Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45158
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張靜文(Ching-Wen Chang)
dc.contributor.authorFang-Tzu Changen
dc.contributor.author張芳慈zh_TW
dc.date.accessioned2021-06-15T04:06:48Z-
dc.date.available2015-03-12
dc.date.copyright2010-03-12
dc.date.issued2010
dc.date.submitted2010-02-08
dc.identifier.citationAli, S. M., A. A. Khan, et al. (2005). 'Antimicrobial activities of Eugenol and Cinnamaldehyde against the human gastric pathogen Helicobacter pylori.' Ann Clin Microbiol Antimicrob 4: 20.
Bandyopadhyay, P., H. Xiao, et al. (2004). 'Icm/dot-independent entry of Legionella pneumophila into amoeba and macrophage hosts.' Infect Immun 72(8): 4541-4551.
Begic, S. and E. A. Worobec (2006). 'Regulation of Serratia marcescens ompF and ompC porin genes in response to osmotic stress, salicylate, temperature and pH.' Microbiology 152(Pt 2): 485-491.
Bortner, C. A., R. R. Arnold, et al. (1989). 'Bactericidal effect of lactoferrin on Legionella pneumophila: effect of the physiological state of the organism.' Can J Microbiol 35(11): 1048-1051.
Brackman, G., T. Defoirdt, et al. (2008). 'Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR.' BMC Microbiol 8: 149.
Chang, B., K. Sugiyama, et al. (2009). 'Specific detection of viable Legionella cells by combined use of photoactivated ethidium monoazide and PCR/real-time PCR.' Appl Environ Microbiol 75(1): 147-153.
Chang, C. W., W. L. Chang, et al. (2008). 'Influence of pH on bioactivity of cinnamon oil against Legionella pneumophila and its disinfection efficacy in hot springs.' Water Res 42(20): 5022-5030.
Chang, C. W., W. L. Chang, et al. (2008). 'Antibacterial activities of plant essential oils against Legionella pneumophila.' Water Res 42(1-2): 278-286.
Chang, S. T., P. F. Chen, et al. (2001). 'Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum.' J Ethnopharmacol 77(1): 123-127.
Charles, A. S., S. A. Baskaran, et al. (2008). 'Reduction of Escherichia coli O157:H7 in cattle drinking-water by trans-cinnamaldehyde.' Foodborne Pathog Dis 5(6): 763-771.
Chen, N. T. and Chang, C. W. (2010). Rapid quantification of viable legionellae in water and biofilm using ethidium monoazide coupled with real-time quantitative PCR. Journal of applied microbiology (accepted).
Cocchiara, J., C. S. Letizia, et al. (2005). 'Fragrance material review on cinnamaldehyde.' Food Chem Toxicol 43(6): 867-923.
Codony, F., J. Morato, et al. (2005). 'Role of discontinuous chlorination on microbial production by drinking water biofilms.' Water Res 39(9): 1896-1906.
Cox, S. D. and J. L. Markham (2007). 'Susceptibility and intrinsic tolerance of Pseudomonas aeruginosa to selected plant volatile compounds.' J Appl Microbiol 103(4): 930-936.
Di Pasqua, R., G. Betts, et al. (2007). 'Membrane toxicity of antimicrobial compounds from essential oils.' J Agric Food Chem 55(12): 4863-4870.
Donlan, R. M. (2002). 'Biofilms: microbial life on surfaces.' Emerg Infect Dis 8(9): 881-890.
Fliermans, C. B. (1996). 'Ecology of Legionella: From Data to Knowledge with a Little Wisdom.' Microb Ecol 32(2): 203-228.
Fliermans, C. B., Soracco R. J. , and Popes D. H. (1981). 'Measure of Legionella pneumophila Activity In Situ.' CURRENT MICROBIOLOG 6: 89-94.
Friedman, M., P. R. Henika, et al. (2003). 'Antibacterial activities of phenolic benzaldehydes and benzoic acids against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica.' J Food Prot 66(10): 1811-1821.
Friedman, M., N. Kozukue, et al. (2000). 'Cinnamaldehyde content in foods determined by gas chromatography-mass spectrometry.' J Agric Food Chem 48(11): 5702-5709.
Gill, A. O. and R. A. Holley (2004). 'Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei.' Appl Environ Microbiol 70(10): 5750-5755.
Gill, A. O. and R. A. Holley (2006). 'Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics.' Int J Food Microbiol 108(1): 1-9.
Hales, L. M. and H. A. Shuman (1999). 'The Legionella pneumophila rpoS gene is required for growth within Acanthamoeba castellanii.' J Bacteriol 181(16): 4879-4889.
Hindre, T., H. Bruggemann, et al. (2008). 'Transcriptional profiling of Legionella pneumophila biofilm cells and the influence of iron on biofilm formation.' Microbiology 154(Pt 1): 30-41.
Ilkka M. Helander, H.-L. A., † Kyösti Latva-Kala,† Tiina Mattila-Sandholm,† Irene Pol,‡ Eddy J. Smid,‡ Leon G. M. Gorris,‡§ and Atte von Wright† (1998). 'Characterization of the Action of Selected Essential Oil Components on Gram-Negative Bacteria.' Journal of agricultural and food chemistry 46(9): 3590-3595.
Joly, P., P. A. Falconnet, et al. (2006). 'Quantitative real-time Legionella PCR for environmental water samples: data interpretation.' Appl Environ Microbiol 72(4): 2801-2808.
Katz, S. M. and J. M. Hammel (1987). 'The effect of drying, heat, and pH on the survival of Legionella pneumophila.' Ann Clin Lab Sci 17(3): 150-156.
Kim, B. R., J. E. Anderson, et al. (2002). 'Literature review--efficacy of various disinfectants against Legionella in water systems.' Water Res 36(18): 4433-4444.
Kuchta, J. M., S. J. States, et al. (1983). 'Susceptibility of Legionella pneumophila to chlorine in tap water.' Appl Environ Microbiol 46(5): 1134-1139.
Kwon, J. A., C. B. Yu, et al. (2003). 'Bacteriocidal effects and inhibition of cell separation of cinnamic aldehyde on Bacillus cereus.' Lett Appl Microbiol 37(1): 61-65.
Lehtola, M. J., E. Torvinen, et al. (2007). 'Survival of Mycobacterium avium, Legionella pneumophila, Escherichia coli, and caliciviruses in drinking water-associated biofilms grown under high-shear turbulent flow.' Appl Environ Microbiol 73(9): 2854-2859.
Lisby, G. and R. Dessau (1994). 'Construction of a DNA amplification assay for detection of Legionella species in clinical samples.' Eur J Clin Microbiol Infect Dis 13(3): 225-231.
Luppens, S. B., M. W. Reij, et al. (2002). 'Development of a standard test to assess the resistance of Staphylococcus aureus biofilm cells to disinfectants.' Appl Environ Microbiol 68(9): 4194-4200.
Luppens, S. B., F. M. Rombouts, et al. (2002). 'The effect of the growth phase of Staphylococcus aureus on resistance to disinfectants in a suspension test.' J Food Prot 65(1): 124-129.
Mah, T. F. and G. A. O'Toole (2001). 'Mechanisms of biofilm resistance to antimicrobial agents.' Trends Microbiol 9(1): 34-39.
Marston, B. J., J. F. Plouffe, et al. (1997). 'Incidence of community-acquired pneumonia requiring hospitalization. Results of a population-based active surveillance Study in Ohio. The Community-Based Pneumonia Incidence Study Group.' Arch Intern Med 157(15): 1709-1718.
Mayer, C., R. Moritz, et al. (1999). 'The role of intermolecular interactions: studies on model systems for bacterial biofilms.' Int J Biol Macromol 26(1): 3-16.
Momba, M. N. and M. A. Binda (2002). 'Combining chlorination and chloramination processes for the inhibition of biofilm formation in drinking surface water system models.' J Appl Microbiol 92(4): 641-648.
Mulazimoglu, L. and V. L. Yu (2001). 'Can Legionnaires disease be diagnosed by clinical criteria? A critical review.' Chest 120(4): 1049-1053.
Niu, C. and E. S. Gilbert (2004). 'Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure.' Appl Environ Microbiol 70(12): 6951-6956.
Nocker, A., A. Mazza, et al. (2009). 'Selective detection of live bacteria combining propidium monoazide sample treatment with microarray technology.' J Microbiol Methods 76(3): 253-261.
Ozlem Sanli-Yurudu, N., A. Kimiran-Erdem, et al. (2007). 'Studies on the efficacy of Chloramine T trihydrate (N-chloro-p-toluene sulfonamide) against planktonic and sessile populations of different Legionella pneumophila strains.' Int J Hyg Environ Health 210(2): 147-153.
Peneau, S., D. Chassaing, et al. (2007). 'First evidence of division and accumulation of viable but nonculturable Pseudomonas fluorescens cells on surfaces subjected to conditions encountered at meat processing premises.' Appl Environ Microbiol 73(9): 2839-2846.
Piao, Z., C. C. Sze, et al. (2006). 'Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila.' Appl Environ Microbiol 72(2): 1613-1622.
Pitts, B., A. Willse, et al. (2001). 'A repeatable laboratory method for testing the efficacy of biocides against toilet bowl biofilms.' J Appl Microbiol 91(1): 110-117.
Rogers, J., A. B. Dowsett, et al. (1994). 'Influence of temperature and plumbing material selection on biofilm formation and growth of Legionella pneumophila in a model potable water system containing complex microbial flora.' Appl Environ Microbiol 60(5): 1585-1592.
Saby, S., A. Vidal, et al. (2005). 'Resistance of Legionella to disinfection in hot water distribution systems.' Water Sci Technol 52(8): 15-28.
Schwartz, T., S. Hoffmann, et al. (2003). 'Formation of natural biofilms during chlorine dioxide and u.v. disinfection in a public drinking water distribution system.' J Appl Microbiol 95(3): 591-601.
Shahverdi, A. R., H. R. Monsef-Esfahani, et al. (2007). 'Trans-cinnamaldehyde from Cinnamomum zeylanicum bark essential oil reduces the clindamycin resistance of Clostridium difficile in vitro.' J Food Sci 72(1): S055-058.
Sheehan, K. B., J. M. Henson, et al. (2005). 'Legionella species diversity in an acidic biofilm community in Yellowstone National Park.' Appl Environ Microbiol 71(1): 507-511.
Shirtliff, M. E., J. T. Mader, et al. (2002). 'Molecular interactions in biofilms.' Chem Biol 9(8): 859-871.
Storey, M. V., J. Langmark, et al. (2004). 'The fate of legionellae within distribution pipe biofilms: measurement of their persistence, inactivation and detachment.' Water Sci Technol 49(11-12): 269-275.
Taylor, M., K. Ross, et al. (2009). 'Legionella, Protozoa, and Biofilms: Interactions Within Complex Microbial Systems.' Microb Ecol.
Teitzel, G. M. and M. R. Parsek (2003). 'Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa.' Appl Environ Microbiol 69(4): 2313-2320.
Thomas, V., T. Bouchez, et al. (2004). 'Amoebae in domestic water systems: resistance to disinfection treatments and implication in Legionella persistence.' J Appl Microbiol 97(5): 950-963.
Turetgen, I. and A. Cotuk (2007). 'Monitoring of biofilm-associated Legionella pneumophila on different substrata in model cooling tower system.' Environ Monit Assess 125(1-3): 271-279.
Vervaeren, H., R. Temmerman, et al. (2006). 'Introduction of a boost of Legionella pneumophila into a stagnant-water model by heat treatment.' FEMS Microbiol Ecol 58(3): 583-592.
Wingender, J. and H. C. Flemming (2004). 'Contamination potential of drinking water distribution network biofilms.' Water Sci Technol 49(11-12): 277-286.
Wong, S. Y., I. R. Grant, et al. (2008). 'Antibacterial activities of naturally occurring compounds against Mycobacterium avium subsp. paratuberculosis.' Appl Environ Microbiol 74(19): 5986-5990.
Yee, R. B. and R. M. Wadowsky (1982). 'Multiplication of Legionella pneumophila in unsterilized tap water.' Appl Environ Microbiol 43(6): 1330-1334.
Yu, F. P., B. H. Pyle, et al. (1993). 'A direct viable count method for the enumeration of attached bacteria and assessment of biofilm disinfection.' J Microbiol Methods 17(3): 167-180.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45158-
dc.description.abstract嗜肺性退伍軍人菌(Legionella pneumophila)是造成退伍軍人病和龐提亞克熱的致病菌,從肉桂葉中萃取的精油主成分肉桂醛(cinnamaldehyde)已被證實對於懸浮狀態的退伍軍人菌具有良好的殺菌效果。在環境中,退伍軍人菌普遍存在於熱水系統或冷卻水塔的生物膜中。已知生物膜中的細菌會增加對殺菌劑的抵抗性,且從生物膜中剝落下來的細菌會持續不斷的汙染水體,增加人類感染風險。但截至目前為止,並無研究利用肉桂醛針對退伍軍人菌形成的生物膜進行殺菌效能的評估,也無研究探討pH值和溫度的改變對於肉桂醛抑制生物膜效能的影響。因此,此研究的目的是評估肉桂醛對以靜置或流動的方式培養而形成之嗜肺性退伍軍人菌生物膜的殺菌效能,另外也探討pH值(7-9)和溫度(42°C和28.5°C)對於肉桂醛抑制嗜肺性退伍軍人菌生物膜效能的影響。除利用培養法觀察肉桂醛對細菌可培養性的影響,本研究也利用Ethidium monoazide (EMA)結合real-time quantitative PCR (EMA-qPCR)之技術探討其對細胞膜的破壞。結果顯示,肉桂醛能有效的抑制嗜肺性退伍軍人菌形成的生物膜,且抑菌效能隨濃度和時間的增加而增加(P<0.05),展現劑量-效應關係。當嗜肺性退伍軍人菌與1000 μg/ml以上的肉桂醛接觸60分鐘時,可完全抑制此菌的可培養性。暴露於125 μg/ml下之肉桂醛10分鐘,即可觀察到肉桂醛對細胞膜的破壞,對於靜置培養生物膜的殺菌效能為10.25%,流動培養生物膜的殺菌效能為7.37%。此外當兩種生物膜暴露於濃度小於500 μg/ml肉桂醛60分鐘時,其感受性具顯著差異(P<0.05),利用雷射掃描式共軛焦顯微鏡 (confocal laser scanning microscopy)觀察後發現結構上的差異是影響對肉桂醛感受性的主要原因。另外也觀察到肉桂醛對於生物膜的殺菌效能隨著pH值和溫度的增加而顯著上升。
以上結果顯示,肉桂醛除了對懸浮態的退伍軍人菌具有良好的殺菌效果之外,也可顯著破壞固著態的退伍軍人菌(退伍軍人菌生物膜)之可培養性與細胞膜。未來可考量將肉桂醛應用在水溫較高、水質偏鹼的環境中,以控制懸浮態及固著態的嗜肺性退伍軍人菌。
zh_TW
dc.description.abstractCinnamaldehyde is a major component in mature leaves of Cinnamomum osmophloeum. It has been proved to inactive planktonic Legionella pneumophila, an organism causing Legionnaires’ disease and Pontiac fever. L. pneumophila usually survives in water environment as habitants, living within biofilms that commonly found in distribution systems and cooling towers. Bacteria in biofilms are generally considered to be more resistant against disinfectants, and detachment of biofilm cells becomes a continual source providing microbial contamination to the bulk water. There was no research focused on the disinfection efficiency of L. pneumophila biofilms by cinnamaldehyde, and fewer studies focused on the effect of pH value and temperature on cinnamaldehyde’s effect on sessile cells. Therefore, the purpose of the study was to investigate the antibacterial effect of cinnamaldehyde against sessile L. pneumophila which were in static and continuous-flow culture, and to evaluate the pH and temperature effects on the disinfection efficacy of cinnamaldehyde on sessile L. pneumophila. In addition to observing the effect of cinnamaldehyde on cellular culturability by culture assay, ethidium monoazide coupled with real-time quantitative PCR (EMA-qPCR) was used to observe the effect of cinnamaldehdye on cell membrane integrity. The results shows that cinnamaldehyde was effective in disinfection of sessile L. pneumophila, and the antibacterial effect increased with the concentration and contact time (P<0.05), indicating a dose-response biocidal effect against sessile L. pneumophila. Contacted with cinnamaldehyde at concentration higher than 1000 μg/ml for 60 min, sessile L. pneumophila totally lost their culturability on BCYEα agar. Expose to 125 μg/ml of cinnamaldehyde for 10 min, cell membrane damage measured by EMA-qPCR assay was observed. The inactivation rate was 10.25% for static cultured bilfilms and 7.37% for continuous-flow culured biofilms. However, the susceptibility to cinnamaldehyde at concentration lower than 500 μg/ml was significantly different between two kinds of sessile cells (P<0.05). The different structure of two kinds of sessile cells was further proved by confocal laser scanning microscopy (CLSM), supporting that different structural feature between two kinds of sessile cells may contribute to different susceptibility to cinnamaldehyde. Moreover, the disinfection efficacy was enhanced against sessile cells at higher pH levels and at higher temperatures.
In conclusion, in this study, it was found that cinnamaldehyde is an effective disinfectant not only against planktonic L. pneumophila but also sessile L. pneumophila by destroying their cell membrane or cellular culturability. In the future, cinnamaldehyde possesses the potential to be used to control Legionella in aquatic environment with high pH values and high temperature, e.g., air-conditioning cooling towers in the summer.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:06:48Z (GMT). No. of bitstreams: 1
ntu-99-R96844004-1.pdf: 2543496 bytes, checksum: 7a117b350b05e26ab62635a9a16e9b8c (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝 I
摘要 III
Abstract IV
Contents VI
List of Tables IX
List of Figures XI
Chapter1 Introduction 1
1.1 L. pneumophila 1
1.1.1 Legionella pneumophila 1
1.1.2 Legionnaires’ disease 2
1.1.3 L. pneumophila in biofilms 3
1.1.4 Mechanism of L. pneumophila resistance in biofilms 4
1.2 Cinnamaldehyde 5
1.2.1 Introduction of cinnamaldehyde 5
1.2.2 Disinfection mechanism of cinnamaldehyde 5
1.2.3 Factors that affect the efficacy of cinnamaldehyde 6
1.2.3.1 Cell status or growth condition 6
1.2.3.2 pH values 7
1.2.3.3 Temperature 7
1.2.4 Previous study in cinnamaldehyde against microorganisms 8
1.2.4.1 Inactivation of planktonic cells 8
1.2.4.2 Inactivation of biofilm 9
1.3 Real- time qPCR and EMA-qPCR 9
1.4 Motivation 11
Chapter2 Purpose of the Study and Study Design 13
2.1 Purpose of the study 13
2.2 Study design 14
Chapter3 Framework of the Study 16
Chapter4 Materials and Methods 19
4.1 Bacterial strain and culture condition 19
4.2 Culture media 19
4.2.1 Agar preparation (BCYEα agar) 19
4.2.2 BYEα broth 19
4.2.3 Phosphate buffered saline (PBS) 20
4.3 Preparation of planktonic L. pneumophila 20
4.4 Preparation of sessile L. pneumophila 20
4.4.1 Rotating disk biofilm reactor 20
4.4.2 Biofilm culture and operating condition 21
4.4.3 Biofilm accumulation curve 22
4.5 Cinnamaldehyde treatment on planktonic L. pneumophila 22
4.6 Cinnamaldehyde treatment on sessile L. pneumophila 24
4.7 Disinfection efficacy of cinnamaldehyde on sessile L. pneumophila at different pH value 25
4.8 Disinfection efficacy of sodium hypochlorite and cinnamaldehyde on sessile L. pneumophila at pH 8.5 26
4.9 Quantification of culturable L. pneumophila 27
4.10 Quantification of viable and total L. pneumophila 27
4.10.1 EMA treatment and centrifugation 27
4.10.2 DNA extraction 28
4.10.3 EMA-qPCR and Real-time qPCR 28
4.11 Qualitative analysis of control and cinnamaldehyde-treated sessile L. pneumophila by CLSM 30
4.12 The index for disinfection efficacy 31
4.13 Statistical analysis 33
4.14 QA/QC 34
4.14.1 pH measurements during the test of evaluating the disinfection efficacy of cinnamaldehyde on sessile L. pneumophila at different pH value 34
4.14.2 Changes of chlorine concentrations in 10-hour disinfection experiment 34
4.14.3 Calibration curve and amplification efficiency of real-time qPCR 35
Chapter5 Results 37
5.1 L. pneumophila biofilm accumulation curve 37
5.2 Cinnamaldehyde treatment on planktonic L. pneumophila 37
5.2.1 Total, viable and culturable cell concentration of planktonic L. pneumophila treated with or without cinnamaldehyde 37
5.2.2 The viability and culturability of planktonic L. pneumophila treated with or without cinnamaldehyde 39
5.2.3 Antibacterial effect of cinnamaldehyde on planktonic L. pneumophila 39
5.3 Cinnamaldehyde treatment on sessile L. pneumophila 41
5.3.1 Total, viable and culturable cell concentration of sessile L. pneumophila treated with or without cinnamaldehyde 41
5.3.2 The viability and culturability of sessile L. pneumophila treated with or without cinnamaldehyde 43
5.3.3 Antibacterial effect of cinnamaldehyde on sessile L. pneumophila 43
5.4 Comparison of the disinfection efficacy by cinnamaldehyde between four types of L. pneumophila 45
5.4.1 Comparison of the disinfection efficacy between two kinds of planktonic L. pneumophila 45
5.4.2 Comparison of the disinfection efficacy between two kinds of sessile L. pneumophila 46
5.4.3 Comparison of the disinfection efficacy between planktonic and sessile L. pneumophila 47
5.5 Qualitative analysis of control and cinnamaldehyde-treated sessile L. pneumophila by confocal laser scanning microscopy (CLSM) 48
5.5.1 The different structure and biofilm thickness between sessile L. pneumophila in static and continuous-flow culture 48
5.5.2 Comparison of sessile L. pneumophila treated with or without cinnamaldehyde by CLSM 49
5.6 Disinfection efficacy of cinnamaldehyde on sessile L. pneumophila at different pH value 50
5.6.1 pH effect on sessile L. pneumophila in static culture 50
5.6.2 pH effect on sessile L. pneumophila in continuous-flow culture 51
5.7 Disinfection efficacy of sodium hypochlorite and cinnamaldehyde on sessile L. pneumophila at pH 8.5 53
5.7.1 Sessile L. pneumophila in static culture 53
5.7.1.1 Long time effect of cinnamaldehyde on sessile L. pneumophila in static culture 53
5.7.1.2 Comparison of the disinfection efficacy on sessile L. pneumophila in static culture by cinnamaldehyde and chlorine at pH 8.5 at 28.5°C 54
5.7.2 Sessile L. pneumophila in continuous-flow culture 54
5.7.2.1 Long time effect of cinnamaldehyde on sessile L. pneumophila in continuous-flow culture 54
5.7.2.2 Comparison of the disinfection efficacy on sessile L. pneumophila in continuous-flow culture by cinnamaldehyde and chlorine at pH 8.5 55
5.8 Comparison of the disinfection efficacy on sessile L. pneumophila by cinnamaldehyde at different temperatures 55
5.8.1 Temperature effect on sessile L. pneumophila in static culture 56
5.8.2 Temperature effect on sessile L. pneumophila in continuous-flow culture 56
5.9 QA/QC 57
5.9.1 pH measurements during the test of evaluating the disinfection efficacy of cinnamaldehyde on sessile L. pneumophila at different pH value 57
5.9.2 The variation of chlorine concentrations in 10-hour disinfection 58
5.9.3 Calibration curve and amplification efficiency of PCR 58
5.9.4 The validity of quantification of viable L. pneumophila by using EMA coupled with real-time quantitative PCR 58
5.9.5 Remove and homogeneity of biofilms from disks 59
Chapter6 Discussion 60
Chapter7 Conclusion and Suggestion 76
Chapter8 Reference List 127
口試委員之意見回覆 132
dc.language.isoen
dc.title肉桂醛對嗜肺性退伍軍人菌抑菌效能評估zh_TW
dc.titleInactivation of Legionella pneumophila by cinnamaldehydeen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃慶璨(Ching-Tsan Huang),童心欣(Hsin-Hsin Tung)
dc.subject.keyword退伍軍人菌,肉桂醛,生物膜,zh_TW
dc.subject.keywordL. pneumophila,biofilms,cinnamaldehyde,pH effect,temperature effect,en
dc.relation.page133
dc.rights.note有償授權
dc.date.accepted2010-02-08
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
2.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved