. 2004, 10, 2192–2195. Novel avian influenza H7N3 strain outbreak, British Columbia.
19. Avian Influenza Virus A (H10N7) Circulating among Humans in Egypt. http://www.paho.org/English/AD/DPC/CD/eid-eer-07-may-2004.htm#birdflu.
20. Wilson, I. A.; Skehel, J. J.; Wiley, D. C. Nature 1981, 289, 366–373. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 [Å]solution.
21. Gamblin, S. J.; Haire, L. F.; Russell, R. J.; Stevens, D. J.; Xiao, B.; Ha, Y.; Vasisht, N.; Steinhauer, D. A.; Daniels, R. S.; Elliot, A.; Wiley, D. C.; Skehel, J. J. Science 2004, 303, 1838–1842. The structure and receptor binding properties of the 1918 influenza hemagglutinin.
22. Stevens, J.; Corper, A. L.; Basler, C. F.; Taubenberger, J. K.; Palese, P.; Wilson, I. A. Science 2004, 303, 1866–1870. Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus.
23. Stevens, J.; Blixt, O.; Tumpey, T. M.; Taubenberger, J. K.; Paulson, J. C.; Wilson, I. A. Science 2006, 312, 404–410. Structure and receptor specificity of the gemagglutinin from an H5N1 influenza virus.
24. Skehel, J. J.; Wiley, D. C. Annu. Rev. Biochem. 2000, 69, 531–569. Receptor binding and membrance fusion in virusentry : the influenza hemagglutinin.
25. Couceiro, J. N.; Paulson, J. C.; Baum, L. G. Virus Res. 1993, 29, 155–165. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity.
26. Suzuki, Y.; Ito, T.; Suzuki, T.; Holland, R. E., Jr.; Chambers, T. M.; Kiso, M.; Ishida, H.; Kawaoka, Y. J. Virol. 2000, 74, 11825–11831. Sialic acid species as a determinant of the host range of influenza A viruses.
27. Weis, W.; Brown, J. H.; Cusack, S.; Paulson, J. C.; Skehel, J. J.; Wiley, D. C. Nature 1988, 333, 426–431. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid.
28. Matrosovich, M. N.; Matrosovich, T. Y.; Gray, T.; Roberts, N. A.; Klenk, H.-D. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 4620–4624. Human and avian influenza viruses target different cell types in cultures of human airway epithelium.
29. Gambaryan, A. S.; Robertson, J. S.; Matrosovich, M. N. Virology 1999, 258, 232–239. Effects of egg-adaption on the receptor binding properties of human influenza A and B virus.
30. Rogers, G. N.; Paulson, J. C.; Daniels, R. S.; Skehel, J. J.; Wilson, I. A.; Wiley, D. C. Nature 1983, 304, 76–78. Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity.
31. Varghese, J. N.; Laver, W. G.; Colman, P. M. Nature 1983, 303, 35–40. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution.
32. von Itzstein, M.; Wu, W.-Y.; Kok, G. B.; Pegg, M. S.; Dyason, J. C.; Jin, B.; Phan, T. V.; Smythe, M. L.; White, H. F.; Oliver, S. W.; Colman, P. M.; Varghese, J. N.; Ryan, D. M.; Woods, J. M.; Bethell, R. C.; Hotham, V. J.; Cameron, J. M.; Penn, C. R. Nature 1993, 363, 418–423. Rational design of potent sialidase-based inhibitors of influenza virus replication.
33. Liu, C.; Eichelberger, M.; Compans, R.; Air, G. J. Virol. 1995, 69, 1099–1106. Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding.
34. von Itzstein, M. Nat. Rev. Drug Discov. 2007, 6, 967–974. The war against influenza: discovery and development of sialidase inhibitors.
35. Colman, P. M.; Varghese, J. N.; Laver, W. G. Nature 1983, 303, 41–44. Structure of the catalytic and antigenic sites in influenza virus neuraminidase.
36. Colman, P. M. Protein Sci. 1994, 3, 1687–1696. Influenza virus neuraminidase: structure, antibodies, and inhibitors.
37. Whittaker, G. R. Expert Reviews in Molecular Medicine 2001, 3, 1–13. Intracellular trafficking of influenza virus: clinical implications for molecular medicine.
38. Belshe, R. B. N. Engl. J. Med. 2005, 353, 2209–2211. The origins of pandemic influenza–lessons from the 1918 virus.
39. Deadly new flu virus in US and Mexico may go pandemic. http://www.newscientist.com/article/dn17025-deadly-new-flu-virus-in-us-and-mexico-may-go-pandemic.html.
40. Beigel, J.; Bray, M. Antiviral Res. 2008, 78, 91–102. Current and future antiviral therapy of severe seasonal and avian influenza.
