請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45151完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃建璋 | |
| dc.contributor.author | Pei-Hsuan Lin | en |
| dc.contributor.author | 林佩璇 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:06:31Z | - |
| dc.date.available | 2020-12-31 | |
| dc.date.copyright | 2010-02-24 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-02-08 | |
| dc.identifier.citation | ch.1
[1]http://tve.npust.edu.tw:8080/College/Engineering/class/RCSPEA/feature.html [2] J. Zhao, A. Wang, M. A. Green,“24% efficient PERL structure silicon solar cell” IEEE, Vol.91 pp.333,1990 [3] Y. Matsumoto, G. Hirata, H. Takakura, H. Okamoto, and Y. Hamakawa“A new type of high efficiency with a low-cost solar cell having the structure of a μc-SiC/polycrystalline silicon heterojunction” J. Appl. Phys. Vol.67, 6538 1990 [4] J. Yang, A. Banerjee, and S. Guha“Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies” Appl. Phys. Lett. Vol.70, 2975 1997 [5] Tatsuya Takamoto, Eiji Ikeda, and Hiroshi Kurita“Over 30% efficient InGaP/GaAs tandem solar cells” Appl. Phys. Lett. Vol.70, 381 1997 [6] J. Britt and C. Ferekides“Thin-film CdS/CdTe solar cell with 15.8% efficiency” Appl. Phys. Lett. Vol.62, 2851 1993 [7] I Repins, M Contreras, Y Romero, Y Yan, W Metzger, J Li, S Johnston, B Egaas, C DeHart, J Scharf, BE McCandless, R Noufi “Characterization of 19.9%-efficienct CIGS Absorbers”IEEE Photovoltaics Specialists Conference Record, Vol. 33, 2008 [8] Y Chiba, A Islam, K Kakutani, R Komiya, N Koide, L Han “High efficiency dye sensitized solar cells” Technical Digest, 15th International Photovoltaic Science and Engineering Conference, Shanghai, October 2005; 665–666 [9] D Laird, S Vaidya, S Li, M Mathai, B Woodworth, E Sheina, S Williams, T Hammond“Advances in Plexcore TM active layer technology systems for organic photovoltaics: roof-top and accelerated lifetime analysis of high performance organic photovoltaic cells” SPIE Proceedings, 2007; 6656(12). [10]http://www.taipeitradeshows.com.tw/chinese/presscenter/news_view.shtml?docno= 9 2116 [11] J. Zhao, A. Wang, M. A. Green, and S. R. Wenham, “Improvement in silicon solar cell performance,” IEEE, Vol.90 pp.339,1991 [12]Y. F Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C.S. Lee, K.H. Chen and L. C. Chen“Improved broadband and quasiomnidirectional anti-reflection properties with biomimetic silicon nanostructures” nature nanotechnology Vol.2 pp.770-774, 2007 [13] G. Mao, Y. Zhao and J. Wang “Colloidal subwavelength nanostructures for antireflection optical coatings” Optics Letters Vol. 30, No. 14 2005 [14] S. A. Bodena and D. M. Bagnall“Tunable reflection minima of nanostructured antireflective surfaces” Appl. Phys. Lett. Vol 93, 133108 2008 [15] M Law, L. E. Greene, J. C. Johnson, R Saykally and P Yan“Nanowire dye-sensitized solar cells” nature materials Vol. 4 2005 [16] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources”nature Vol 449 18 2007 [17] Y. S. Choi, J. Y. Lee, S. J. Lee and S. Im “Photoresponse characteristics of n-ZnO/p-Si heterojunction photodiodes” J. Vac. Sci. Technol. B Vol. 20, Issue 6, pp. 2384-2387 2002 [18] E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumont, P. Gibart, J. A. Muñoz| and F Cussó “High-performance GaN p-n junction photodetectors for solar ultravioletap plications ”Semicond . Sci . Technol. 13 pp1042–1046, 1998. [19] J. K. Sheu, M. L. Lee, L. S. Yeh, C. J. Kao, C. J. Tun, M. G. Chen, G. C. Chi, S. J., Chang, Y. K. Su, and C. T. Lee “Planar GaN n+–p photodetectors formed by Si implantation into p-GaN” Appl. Phys. Lett. Vol.81, 22 2002. [20] K. H. Tan, S. F. Yoon, W. K. Loke, S. Wicaksono, A. Stöhr, O. Ecin, A. Poloczek, A. Malcoci, and D. Jägerand K. L. Lew “High-speed picosecond pulse response GaNAsSb p-i-n photodetectors grown by rf plasma-assisted nitrogen molecular beam epitaxy” Appl. Phys. Lett. 90, 183515 2007 [21] H. K. Yadav, K. Sreenivas, and V. Gupta “Enhanced response from metal/ZnO bilayer ultraviolet photodetector” Appl. Phys. Lett. 90, 172113 2007 [22] A.E. Iverson, D.L. Smith, “Mathematical modeling of photoconductor transient response” IEEE Transactions on Electron Devices, Vol. ED-34, NO. 10 1987 [23] P. Sharma, K. V. Rao and K. Sreenivas“Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering” J. Appl. Phys. 93, 3963 2003 [24] R. K. Ahrenkiel, R. J. Matson, “Transit time studies of junction location in thin‐ film solar