請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45148完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何國川 | |
| dc.contributor.author | Yung-Lun Hsieh | en |
| dc.contributor.author | 謝詠倫 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:06:23Z | - |
| dc.date.available | 2013-02-24 | |
| dc.date.copyright | 2010-02-24 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-02-08 | |
| dc.identifier.citation | 1. L. Pecorino, 'Molecular Biology of Cancer,' New York, U.S.A., Oxford press (2005).
2. P. T. Matsudaira, H. F. Lodish, B. Arnold, C. Kaiser, K. Monty, P. S. Matthew, B. Anthony, P. Hidde, 'Molecular Cell Biology,' W. H. Freeman & Co Ltd., New York, U.S.A. (2007) 3. R. E. Weinberg, 'The Biology of Cancer,' New York, U.S.A., Garland Science (2007). 4. 鄭世緯 '以活體噬菌體顯示法發展台灣地區口腔癌之標的治療', 台灣,台北,國立台灣大學醫學院口腔生物科學研究所甲組碩士論文 (2007)。 5. C.Sawyers, 'Targeted cancer therapy,' Nature, 432(7015), 294-297 (2004). 6. R. Kerbel and J. Folkman, 'Clinical translation of angiogenesis inhibitors,' Nature Reviews Cancer, 2(10), 727-739 (2002). 7. R. K. Jain, D. G. Duda, J. W. Clark and J. S. Loeffler , 'Lessons from phase III clinical trials on anti-VEGF therapy for cancer,' Nature Clinical Practice Oncology, 3(1), 24-40 (2006). 8. S.V. Govindan, G. L. Griffiths, H. J. Hansen, I. D. Horak and D. M. Goldenberg, 'Cancer therapy with radiolabeled and drug/toxin-conjugated antibodies,' Technology in Cancer Research & Treatment, 4(4), 375-391 (2005). 9. M. Yamamoto and D.T. Curiel, 'Cancer gene therapy,' Technology in Cancer Research & Treatment, 4(4), 315-330 (2005). 10. L. Lachman, H. A. Lieberman, J. L. Kanig, 'The Theory and Practice of Industrial Pharmacy', 2nd ed. Chapter 2, “Milling”, Philadelphiap, U.S.A., Lea & Febiger, pp. 45-97 (1976). 11. U. Schroder, K. Mosbach, 'Intravascularly administrable, magnetically responsive nanosphere or nanoparticle, a process for the production thereof, and the use thereof,' US Patent 4,501,726, 26 Feb (1985). 12. R. H. Müller, K. Mader, S. Gohla, 'Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art,' European Journal of Pharmaceutical Sciences, 50, 161-177 (2000). 13. S. S. Davis, L. Illum, 'The targeting of drugs using polymeric microspheres,' British Polymer Journal, 15, 160-164 (1983). 14. 黃基毓 '聚氰基丙烯酸酯奈米載藥粒子的研究', 台灣,新竹,國立清華大學化學工程學研究所博士論文 (2007)。 15. P. Couvreur, G. Barratt, E. Fattal, P. Legrand and C. Vauthier, 'Nanocapsule technology: a review ,' Critical Reviews in Therapeutic Drug Carrier Systems, 19(2), 99-134 (2002). 16. Y. Nishioka and H. Yoshino, 'Lymphatic targeting with nanoparticulate system,' Advanced Drug Delivery Reviews, 47(1), 55-64 (2001). 17. H. Pinto-Alphandary, M. Aboubakar, D. Jaillard, P. Couvreur and C. Vauthier, 'Visualization of insulin-loaded nanocapsules: in vitro and in vivo studies after oral administration to rats,' Pharmaceutical Research, 20(7), 1071-1084 (2003). 18. C. Damge, 'Nanocapsules as carriers for oral peptide delivery,' Journal of Controlled Release, 13, 233-239 (1990). 19. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin and R. Langer, 'Biodegradable long-circulating polymeric nanospheres,' Science, 263, 1600-1603 (1994). 20. K. Ulbrich and V. Šubr, 'Polymeric anticancer drugs with pH-controlled activation,' Advanced Drug Delivery Reviews, 56, 1023-1050 (2004). 21. S. Wang, R. J. Lee, C. J. Mathias, M. A. Green, P. S. Low, 'Synthesis, Purification, and Tumor Cell Uptake of 67Ga-Deferoxamine−Folate, a Potential Radiopharmaceutical for Tumor Imaging,' Bioconjugate Chemistry, 7(1), 55-62 (1996). 