41. Davies, W. L.; Grunert, R. R.; Haff, R. F.; McGahen, J. W.; Neumayer, E. M.; Paulshock, M.; Watts, J. C.; Wood, T. R.; Hermann, E. C.; Hoffmann, C. E. Science 1964, 144, 862–863. Antiviral activity of 1-adamantanamine (amantadine).
42. De Clercq, E. Nat. Rev. Drug Discov. 2006, 5, 1015–1025. Antiviral agents active against influenza A viruses.
43. Bright, R. A.; Medina, M.-j.; Xu, X.; Perez-Oronoz, G.; Wallis, T. R.; Davis, X. M.; Povinelli, L.; Cox, N. J.; Klimov, A. I. Lancet 2005, 366, 1175–1181. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern.
44. Bright, R. A.; Shay, D. K.; Shu, B.; Cox, N. J.; Klimov, A. I. JAMA 2006, 295, 891–894. Adamantane resistance among influenza A viruses isolated early during the 2005–2006 influenza season in the United States.
45. Chong, A. K. J.; Pegg, M. S.; Taylor, N. R.; von Itzstein, M. Eur. J. Biochem. 1992, 207, 335–343. Evidence for a sialosyl cation transition-state complex in the reaction of sialidase from influenza virus.
46. Dunn, C. J.; Goa, K. L. Drugs 1999, 58, 761–784. Zanamivir: a review of its use in influenza.
47. Kim, C. U.; Lew, W.; Williams, M. A.; Liu, H.; Zhang, L.; Swaminathan, S.; Bischofberger, N.; Chen, M. S.; Mendel, D. B.; Tai, C. Y.; Laver, W. G.; Stevens, R. C. J. Am. Chem. Soc. 1997, 119, 681–690. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-Influenza activity.
48. McClellan, K.; Perry, C. M. Drugs 2001, 61, 775–775. Oseltamivir: a review of its use in influenza
49. Meindl, P.; Bodo, G.; Palese, P.; Schulman, J.; Tuppy, H. Virology 1974, 58, 457–463. Inhibition of neuraminidase activity by derivatives of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid.
50. Varghese, J. N.; McKimm-Breschkin, J. L.; Caldwell, J. B.; Kortt, A. A.; Colman, P. M. Proteins 1992, 14, 327–332. The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor.
51. Burmeister, W. P.; Ruigrok, R. W.; Cusack, S. EMBO J. 1992, 11, 49–56. The 2.2 A resolution crystal structure of influenza B neuraminidase and its complex with sialic acid.
52. Burmeister, W. P.; Henrissat, B.; Bosso, C.; Cusack, S.; Ruigrok, R. W. H. Structure 1993, 1, 19–26. Influenza B virus neuraminidase can synthesize its own inhibitor.
53. Holzer, C. T.; Von Itzstein, M.; Jin, B.; Pegg, M. S.; Stewart, W. P.; Wu, W.-Y. Glycoconj. J. 1993, 10, 40–44. Inhibition of sialidases from viral, bacterial and mammalian sources by analogues of 2-deoxy-2,3-didehydro-N-acetylneuraminic acid modified at the C-4 position
54. Woods, J. M.; Bethell, R. C.; Coates, J. A.; Healy, N.; Hiscox, S. A.; Pearson, B. A.; Ryan, D. M.; Ticehurst, J.; Tilling, J.; Walcott, S. M. Antimicrob. Agents Chemother. 1993, 37, 1473–1479. 4-Guanidino-2,4-dideoxy-2,3-dehydro-N-acetylneuraminic acid is a highly effective inhibitor both of the sialidase (neuraminidase) and of growth of a wide range of influenza A and B viruses in vitro.
55. Macdonald, S. J. F.; Watson, K. G.; Cameron, R.; Chalmers, D. K.; Demaine, D. A.; Fenton, R. J.; Gower, D.; Hamblin, J. N.; Hamilton, S.; Hart, G. J.; Inglis, G. G. A.; Jin, B.; Jones, H. T.; McConnell, D. B.; Mason, A. M.; Nguyen, V.; Owens, I. J.; Parry, N.; Reece, P. A.; Shanahan, S. E.; Smith, D.; Wu, W.-Y.; Tucker, S. P. Antimicrob. Agents Chemother. 2004, 48, 4542–4549. Potent and long-acting dimeric inhibitors of influenza virus neuraminidase are effective at a once-weekly dosing regimen.