cells” Appl. Phys. Lett. Vol.46 9 1985 [25] Y. Li, F. D. Valle, M. Simonnet, I. Yamada and J. J. Delaunay“High-performance UV detector made of ultra-long ZnO bridging nanowires” Nanotechnology 20 045501 2009 [26] S. Kumar, G. H. Kim, K. Sreenivas, and R. P. Tandon“Mechanism of ultraviolet photoconductivity in zinc oxide nanoneedles”J. Phys. Condens. Matter 19 472202 2007 [27] J. B. K. Law and J. T. L. Thong“Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time” Appl. Phys. Lett. 88, 133114 2006 [28] E. A. Dalchiele, F. Martín, D. Leinen, R. E. Marotti, and José Ramón Ramos - Barrado “Single-Crystalline Silic on Nanowire Array-Based Photoelectrochemical Cells” J. Electrochem. Soc., Vol. 156, Issue 5, pp. K77-K81 2009 ch.2 [1]黃郁樺,氮化鋁鎵/氮化鎵系列PIN紫外光偵測器之製作與分析,國立成功大學 光電科學與工程研究所,2006 [2]David Wood, “Optoelectronic Semiconductor Devices”, international edition, 1994, Prentice Hall, p249-329 [3]周冠羽,砷化銦鎵的電性研究與平面型PIN光偵測器的製作,國立中央大學光電 研究所,2000. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45151 | - |
| dc.description.abstract | 隨著科技的進步,人類對地球的過度開發越來越嚴重,能源短缺的問題也被日益重視,可再生的能源議題不斷被拿出來討論,其中太陽能電池是目前最廣泛應用的可再生能源。
雖然GaAs和CIGS的太陽能電池已經可以達到30%以上的效率,但由於的GaAs和CIGS材料成本較高,所以現在在商業上量產的太陽能電池還是以Si為主。至於以Si為主的太陽能電池其效率遲遲無法大幅提升的原因是Si的吸收頻譜與太陽頻譜不吻合,造成能源的浪費和較低的效率。 為了提升太陽能電池的效率,很多太陽能電池會在表面製作奈米結構以降低反射率,然而奈米結構除了可以降低反射率外是否在載子的傳輸有額外的幫助並沒有做詳細的討論。 為了解決Si吸收頻譜與太陽光譜不吻合的問題,我們提出利用寬能隙的材料ZnO和Si結合,達到從紫外光到近紅外光具有寬廣且平坦吸收頻譜的光偵測器,其光響應在負偏壓3V的條件下達到0.17A/W,接著利用我們奈米小球的鋪排,使其光響應在可見光範圍(400nm~650nm)提升17.6%。 最後為了探討載子傳輸對光響應的影響,我們結合了GZO、a-Si、Si以及奈米小球蝕刻技術在元件中材料的接面上製作奈米結構,發現奈米結構除了可以有效的降低反射率,確實對載子的傳輸有幫助,較快的載子傳輸可以使載子更有效率的到達電極,進而大幅提升元件的光響應。 總結以上的實驗成果,不同能隙材料的異質結合,再利用簡單奈米小球鋪排技術及奈米元件的製作,相信可以有很大的潛力應用在製作高效率太陽能電池方面。 | zh_TW |
| dc.description.abstract | By the advance of technology, the overdevelopment of the Earth by human beings is more and more serious and the energy issue is attracted more attentions. However,
photovoltaics are the more applicable renewable energy now. In spite of the GaAs and CIGS based solar cells could have the high conversion efficiency more than 30%. The major commercial solar cells are still focused on Si based solar cells due to the high material cost of GaAs and CIGS solar cells. The major key issue on high conversion efficiency solar cell manufacturing is the mismatch of absorption spectrum between crystalline Si and solar spectrum. However, this mismatch of absorption spectrum will result in the energy loss and low conversion efficiency. In order to manufacture the high conversion efficiency solar cells, sub-wavelength textured surface and nanostructure devices were fabricated to reduce the surface reflectivity which could result in more light trapped by device structure. Nevertheless, it’s few to discuss that nanostructure device not only reduce the surface reflectivity but also probably help the carriers effectively transport to the contact electrodes. We utilized the ZnO and Si semiconductor materials to fabricate heterojunction photodiodes with flat and broad absorption band spectrum. The responsivity of photodiodes is 0.17A/W under -3 volts bias. By above approach, it’s possible to solve the mismatch issue of absorption spectrum between crystalline Si and solar spectrum. V By the technique of nanosphere spraying on the top of device surface, 17.6% enhancement of responsivity was achieved between 400nm to 650nm. Following, we combine GZO, i a-Si and p+-Si and the technique of nanosphere lithography to fabricate the nanopatterned n-GZO/i a-Si/p+-Si heterojunction photodiodes. We observed that nanostructure on devices not just only reduce the surface reflectivity but also help carriers effectively transport to the contact electrodes due to the shorter transit paths in nanostructure devices. However, we observed shortest transit time and highest responsivity in n-GZO/i a-Si/nanopatterned p+-Si heterojunction photodiodes. To summary above results, it has the infinite potential applications to solar cells by fabricating devices with the combination of materials possessing different energy band gap, simple nanosphere lithography and the achievement of nanostructure device manufacturing. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:06:31Z (GMT). No. of bitstreams: 1 ntu-99-R96941112-1.pdf: 4291304 bytes, checksum: 0b021a603fb2ad34719db158f7cd91f6 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員審定書..........................................................I
誌謝...................................................................................................................... II 中文摘要.............................................................................................................. III 英文摘要.............................................................................................................. IV 第一章 簡介........................................................................................................ 1 1-1論文架構................................................................................................ 1 1-2簡介和文獻回顧.................................................................................... 2 1-2-1太陽能電池簡介和文獻回顧....................................................... 2 1-2-2奈米結構在太陽能電池上的應用和文獻回顧........................... 4 1-2-3光電元件載子傳輸對光響應的影響和文獻回顧....................... 6 1-3研究動機................................................................................................ 7 參考文獻.............................................................................................................. 8 第二章 光偵測器操作原理................................................................................ 11 2-1簡介......................................................................................................... 11 2-2光偵測器照光吸收機制......................................................................... 11 2-3光偵測器之光響應(Responsivity)......................................................... 13 2-4傳輸時間(Transit time)的原理.............................................................. 14 參考文獻.............................................................................................................. 16 第三章 製程儀器、量測儀器與元件製作流程............................................... 17 3-1量測儀器介紹........................................................................................ 17 3-1-1量測光響應(Responsivity)的儀器架設....................................... 17 3-1-2量測反射率(Reflectivity)的儀器架設......................................... 19 3-1-3量測傳輸時間(Transit time)的儀器架設..................................... 20 VII 3-2元件製作流程........................................................................................ 23 第四章 具有奈米小球元件之研究結果與討論................................................ 29 4-1簡介........................................................................................................ 29 4-2表面形貌(SEM)..................................................................................... 30 4-3表面形貌(AFM)..................................................................................... 31 4-4電性(I-V curve)...................................................................................... 32 4-5光響應(Responsivity)............................................................................ 34 第五章 具有奈米結構元件之研究結果與討論................................................ 36 5-1簡介........................................................................................................ 36 5-2表面形貌(SEM)..................................................................................... 37 5-3反射率(Reflectivity)............................................................................... 40 5-4電性(I-V curve)...................................................................................... 42 5-5元件傳輸時間(Transit time).................................................................. 44 5-6光響應(Responsivity)............................................................................ 53 第六章 結論........................................................................................................ 55 | |
| dc.language.iso | zh-TW | |
| dc.subject | 奈米結構之二極體 | zh_TW |
| dc.subject | 光偵測器 | zh_TW |
| dc.subject | 傳輸時間 | zh_TW |
| dc.subject | 太陽能電池 | zh_TW |
| dc.subject | 光伏打效應 | zh_TW |
| dc.subject | 奈米小球 | zh_TW |
| dc.subject | transit time | en |
| dc.subject | solar cells | en |
| dc.subject | photovoltaics | en |
| dc.subject | nanosphere | en |
| dc.subject | nanostructure photodiodes | en |
| dc.subject | photodetectors | en |
| dc.title | 氧化鋅/矽異質結構光偵測器之電性及光性探討 | zh_TW |
| dc.title | On electrical and optical properties of n-ZnO/p-Si heterojunction photodiodes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊志忠,吳育任,何志浩 | |
| dc.subject.keyword | 太陽能電池,光伏打效應,奈米小球,奈米結構之二極體,光偵測器,傳輸時間, | zh_TW |
| dc.subject.keyword | solar cells,photovoltaics,nanosphere,nanostructure photodiodes,photodetectors,transit time, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-02-08 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