22. Y. Lu, and P. S. Low, 'Folate-mediated delivery of macromolecular anticancer therapeutic agents,' Advanced Drug Delivery Reviews, 54, 675-693 (2002). 23. T. Shiokawa, Y. Hattori, K. Kawano, Y. Ohguchi, H. Kawakami, K. Toma and Y. Maitani, 'Effect of polyethylene glycol linker chain length of folate-linked microemulsions loading aclacinomycin A on targeting ability and effect in vitro and in vivo,' Clinical Cancer Research, 11, 2018-2025 (2005). 24. B. Heurtault, P. Saulnier, B. Pech, J. E. Proust, and J. P. Benoit, 'A Novel Phase Inversion-Based Process for the Preparation of Lipid Nanocarriers,' Pharmaceutical Research, 19(6), 875-880 (2002). 25. B. Heurtault, P. Saulnier, B. Pech, J. E. Proust and J. P. Benoit, 'Properties of polyethylene glycol 660 12-hydroxy stearate at a triglyceride/water interface,' International Journal of Pharmaceutics, 242, 167-170 (2002). 26. D. J. Miller, T. Henning and W. Grünbein, 'Phase inversion of w/o emulsions by adding hydrophilic surfactant: A technique for making cosmetics products,' Colloids Surface, 183–185, 681–688 (2001). 27. B. Heurtault, P. Saulnier, B. Pech, J. E. Proust, J. Richard, and J. P. Benoit, 'Nanocapsules lipidiques, procédé de préparation et utilisation comme médicament,' Patent No. 0002688000 (2000). 28. R. Gref, M. Luck, P. Quellec, M. Marchand, E. Dellacherie, S. Harnisch, T. Blunk, and R. H. Muller, ''Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption,' Colloids and Surfaces B: Biointerfaces, 18, 301-313 (2000). 29. A. Beduneau, P. Saulnier, N. Anton, F. Hindre, C. Passirani, H. Rajerison, N. Noiret, J. P. Benoit, 'Pegylated Nanocapsules Produced by an Organic Solvent-Free Method: Evaluation of their Stealth Properties,' Pharmaceutical Research, 23(9), 2190-2199 (2006) 30. J. Allouche, E. Tyrode, V. Sadtler, L. Choplin, and J. L. Salager, 'Simultaneous conductivity and viscosity measurements as a technique to track emulsion inversion by the phase-inversion temperature method,' Langmuir, 20, 2134-2140 (2004). 31. W. D. Bancroft, 'The theory of emulsification,' The Journal of Physical Chemistry, 17, 178-233 (1913). 32. J. Allouche, E. Tyrode, V. Sadtler, L. Choplin, and J. L. Salager, 'Single and two steps emulsification to prepare a persistent multiple emulsion with a surfactant-polymer mixture,' Industrial and Engineering Chemistry Research, 42, 3982-3988 (2003). 33. M. C. E. Van Hecke, J. Poprawski, J. M. Aubry, J. L. Salager, 'A novel criterion for studying the phase equilibria of non-ionic surfactant-triglyceride oil-water systems,' Polymer International, 52, 559-562 (2003). 34. J. Poprawski, M. Catte, L. Marquez, M. J. Marti, J. L. Salager and J. M. Aubry, 'Application of hydrophilic-lipophilic deviation formulation concept to microemulsions containing pine oil and nonionic surfactant,' Polymer International, 52(4), 629-632 (2003). 35. S. I. Jeon, J. H. Lee, J. D. Andrade, and P. G. De Gennes, 'Protein-surface interactions in the presence of polyethylene oxide. I. Simplified theory,' Journal of Colloid and Interface Science, 142(1), 149-158 (1991). 36. S. Ballot, N. Noiret, F. Hindre, B. Denizot, E. Garin, H. Rajerison, and J. P. Benoit, '(99m)Tc/(188)Re-labelled lipid nanocapsules as promising radiotracers for imaging and therapy: formulation and biodistribution,' European Journal of Nuclear Medicine and Molecular Imaging, 1-6 (2006). 37. A. Lamprecht, J. L. Saumet, J. Roux and J. P. Benoit, 'Lipid nanocarriers as drug delivery system for ibuprofen in pain treatment,' International Journal of Pharmaceutics, 278, 407–414 (2004). 38. C., Aravanis, 'Acute thrombophlebitis due to IV use of amiodarone,' Chest, 82, 515–516 (1982). 39. A. T. Florence, A. M. Hillery, N. Hussain, P. U. Jani, 'Factors affecting the oral uptake and translocation of polystyrene nanoparticles: histological and analytical evidence,' Journal of Drug Target, 3, 65–70 (1995). 40. S. McClean, E. Prosser, E. Meehan, D. O’Malley, N. Clarke, Z. Ramtoola, D. Brayden, 'Binding and uptake of biodegradable poly-dl-lactide micro- and nano-particles in intestinal epithelia,' European Journal of Pharmaceutical Science, 6(2), 153–163 (1998). 41. J. F. Hillyer, R. M. Albrecht, 'Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles,' Journal of Pharmaceutical Science, 90, 1927–1936 (2001). 42. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, R. Langer, 'Biodegradable long-circulating polymeric nanospheres,' Science, 263, 1600–1603 (1994). 43. J. C. Leroux, F. De Jaeghere, B. Anner, E. Doelker, R. Gurny, 'An investigation on the role of plasma and serum opsonins on the internalization of biodegradable poly(d,l-lactic acid) nanoparticles by human monocytes,' Life Science, 57, 695–703 (1995). 44. N. Anton , P. Gayet , J. P. Benoit, P. Saulnier, 'Nano-emulsions and nanocapsules by the PIT method: An investigation on the role of the temperature cycling on the emulsion phase inversion, ' International Journal of Pharmaceutics, 344, 44–52 (2007). 45. K. Nathan, E. F. Glen and Z. Miqin 'A Bifunctional Poly(ethylene glycol) Silane Immobilized on Metallic Oxide-Based Nanoparticles for Conjugation with Cell Targeting Agents,' Journal of the American Chemical Society, 126, 7206-7211 (2004). 46. B. Feng, R.Y. Hong, L. S. Wang, L. Guo, H. Z. Li, J. Ding, Y. Zheng, D. G. Wei, 'Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging,' Colloids and Surfaces A: Physicochemical and Engineering Aspects, 328, 52–59 (2008). 47. J. L. Robert and S. L. Philip, 'Delivery of Liposomes into Cultured KB Cells via Folate Receptor-mediated Endocytosis,' The Journal of Biological Chemistry, 269(5), 3198-3204 (1994). 48. Z. Jing, S. Patrick, P. Thomas, Z. Ya, M. Tommi, T. Esko, P. Ilmari, 'Distribution of Lipid Nanocapsules in Different Cochlear Cell Populations After Round Window Membrane Permeation,' Journal of Biomedical Materials Part B : Apllied Biomaterials, 87B(1), 10-18 (2007). 49. 'Infrared Spectroscopy', [cited; Available from: http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/InfraRed/infrared.htm] 50. 'Spectroscopy Tutorial : Reference', [cited; Available from: http://orgchem.colorado.edu/hndbksupport/specttutor/irchart.html] 51. Y. Zhang, J. Zhang, 'Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells,' Journal of Colloid and Interface Science, 283, 352–357 (2005). 52. S. Oae, S. Kawamura, 'The structure of Zincke's So-called o- and p-Nitrobenzenesulfenic,' Bulletin of the Chemical Society of Japan, 35(7), 1156-1159 (1962). 53 E. Roger, F. Lagarce, E. Garcion, J. P. Bonoit, 'Lipid nanocarriers improve paclitaxel transport throughout human intestinalepithelial cells by using vesicle-mediated transcytosis,' Journal of Controlled Release, 140, 174–181 (2009). 54. J. Hureaux, F. Lagarce, F. Gagnadoux, A. Clavreul, J. P. Benoit, T. Urban, 'The adaptation of lipid nanocapsule formulations for blood administration in animals,' International Journal of Pharmaceutics, 379, 266–269 (2009). 55. 'Cell Proliferation Reagent WST-1', 3rd ed., Roche Molecular Biochemicals, Switzerland (1999). 56. C. A. Luhrs, C. A. Raskin, R. Durbin, B. Wu, E. Sadasivan, W. McAllister, S. P. Rothenberg, 'Transfection of a Glycosylated Phosphatidylinositol-anchored Folate-binding Protein Complementary DNA Provides Cells with the Ability to Survive in Low Folate Medium,' The Journal of Clinical Investigation, 90(3), 840-847 (1992). 57. M. Howard, 'Practical Flow Cytometry', 4th ed., New York, U. S. A., Wiley-Liss (2003) 58. E. Allard, C. Psaairani, E. Garcion, P. Pigeon, A. Vessieres, G. Jaouen, J. P. Benoit, 'Lipid nanocapsules loaded with an organometallic tamoxifen derivative as a novel drug-carrier system for experimental malignant gilomas,' Journal of Controlled Release, 130, 146-153 (2008). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45148 | - |
| dc.description.abstract | 本研究主要著重於脂質奈米膠囊的製備及其表面修飾葉酸,作為具有生物相容性的載藥粒子,並且探討葉酸修飾之脂質奈米膠囊對於乳癌細胞上大量表現的葉酸受體之作用,以達到增進脂質奈米膠囊對乳癌細胞的標定效果。
脂質奈米膠囊是利用相轉換溫度法合成,隨著溫度的提升乳膠系統從o/w經過一個相轉換區 (Phase transitional zone) 後變成w/o/w,在進入相轉換區後加入大量冷卻水以得到脂質奈米膠囊產物。本研究目的在於將葉酸分子修飾上脂質奈米膠囊表面,所以先利用胺丙基三乙氧基矽烷與脂質奈米膠囊進行縮合反應讓奈米膠囊表面帶有胺基,接下來胺丙基三乙氧基矽烷修飾之脂質奈米膠囊與葉酸分子之間,則是利用葉酸活性酯 (NHS/DCC方法) 與胺基所形成的胜肽鍵加以鍵結。 接著討論經葉酸分子修飾後的脂質奈米膠囊其各項性質,從傅立葉轉換紅外線 (FTIR) 光譜矽-氧-碳及碳氧雙鍵特徵峰的出現,可以確認胺丙基三乙氧基矽烷與脂質奈米膠囊的縮合反應成功以及葉酸分子與胺丙基三乙氧基矽烷修飾之脂質奈米膠囊之間的鍵結。在粒徑分佈、穿透式電子顯微鏡 (TEM)中可看出修飾過葉酸後脂質奈米膠囊的粒徑從10 nm增加至40 nm左右,且沒有聚集現象產生。 為了測試葉酸修飾之脂質奈米膠囊其細胞毒性以及標定效果,本研究將不同濃度葉酸修飾之脂質奈米膠囊與正常的纖維母細胞 (3T3) 一同培養,用來測試所合成奈米膠囊的細胞毒性,結果顯示纖維母細胞對於葉酸修飾之脂質奈米膠囊可容忍的最大濃度為55 μL/mL。最後藉由流式細胞儀及雷射掃瞄共軛焦顯微鏡來測試其標定效果。在流式細胞儀及共軛焦顯微鏡的數據中均可以看出修飾上葉酸的脂質奈米膠囊能提升其對乳癌細胞(BT-20) 的標定效果。 | zh_TW |
| dc.description.abstract | In this study, lipid nanocapsules (LNCs) modified with folic acid (FA), denoted as folate-LNCs, were synthesized and their interactions with the folate receptors over-expressed on the surface of the breast cancer cells are discussed. The folate-LNCs were synthesized with the expectation of improving the targeting ability of LNCs towards the breast cancer cells.
The LNCs were synthesized by the phase transition temperature method. During heating process, emulsion system changed from o/w and passed through the phase transitional zone to w/o/w. LNCs were produced by adding large amount of cooling water at the phase transitional zone. To synthesize folate-LNCs, the surface of the LNCs was first modified with a layer of 3-aminopropyltriethoxysilane (APTES) to generate amino groups on the surface of LNCs by condensation reaction. Thereafter, folic acid was conjugated to APTES-LNCs through the formation of the peptide bond by the N-hydroxysuccinimide ester of folic acid (NHS/DCC method) and amino group. The Si-O-C and C=O peaks in the FTIR spectrum were observed, indicating the folate-LNCs were successfully synthesized. Besides, the particle size increased from 10 to 40 nm after FA was conjugated to LNCs, evidenced by zeta-sizer and TEM. No aggregation was observed for the LNCs and folate-LNCs. In order to examine the biocompatibility of the folate-LNCs, the 3T3, fibroblast cells were cultured with various concentrations of folate-LNCs. It was found that the maximum tolerance concentration of the folate-LNCs to fibroblast cells was 55 μL/mL. On the other hand, the targeting ability of the folate-LNCs to the human breast cancer cells, BT-20, was examined by the flow cytometry and confocal microscopy techniques. The results showed that the targeting ability of the LNCs to breast cancer cells was improved by conjugating folic acid. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:06:23Z (GMT). No. of bitstreams: 1 ntu-99-R96549011-1.pdf: 3859368 bytes, checksum: c3d7c9a48c4d09c8ac6bdba6b103ab79 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 目錄
中文摘要………………………………………………………………………I 英文摘要………………………………………………………………………III 誌謝…………………………………………………………………………V目錄……………………………………………………………………………VI 表目錄…………………………………………………………………………IX 圖目錄……………………………………………………………………………X 第一章 緒論……………………………………………………………………1 1.1前言………………………………………………………………1 1.2癌症治療…………………………………………………………3 1.2.1標靶治療…………………………………………………4 1.3載藥粒子…………………………………………………………6 1.3.1高分子奈米藥物載體………………………………………8 1.4脂質奈米膠囊………………………………………………………10 1.5癌組織標的系統……………………………………………………11 1.5.1自然標的……………………………………………………11 1.5.2 強制標的.…………………………………………………11 1.6 葉酸受體……………………………………… 13 1.6.1 葉酸…………………………………………………15 第二章 文獻回顧與研究目的………………………………16 2.1脂質奈米膠囊種類……………………………………………16 2.1.1相倒轉溫度法……………………………………………17 2.1.2長循環性之質奈米膠囊…………………………………21 2.2脂質奈米膠囊的應用……………………………………………28 2.2.1包覆Ibuprofen 的脂質奈米膠囊應用於疼痛治療……28 2.3研究動機與目的………………………………………………35 2.4研究架構………………………………………………………36 第三章 修飾葉酸之脂質奈米膠囊之製備………………………………37 3.1實驗化學品……………………………………………………37 3.2實驗儀器………………………………………………………39 3.3合成方法………………………………………………………41 3.3.1脂質奈米膠囊的合成……………………………………41 3.3.2表面修飾氨丙基三乙氧基矽烷之脂質奈米膠囊……44 3.3.3葉酸活性酯合成………………………………………45 3.3.4表面修飾葉酸之脂質奈米膠囊………………………46 3.3.5裝載尼羅紅之脂質奈米膠囊的合成…………………49 3.3.6表面修飾葉酸之尼羅紅脂質奈米膠囊………………50 3.4性質測定………………………………………………………51 3.4.1傅立葉轉換紅外線/拉曼光譜儀………………………51 3.4.2粒徑分析儀……………………………………………55 3.4.3穿透式電子顯微鏡……………………………………58 3.4.4脂質奈米膠囊羅紅包覆率………………………………60 第四章 應用於體外細胞(in vitro)實驗………………………63 4.1細胞毒殺性實驗…………………………………………………63 4.1.1 WST-1介紹……………………………………………………63 4.1.2 實驗步驟……………………………………………………65 4.1.3 結果討論……………………………………………………66 4.2 流式細胞儀……………………………………………………69 4.2.1 流式細胞儀介紹……………………………………………69 4.2.2 實驗步驟……………………………………………………70 4.2.3 結果討論………………………………………………71 4.3雷射掃描共軛焦顯微鏡……………………………………………74 4.3.1 實驗步驟...………………………………………………74 4.3.2 結果討論…………………………………………………75 第五章 結論…………………………………………………77 第六章 建議………………………………………………………79 第七章 參考文獻…………………………………………80 附錄……………………………………………………………… 87 表目錄 Table 2.1 Experiment materials………………………………17 Table 2.2 Experiment materials………………………………21 Table 2.3 Experiment materials………………………………28 Table 2.4 Experiment data………………………………………29 Table 3.1 Experimental chemicals……………………………37 Table 3.2 Experimental instruments……………………39 Table 3.3 Part of typical infrared absorption frequencies…………54 Table 3.4 Polydispersity Index (PI) of Lipid Nanocapsules…………56 Table A.1 Typical infrared absorption frequencies………………87 圖目錄 Figure 1.1 Enhanced Permeation and Retention effect in tumor tissue…………12 Figure 1.2 Folic acid receptor-mediated endocytosis…………………14 Figure 1.3 Folic acid structure……………………………15 Figure 2.1 Structure of lipid nanocapsules……………16 Figure 2.2 Formulation process of lipid nanocapsules……18 Figure 2.3 Evolution of conductivity as a function of temperature…………18 Figure 2.4 TEM image of lipid nanocapsules…………………19 Figure 2.5 AFM of nanocapsules deposited and dried on mica plate and observed by the noncontact model……………………20 Figure 2.6 Evolution of conductivity as a function of temperature…………22 Figure 2.7 Morphology evolutions as a function of temperature and water fractions……23 Figure 2.8 Ternary diagram allow the determination of feasibility domain……24 Figure 2.9 Formulation process of lipid nanocapsules and description of morphology changes during the temperature cycles……………25 Figure 2.10 Cryo-TEM image of nanocapsules…………………………26 Figure 2.11 Blood concentration-time profile for PEG1500 stearate and PEG660 hydoxystearate nanocapsules…………27 Figure 2.12 Atomic force microscopic image of lipid nanocapsules…………29 Figure 2.13 In vitro drug release profile for all batches in phosphate buffer…………30 Figure 2.14 Antinociceptive effects of ibuprofen solution v.s. ibuprofen LNC formulation after oral administration…………………………31 Figure 2.15 Pharmacokinetic comparison of ibuprofen solution with ibuprofen LNC formulation after oral administration…………………32 Figure 2.16 Antinociceptive effects of ibuprofen solution v.s. ibuprofen formulation after intravenous administration………………33 Figure 2.17 Pharmacokinetic comparison of ibuprofen solution with ibuprofen LNC formulation after intravenous administration………34 Figure 3.1 Evolution of the conductivity as a function of the temperature before cooling-dilution………………43 Figure 3.2 Lipid nanocapsules product after cooling-dilution…………………43 Figure 3.3 FTIR spectrum of APTES-modified Lipid Nanocapsules………45 Figure 3.4 Flow cytometry measurements of BT-20, breast cancer cells under 250V Folate-modified Lipid Nanocapsules of different NHS-folate amount…………47 Figure 3.5 Synthesis processes of Folate-modified Lipid Naocapsules………48 Figure 3.6 FTIR spectrum of Lipid Nanocapsules, APTES-modified and Folate-modified Lipid Nanocapsules…………………53 Figure 3.7 FTIR spectrum of APTES-modified and Folate-modified Lipid Nanocapsules from wave number 900 cm-1-2000 cm-1…………53 Figure 3.8 Particle size distribution of Lipid Nanocapsules …………………56 Figure 3.9 TEM image of Lipid Nanocapsules…………………………………58 Figure 3.10 TEM image of Folate-modified Lipid Nanocapsules……59 Figure 3.11a The absorbance spectrum of Nile Red………………………60 Figure 3.11b The calibration curve of Nile Red………………………………61 Figure 4.1 Diagram of hemocytometer…………………………63 Figure 4.2 BT-20 cells with trypan blue treatment…64 Figure 4.3 Cleavage of tetrazolium salt, WST-1……64 Figure 4.4 Biocompatibility of Lipid Nanocapsules………………66 Figure 4.5 Biocompatibility of Folate-modified Lipid Nanocapsules………67 Figure 4.6 Diagram of flow cytometry………69 Figure 4.7 Flow cytometry measurements of BT-20, breast cancer cells under 250 V (a) LNC (b) NR-LNC (c) NR-LNC-Folate………………71 Figure 4.8 Flow cytometry measurements of Nile Red-loaded lipid nanocapsules uptake by 9L cells after 2 h…………73 Figure 4.9 Confocal images (a) (b) (c) NR-LNC with BT-20 cells, (d) (e) (f)NR-LNC-Folate with BT-20 cells………………………………75 Figure 4.10 Confocal images of 9L cells after 2 h of incubation with NR-LNC……………………………………76 | |
| dc.language.iso | zh-TW | |
| dc.subject | 葉酸 | zh_TW |
| dc.subject | 生物相容性 | zh_TW |
| dc.subject | 標的效果 | zh_TW |
| dc.subject | 脂質奈米膠囊 | zh_TW |
| dc.subject | 乳癌細胞 | zh_TW |
| dc.subject | biocompatibility | en |
| dc.subject | targeting ability | en |
| dc.subject | lipid nanocapsule | en |
| dc.subject | folic acid | en |
| dc.subject | breast cancer cells | en |
| dc.title | 葉酸修飾之脂質奈米膠囊之製備與其對乳癌細胞的標的性 | zh_TW |
| dc.title | On the Preparation of Folate-modified Lipid Nanocapsules
and Their Targeting Ability towards Breast Cancer Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳林祈,周澤川,許梅娟 | |
| dc.subject.keyword | 生物相容性,乳癌細胞,葉酸,脂質奈米膠囊,標的效果, | zh_TW |
| dc.subject.keyword | biocompatibility,breast cancer cells,folic acid,lipid nanocapsule,targeting ability, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-02-08 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