56. Macdonald, S. J. F.; Cameron, R.; Demaine, D. A.; Fenton, R. J.; Foster, G.; Gower, D.; Hamblin, J. N.; Hamilton, S.; Hart, G. J.; Hill, A. P.; Inglis, G. G. A.; Jin, B.; Jones, H. T.; McConnell, D. B.; McKimm-Breschkin, J.; Mills, G.; Nguyen, V.; Owens, I. J.; Parry, N.; Shanahan, S. E.; Smith, D.; Watson, K. G.; Wu, W.-Y.; Tucker, S. P. J. Med. Chem. 2005, 48, 2964–2971. Dimeric zanamivir conjugates with various linking groups are potent, long-lasting inhibitors of influenza neuraminidase including H5N1 avian influenza.
57. Honda, T.; Masuda, T.; Yoshida, S.; Arai, M.; Kaneko, S.; Yamashita, M. Bioorg. Med. Chem. Lett. 2002, 12, 1925–1928. Synthesis and anti-Influenza virus activity of 7-O-Alkylated derivatives related to zanamivir.
58. Honda, T.; Kubo, S.; Masuda, T.; Arai, M.; Kobayashi, Y.; Yamashita, M. Bioorg. Med. Chem. Lett. 2009, 19, 2938–2940. Synthesis and in vivo influenza virus-inhibitory effect of ester prodrug of 4-guanidino-7-O-methyl-Neu5Ac2en.
59. Yamashita, M.; Tomozawa, T.; Kakuta, M.; Tokumitsu, A.; Nasu, H.; Kubo, S. Antimicrob. Agents Chemother. 2009, 53, 186–192. CS-8958, a prodrug of the new neuraminidase inhibitor R-125489, shows long-acting anti-influenza virus activity.
60. Kim, C. U.; Lew, W.; Williams, M. A.; Wu, H.; Zhang, L.; Chen, X.; Escarpe, P. A.; Mendel, D. B.; Laver, W. G.; Stevens, R. C. J. Med. Chem. 1998, 41, 2451–2460. Structure-activity relationship studies of novel carbocyclic influenza neuraminidase inhibitors.
61. Lew, W.; Chen, X.; Kim, C. U. Curr. Med. Chem. 2000, 7, 663–672. Discovery and development of GS-4104 (oseltamivir): an orally active influenza neuraminidase inhibitor.
62. Li, W.; Escarpe, P. A.; Eisenberg, E. J.; Cundy, K. C.; Sweet, C.; Jakeman, K. J.; Merson, J.; Lew, W.; Williams, M.; Zhang, L.; Kim, C. U.; Bischofberger, N.; Chen, M. S.; Mendel, D. B. Antimicrob. Agents Chemother. 1998, 42, 647–653. Identification of GS-4104 as an orally bioavailable prodrug of the influenza virus neuraminidase inhibitor GS-4071.
63. Rohloff, J. C.; Kent, K. M.; Postich, M. J.; Becker, M. W.; Chapman, H. H.; Kelly, D. E.; Lew, W.; Louie, M. S.; McGee, L. R.; Prisbe, E. J.; Schultze, L. M.; Yu, R. H.; Zhang, L. J. Org. Chem. 1998, 63, 4545–4550. Practical total synthesis of the anti-Influenza drug GS-4104.
64. Farina, V.; Brown, J. D. Angew. Chem. Int. Ed. 2006, 45, 7330–7334. Tamiflu: The Supply Problem.
65. Shibasaki, M.; Kanai, M. Eur. J. Org. Chem. 2008, 1839–1850. Synthetic strategies for oseltamivir phosphate.
66. Magano, J. Chem. Rev. 2009, 109, 4398–4438. Synthetic approaches to the neuraminidase inhibitors Zanamivir (Relenza) and Oseltamivir phosphate (Tamiflu) for the treatment of influenza.
67. Federspiel, M.; Fischer, R.; Hennig, M.; Mair, H. J.; Oberhauser, T.; Rimmler, G.; Albiez, T.; Bruhin, J.; Estermann, H.; Gandert, C.; Gockel, V.; Gotzo, S.; Hoffmann, U.; Huber, G.; Janatsch, G.; Lauper, S.; Rockel-Stabler, O.; Trussardi, R.; Zwahlen, A. G. Org. Proc. Res. Dev. 1999, 3, 266–274. Industrial synthesis of the key precursor in the synthesis of the anti-influenza drug oseltamivir phosphate (Ro 64-0796/002, GS-4104-02): Ethyl (3R,4S,5S)-4,5-epoxy-3-(1-ethyl-propoxy)-cyclohex-1-ene-1-carboxylate.
68. Karpf, M.; Trussardi, R. J. Org. Chem. 2001, 66, 2044–2051. New, azide-free transformation of epoxides into 1,2-diamino compounds: synthesis of the anti-influenza neuraminidase inhibitor oseltamivir phosphate (Tamiflu).
69. Harrington, P. J.; Brown, J. D.; Foderaro, T.; Hughes, R. C. Org. Proc. Res. Dev. 2004, 8, 86–91. Research and development of a second-generation process for oseltmivir phosphate, prodrug for a neuraminidase inhibitor.
70. Nie, L. D.; Shi, X. X. Tetrahedron:Asymmetry 2009, 20, 124–129. A novel asymmetric synthesis of oseltamivir phosphate (Tamiflu) from (–)-shikimic acid.
71. Shi, X.-X.; Ko, K. H.; Lu, W.-D. J. Org. Chem. 2009, 74, 3970–3973. A short and practical synthesis of Oseltamivir phosphate (Tamiflu) from (–)-shikimic Acid.
72. Karpf, M.; Trussardi, R. Angew. Chem. Int. Ed. 2009, 48, 5760–5762. Efficient access to Oseltamivir phosphate (Tamiflu) via the O-trimesylate of shikimic acid ethyl ester.
73. Abrecht, S.; Harrington, P.; Iding, H.; Karpf, M.; Trussardi, R.; Wirz, B.; Zutter, U. Chimia 2004, 58, 621–629. The synthetic development of the anti-influenza neuraminidase inhibitor oseltamivir phosphate (Tamiflu): A challenge for synthesis and process research.
74. Abrecht, S.; Federspiel, M. C.; Estermann, H.; Fischer, R.; Karpf, M.; Mair, H. J.; Oberhauser, T.; Rimmler, G.; Trussardi, R.; Zutter, U. Chimia 2007, 61, 93–99. The synthetic-technical development of oseltamivir phosphate tamiflu: A race against time.
75. Yeung, Y. Y.; Hong, S.; Corey, E. J. J. Am. Chem. Soc. 2006, 128, 6310–6311. A short enantioselective pathway for the synthesis of the anti-influenza neuramidase inhibitor oseltamivir from 1,3-butadiene and acrylic acid.
76. Kipassa, N. T.; Okamura, H.; Kina, K.; Hamada, T.; Iwagawa, T. Org. Lett. 2008, 10, 815–816. Efficient Short Step Synthesis of Corey's Tamiflu Intermediate.
77. Yamatsugu, K.; Kamijo, S.; Suto, Y.; Kanai, M.; Shibasaki, M. Tetrahedron Lett. 2007, 48, 1403–1406. A concise synthesis of Tamiflu: third generation route via the Diels-Alder reaction and the Curtius rearrangement.
78. Yamatsugu, K.; Yin, L.; Kamijo, S.; Kimura, Y.; Kanai, M.; Shibasaki, M. Angew. Chem. Int. Ed. 2009, 48, 1070–1076. A synthesis of Tamiflu by using a barium-catalyzed asymmetric Diels-Alder-type reaction.
79. Yamatsugu, K.; Kanai, M.; Shibasaki, M. Tetrahedron 2009, 65, 6017–6024. An alternative synthesis of Tamiflu: a synthetic challenge and the identification of a ruthenium-catalyzed dihydroxylation route.
80. Satoh, N.; Akiba, T.; Yokoshima, S.; Fukuyama, T. Angew. Chem. Int. Ed. 2007, 46, 5734–5736. A practical synthesis of (–)-oseltamivir.
81. Satoh, N.; Akiba, T.; Yokoshima, S.; Fukuyama, T. Tetrahedron 2009, 65, 3239–3245. A practical synthesis of (–)-oseltamivir.
82. Shie, J.-J.; Fang, J.-M.; Wang, S.-Y.; Tsai, K.-C.; Cheng, Y.-S. E.; Yang, A.-S.; Hsiao, S.-C.; Su, C.-Y.; Wong, C.-H. J. Am. Chem. Soc. 2007, 129, 11892–11893. Synthesis of tamiflu and its phosphonate congeners possessing potent anti-influenza activity.
83. Cong, X.; Yao, Z. J. J. Org. Chem. 2006, 71, 5365–5368. Ring-closing metathesis-based synthesis of (3R,4R,5S)-4-acetylamino-5-amino-3-hydroxy- cyclohex-1-ene-carboxylic acid ethyl ester: a functionalized cycloalkene skeleton of GS-4104.
84. Oshitari, T.; Mandai, T. Synlett 2009, 787–789. Azide-free synthesis of oseltamivir from L-methionine.
85. Mandai, T.; Oshitari, T. Synlett 2009, 783–786. Efficient asymmetric synthesis of oseltamivir from D-mannitol.
86. Osato, H.; Jones, I. L.; Chen, A.; Chai, C. L. L. Org. Lett. 2009, 12, 60–63. Efficient formal synthesis of oseltamivir phosphate (Tamiflu) with inexpensive D-ribose as the starting material.
87. Shie, J. J.; Fang, J. M.; Wong, C. H. Angew. Chem. Int. Ed. Engl. 2008, 47, 5788–5791. A concise and flexible synthesis of the potent anti-influenza agents tamiflu and tamiphosphor.
88. Matveenko, M.; Willis, A. C.; Banwell, M. G. Tetrahedron Lett. 2008, 49, 7018–7020. A chemoenzymatic synthesis of the anti-influenza agent Tamiflu.
89. Sullivan, B.; Carrera, I.; Drouin, M.; Hudlicky, T. Angew. Chem. Int. Ed. 2009, 48, 4229–4231. Symmetry-based design for the chemoenzymatic synthesis of oseltamivir (Tamiflu) from ethyl benzoate.
90. Trost, B. M.; Zhang, T. Angew. Chem. Int. Ed. Engl. 2008, 47, 3759–3761. A concise synthesis of (–)-oseltamivir.
91. Bromfield, K. M.; Gradén, H.; Hagberg, D. P.; Olsson, T.; Kann, N. Chem. Commun. 2007, 3183–3185. An iron carbonyl approach to the influenza neuraminidase inhibitor oseltamivir.
92. Zutter, U.; Iding, H.; Spurr, P.; Wirz, B. J. Org. Chem. 2008, 73, 4895–4902. New, efficient synthesis of oseltamivir phosphate (Tamiflu) via enzymatic desymmetrization of a meso-1,3-cyclohexanedicarboxylic acid diester.
93. Fukuta, Y.; Mita, T.; Fukuda, N.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 6312–6313. De novo synthesis of Tamiflu via a catalytic asymmetric ring-opening of meso-aziridines with TMSN3.
94. Mita, T.; Fukuda, N.; Roca, F. X.; Kanai, M.; Shibasaki, M. Org. Lett. 2007, 9, 259–262. Second generation catalytic asymmetric synthesis of Tamiflu: allylic substitution route.
95. McGowan, D. A.; Berchtold, G. A. J. Org. Chem. 2002, 46, 2381–2383. (–)-Methyl cis-3-hydroxy-4,5-oxycyclohex-1-enecarboxylate: stereospecific formation from and conversion to (–)-methyl shikimate; complex formation with bis(carbomethoxy)hydrazine.
96. Brion, F. Tetrahedron Lett. 1982, 23, 5299–5302. On the lewis acid catalyzed diels-alder reaction of furan. regio- and stereospecific synthesis of substituted cyclohexenols and cyclohexadienols.
97. Ryu, D. H.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 6388–6390. Triflimide activation of a chiral oxazaborolidine leads to a more general catalytic system for enantioselective Diels-Alder addition.
98. Knapp, S.; Levorse, A. T. J. Org. Chem. 2002, 53, 4006–4014. Synthesis and reactions of iodo lactams.
99. Yeung, Y.-Y.; Gao, X.; Corey, E. J. J. Am. Chem. Soc. 2006, 128, 9644–9645. A General Process for the Haloamidation of Olefins. Scope and Mechanism.
100. Schmidt, O. T., Isopropylidene Derivatives. In Methods in Carbohydrate Chemistry, Whistler, R. L.; Wolfrom, M. L., Eds. Academic Press: New York, 1963; Vol. 2, p 318.
101. Nair, V.; Emanuel, D. J. J. Am. Chem. Soc. 1977, 99, 1571–1576. Synthetic design, stereochemistry, and enzymic activity of a reversed aminoacyl nucleoside: an analog of puromycin.
102. Boutagy, J.; Thomas, R. Chem. Rev. 1974, 74, 87–99. Olefin synthesis with organic phosphonate carbanions.
103. Fleet, G. W. J.; Shing, T. K. M. J. Chem. Soc., Chem. Commun. 1983, 849–850. An entry to chiral cyclohexenes from carbohydrates: a short, efficient, and enantiospecific synthesis of (–)-shikimic acid from D-mannose.
104. Fleet, G. W. J.; Shing, T. K. M.; Warr, S. M. J. Chem. Soc., Perkin Trans. 1 1984, 905–908. Enantiospecific synthesis of shikimic acid from D-mannose: formation of a chiral cyclohexene by intramolecular olefination of a carbohydrate-derived intermediate.
105. Streicher, H.; Meisch, J.; Bohner, C. Tetrahedron 2001, 57, 8851–8859. Synthesis of L-xylose derived cyclohexenephosphonates-versatile precursors of sialidase inhibitor libraries.
106. Streicher, H.; Bohner, C. Tetrahedron 2002, 58, 7573–7581. Synthesis of functionalized cyclohexenephosphonates and their inhibitory activity towards bacterial sialidases.
107. Stigers, K. D.; Mar-Tang, R.; Bartlett, P. A. J. Org. Chem. 1999, 64, 8409–8410. Synthesis of two potential inhibitors of para-aminobenzoic acid synthase.
108. Lattrell, R.; Lohaus, G. Justus Liebigs Ann. Chem. 1974, 1974, 901–920. Substitutionsreaktionen an trans-3-sulfonyloxy-2-azetidinonen. eine synthese von cis-3-acylamino-4-alkylthio-2-azetidinonen.
109. Albert, R.; Dax, K.; Link, R. W.; Stütz, A. E. Carbohydr. Res. 1983, 118, C5–C6. Carbohydrate triflates: reaction with nitrite, leading directly to epi-hydroxy compounds.
110. Bernet, B.; Vasella, A. Helv. Chim. Acta 1979, 62, 1990–2016. Carbocyclische verbindungen aus monosacchariden. I. umsetzungen in der glucosereihe.
111. Nakane, M.; Hutchinson, C. R.; Gollman, H. Tetrahedron Lett. 1980, 21, 1213–1216. A convenient and general synthesis of 5-vinylhexofuranosides from 6-halo-6-deoxypyranosides.
112. Furstner, A.; Jumbam, D.; Teslic, J.; Weidmann, H. J. Org. Chem. 2002, 56, 2213–2217. Metal-graphite reagents in carbohydrate chemistry. 8. The scope and limitations of the use of zinc/silver-graphite in the synthesis of carbohydrate-derived substituted hex-5-enals and pent-4-enals.
113. Hyldtoft, L.; Madsen, R. J. Am. Chem. Soc. 2000, 122, 8444–8452. Carbohydrate carbocyclization by a novel zinc-mediated domino reaction and ring-closing olefin metathesis.
114. Boyd, D. R.; Sheldrake, G. N. Nat. Prod. Rep. 1998, 15, 309–324. The dioxygenase-catalysed formation of vicinal cis-diols.
115. Endoma, M. A.; Bui, V. P.; Hansen, J.; Hudlicky, T. Org. Process Res. Dev. 2002, 6, 525–532. Medium-scale preparation of useful metabolites of aromatic compounds via whole-cell fermentation with recombinant organisms.
116. Gibson, D. T.; Koch, J. R.; Kallio, R. E. Biochemistry 1968, 7, 2653–2662. Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymic formation of catechol from benzene.
117. Gibson, D. T.; Koch, J. R.; Schuld, C. L.; Kallio, R. E. Biochemistry 1968, 7, 3795–3802. Oxidative degradation of aromatic hydrocarbons by microorganisms. II. Metabolism of halogenated aromatic hydrocarbons.
118. Hudlicky, T.; Reed, J. W. Chem. Soc. Rev. 2009, 38, 3117–3132. Applications of biotransformations and biocatalysis to complexity generation in organic synthesis.
119. Greenberg, S.; Moffatt, J. G. J. Am. Chem. Soc. 2002, 95, 4016–4025. Reactions of 2-acyloxyisobutyryl halides with nucleosides. I. Reactions of model diols and of uridine.
120. Blacker, A. J.; Booth, R. J.; Davies, G. M.; Sutherland, J. K. J. Chem. Soc. Perkin Trans. 1 1995, 2861–2870. Syntheses of 6β-hydroxyshikimic acid and its derivatives.
121. Akhlaghinia, B. Synthesis 2005, 12, 1955–1958 A new and convenient method of generating alkyl Isocyanates from alcohols, thiols and trimethylsilyl ethers using triphenylphosphine/2,3-dichloro-5,6-dicyanobenzoquinone/Bu4NOCN.
122. Trost, B. M.; Massiot, G. S. J. Am. Chem. Soc. 1977, 99, 4405–4412. New synthetic reactions. A chemoselective approach to cleavage .alpha. to a carbonyl group via .beta.-keto sulfides. Preparation of 1,2-diketones.
123. Guthikonda, K.; Du Bois, J. J. Am. Chem. Soc. 2002, 124, 13672–13673. A unique and highly efficient method for catalytic olefin aziridination.
124. Espino, C. G.; Fiori, K. W.; Kim, M.; Du Bois, J. J. Am. Chem. Soc. 2004, 126, 15378–15379. Expanding the scope of C–H amination through catalyst design.
125. Fiori, K. W.; Du Bois, J. J. Am. Chem. Soc. 2007, 129, 562–568. Catalytic intermolecular amination of C–H bonds: method development and mechanistic insights.
126. Guthikonda, K.; Wehn, P. M.; Caliando, B. J.; Du Bois, J. Tetrahedron 2006, 62, 11331–11342. Rh-catalyzed alkene oxidation: a highly efficient and selective process for preparing N-alkoxysulfonyl aziridines.
127. Ishikawa, H.; Suzuki, T.; Hayashi, Y. Angew. Chem. Int. Ed. Engl. 2009, 48, 1304–1307. High-yielding synthesis of the anti-influenza neuramidase inhibitor (–)-oseltamivir by three 'one-pot' operations.
128. Gubareva, L. V.; Webster, R. G.; Hayden, F. G. Antimicrob. Agents. Chemother. 2001, 45, 3403–3408. Comparison of the activities of zanamivir, oseltamivir, and RWJ-270201 against clinical isolates of influenza virus and neuraminidase inhibitor-resistant variants.
129. de Jong, M. D.; Tran, T. T.; Truong, H. K.; Vo, M. H.; Smith, G. J.; Nguyen, V. C.; Bach, V. C.; Phan, T. Q.; Do, Q. H.; Guan, Y.; Peiris, J. S.; Tran, T. H.; Farrar, J. N. Engl. J. Med. 2005, 353, 2667–3672. Oseltamivir resistance during treatment of influenza A (H5N1) infection.
130. Dharan, N. J.; Gubareva, L. V.; Meyer, J. J.; Okomo-Adhiambo, M.; McClinton, R. C.; Marshall, S. A.; St. George, K.; Epperson, S.; Brammer, L.; Klimov, A. I.; Bresee, J. S.; Fry, A. M. JAMA 2009, 301, 1034–1041. Infections with oseltamivir-resistant influenza A(H1N1) virus in the United States.
131. Collins, P. J.; Haire, L. F.; Lin, Y. P.; Liu, J.; Russell, R. J.; Walker, P. A.; Skehel, J. J.; Martin, S. R.; Hay, A. J.; Gamblin, S. J. Nature 2008, 453, 1258–1261. Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants.
132. Cheng, Y.-C.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099–3108. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction.
133. Bessières, B.; Schoenfelder, A.; Verrat, C.; Mann, A.; Ornstein, P.; Pedregal, C. Tetrahedron Lett. 2002, 43, 7659–7662. Synthesis of constrained cycloalkyl analogues of glutamic acid with an ω-phosphonic acid function.
134. Carbain, B.; Collins, P. J.; Callum, L.; Martin, S. R.; Hay, A. J.; McCauley, J.; Streicher, H. ChemMedChem 2009, 4, 335–337. Efficient synthesis of highly active phospha-isosteres of the influenza neuraminidase inhibitor oseltamivir.
135. Barton, D. H. R.; Crich, D.; Motherwell, W. B. Tetrahedron Lett. 1983, 24, 4979–4982. A practical alternative to the hunsdiecker reaction.
136. Suhara, Y.; Nihei, K.-I.; Kurihara, M.; Kittaka, A.; Yamaguchi, K.; Fujishima, T.; Konno, K.; Miyata, N.; Takayama, H. J. Org. Chem. 2001, 66, 8760–8771. Efficient and versatile synthesis of novel 2α-substituted 1α,25-dihydroxyvitamin D3 analogues and their docking to vitamin D receptors.
137. Nicolaou, K. C.; Caulfield, T. J.; Kataoka, H.; Stylianides, N. A. J. Am. Chem. Soc. 1990, 112, 3693–3695. Total synthesis of the tumor-associated Lex family of glycosphingolipids.
138. Botta, O.; Moyroud, E.; Lobato, C.; Strazewski, P. Tetrahedron 1998, 54, 13529–13546. Synthesis of 3'-azido- and 3'-amino-3'-deoxyadenosine in both enantiomeric forms.
139. Radatus, B. K.; Murthy, K. s. K.; Weeratunga, G.; Horne, S. E.; Kothakonda, K. K.; Wolf, E. C. G.; Wang, Z. ((Apotex Pharmachem Inc., C.) U.S. Pat. Appl. Publ. (2008) US 20080009639, 29 pp. Preparation of oseltamivir phosphate (tamiflu) and intermediates starting from D-glucose or D-xylose.
140. Bloch, R.; Seck, M. Tetrahedron Lett. 1987, 28, 5819–5820. Stereoselective intramolecular michael addition induced by a thermolabile group: Synthesis of optically active five-membered oxygen-containing rings.
141. Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.; Kumar, K. V. P. P. Chem. Rev. 2009, 109, 2551–2651. Mitsunobu and related reactions: advances and applications.
142. Kanno, T.; Kawazu, M. Chem. Pharm. Bull. 1974, 22, 2851–2860. Studies on the oxidation of 'reversed nucleosides' in oxygen. IV. synthesis of 4-(6-aminopurin-9H-9-yl)-3(R)-hydroxy-2(R)-aminobutyric Acid.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45177-
dc.description.abstract流行性感冒長期以來不斷的危害全球人類與動物及禽類,流感藥物被視為對抗流感大流行的最後一道防線,神經胺酸酶抑制劑克流感(Tamiflu)是近年來非常受歡迎的流感藥物,然而持續突變的流感病毒逐漸出現克流感的抗藥性,因此新一代流感藥物需要繼續的開發。
2007年我們實驗室發表以木醣(D-xylose)為起始物的合成途徑,同時將克流感上的羧酸基換成磷酸基而得到零流感(Tamiphosphor),其中以胍基衍生物(guanidine derivative)具有更好的抑制效果。然而,在大量化的開發中這套合成方法卻不如預期中的容易,因此本論文著重在改善以D-木醣為起始物的合成途徑。由逆合成分析,我們將合成途徑的中間產物換成一個具有雙保護的胺基化合物,並改變合成順序而成功的得到關鍵中間產物,再利用他們合成克流感與零流感。
zh_TW
dc.description.abstractInfluenza has endangered human for a long time. Anti-influenza drugs are regarded as the last line of defense against influenza pandemics. Tamiflu, one of neuraminidase inhibitors, has been a popular drug for influenza therapy. However, the newly-mutated influenza viruses have strong resistance against Tamiflu. Thus, new drugs are needed for new influenza viruses.
Tamiphospor is one of candidates for anti-influenza drugs. In 2007, our group has used D-xylose as a starting material to synthesize Tamiflu, Tamiphosphor (a phosphonate congener), and the guanidine derivative. Both Tamiphosphor and its guanidine derivative are more potent than Tamiflu.
However, some problems such as yielding side products were encountered when we tried to synthesize these drugs in a large scale. In this thesis, I focus on how to improve the efficiency of synthesis from D-xylose. By retrosynthetic analysis, I change the sequence of synthesis by using a diprotected amine as the key intermediate, and thus successfully carry out the formal synthesis of both Tamiflu and Tamiphosphor.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:07:36Z (GMT). No. of bitstreams: 1
ntu-99-R96223207-1.pdf: 13008221 bytes, checksum: 373e4d2e381d1dbc231999cf21c98480 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents謝誌 I
中文摘要 III
Abstract V
目錄 VII
表目錄 IX
圖目錄 X
流程目錄 XII
方程式目錄 XIV
簡稱用語對照表 XV
第一章 簡介 1
第一節 流感病毒的介紹 1
第二節 流感病毒與人類 3
第三節 兩個重要的膜蛋白 6
1-3-1 血液凝集素(Haemagglutinin, HA) 7
1-3-2 神經胺酸酶(Neuraminidase, NA) 9
第四節 流感病毒的複製過程 11
第五節 兩種大流行發生的可能機制 12
第六節 疫苗與抗流感藥物的介紹 14
1-6-1 M2離子通道的抑制劑 15
1-6-2 神經胺酸酶抑制劑 15
1-6-3 瑞樂沙的開發 16
1-6-4 克流感的開發 19
第七節 克流感的合成 21
第八節 抗藥性病毒的產生 38
第二章 結果與討論 41
第一節 研究背景–零流感的開發 41
第二節 合成克流感與零流感的過程與探討 48
第三節 全合成的改善 57
2-3-1 逆合成分析 57
2-3-2 新合成路徑的探討 60
2-3-3 合成Oseltamivir (6)的探討 61
2-3-4 合成Tamiphosphor (9)的探討 66
第四節 結論 75
第三章 實驗部分 79
第一節 一般說明 79
第二節 化合物之合成步驟及鑑定 81
第四章 參考文獻 117
附錄 化合物之核磁共振光譜 143
附錄 2008 ISOR嘉義國際有機反應研討會得獎紀錄 205
dc.language.isozh-TW
dc.subject零流感zh_TW
dc.subject全合成zh_TW
dc.subjectD-木糖zh_TW
dc.subject克流感zh_TW
dc.subjecttotal synthesisen
dc.subjectD-xyloseen
dc.subjectTamiphosphoren
dc.subjectTamifluen
dc.title由D-木糖合成克流感及零流感zh_TW
dc.titleFormal Synthesis of Tamiflu and Tamiphosphor from D-Xyloseen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡蘊明(Yeun-Min Tsai),吳宗益(Chung-Yi Wu)
dc.subject.keyword克流感,零流感,D-木糖,全合成,zh_TW
dc.subject.keywordTamiflu,Tamiphosphor,D-xylose,total synthesis,en
dc.relation.page206
dc.rights.note有償授權
dc.date.accepted2010-02-08
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
12.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved