請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45146完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王兆麟(Jaw-Lin Wang) | |
| dc.contributor.author | Shih-Wei Lin | en |
| dc.contributor.author | 林世惟 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:06:18Z | - |
| dc.date.available | 2011-02-11 | |
| dc.date.copyright | 2010-02-11 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-02-08 | |
| dc.identifier.citation | 1. Kanis JA, Oden A, Johnell O, et al. The burden of osteoporotic fractures: a method for setting intervention thresholds. Osteoporos Int 2001;12:417-27.
2. Gullberg B, Johnell O, Kanis JA. World-wide projections for hip fracture. Osteoporos Int 1997;7:407-13. 3. Gardner MJ, Lorich DG, Lane JM. Osteoporotic femoral neck fractures: management and current controversies. Instr Course Lect 2004;53:427-39. 4. Tsuboi M, Hasegawa Y, Suzuki S, et al. Mortality and mobility after hip fracture in Japan: a ten-year follow-up. J Bone Joint Surg Br 2007;89:461-6. 5. Griffin JB. The calcar femorale redefined. Clin Orthop Relat Res 1982:211-4. 6. Cummings SR, Nevitt MC. A hypothesis: the causes of hip fractures. J Gerontol 1989;44:M107-11. 7. Naimark A, Kossoff J, Schepsis A. Intertrochanteric fractures: current concepts of an old subject. AJR Am J Roentgenol 1979;133:889-94. 8. Olsson O, Kummer FJ, Ceder L, et al. The Medoff sliding plate and a standard sliding hip screw for unstable intertrochanteric fractures: a mechanical comparison in cadaver femurs. Acta Orthop Scand 1998;69:266-72. 9. Adams CI, Robinson CM, Court-Brown CM, et al. Prospective randomized controlled trial of an intramedullary nail versus dynamic screw and plate for intertrochanteric fractures of the femur. J Orthop Trauma 2001;15:394-400. 10. Ahrengart L, Tornkvist H, Fornander P, et al. A randomized study of the compression hip screw and Gamma nail in 426 fractures. Clin Orthop Relat Res 2002:209-22. 11. Steinberg GG, Desai SS, Kornwitz NA, et al. The intertrochanteric hip fracture. A retrospective analysis. Orthopedics 1988;11:265-73. 12. Kim WY, Han CH, Park JI, et al. Failure of intertrochanteric fracture fixation with a dynamic hip screw in relation to pre-operative fracture stability and osteoporosis. Int Orthop 2001;25:360-2. 13. Parker MJ, Pryor GA. Gamma versus DHS nailing for extracapsular femoral fractures. Meta-analysis of ten randomised trials. Int Orthop 1996;20:163-8. 14. Chapman JR, Harrington RM, Lee KM, et al. Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng 1996;118:391-8. 15. Koval KJ, Meek R, Schemitsch E, et al. An AOA critical issue. Geriatric trauma: young ideas. J Bone Joint Surg Am 2003;85-A:1380-8. 16. Kyle RF, Gustilo RB, Premer RF. Analysis of six hundred and twenty-two intertrochanteric hip fractures. J Bone Joint Surg Am 1979;61:216-21. 17. Baumgaertner MR, Curtin SL, Lindskog DM, et al. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am 1995;77:1058-64. 18. Lorich DG, Geller DS, Nielson JH. Osteoporotic pertrochanteric hip fractures: management and current controversies. Instr Course Lect 2004;53:441-54. 19. Patel AA, Vaccaro AR, Martyak GG, et al. Neurologic deficit following percutaneous vertebral stabilization. Spine 2007;32:1728-34. 20. Hierholzer J, Fuchs H, Westphalen K, et al. [Percutaneous vertebroplasty -- the role of osseous phlebography]. Rofo 2005;177:386-92. 21. Baumann C, Fuchs H, Kiwit J, et al. Complications in percutaneous vertebroplasty associated with puncture or cement leakage. Cardiovasc Intervent Radiol 2007;30:161-8. 22. Yeom JS, Kim WJ, Choy WS, et al. Leakage of cement in percutaneous transpedicular vertebroplasty for painful osteoporotic compression fractures. J Bone Joint Surg Br 2003;85:83-9. 23. Courtney AC, Wachtel EF, Myers ER, et al. Age-related reductions in the strength of the femur tested in a fall-loading configuration. J Bone Joint Surg Am 1995;77:387-95. 24. Apel DM, Patwardhan A, Pinzur MS, et al. Axial loading studies of unstable intertrochanteric fractures of the femur. Clin Orthop Relat Res 1989:156-64. 25. Robinson CM, Court-Brown CM, McQueen MM, et al. Hip fractures in adults younger than 50 years of age. Epidemiology and results. Clin Orthop Relat Res 1995:238-46. 26. Chang WS, Zuckerman JD, Kummer FJ, et al. Biomechanical evaluation of anatomic reduction versus medial displacement osteotomy in unstable intertrochanteric fractures. Clin Orthop Relat Res 1987:141-6. 27. Davy DT, Kotzar GM, Brown RH, et al. Telemetric force measurements across the hip after total arthroplasty. J Bone Joint Surg Am 1988;70:45-50. 28. Heyse-Moore GH, MacEachern AG, Evans DC. Treatment of intertrochanteric fractures of the femur. A comparison of the Richards screw-plate with the Jewett nail-plate. J Bone Joint Surg Br 1983;65:262-7. 29. Gotfried Y. Integrity of the lateral femoral wall in intertrochanteric hip fractures: an important predictor of a reoperation. J Bone Joint Surg Am 2007;89:2552-3; author reply 3. 30. Haidukewych GJ, Israel TA, Berry DJ. Reverse obliquity fractures of the intertrochanteric region of the femur. J Bone Joint Surg Am 2001;83-A:643-50. 31. Hwang LC, Lo WH, Chen WM, et al. Intertrochanteric fractures in adults younger than 40 years of age. Arch Orthop Trauma Surg 2001;121:123-6. 32. Cummings SR, Rubin SM, Black D. The future of hip fractures in the United States. Numbers, costs, and potential effects of postmenopausal estrogen. Clin Orthop Relat Res 1990:163-6. 33. Haynes RC, Poll RG, Miles AW, et al. Failure of femoral head fixation: a cadaveric analysis of lag screw cut-out with the gamma locking nail and AO dynamic hip screw. Injury 1997;28:337-41. 34. Moroni A, Faldini C, Pegreffi F, et al. HA-coated screws decrease the incidence of fixation failure in osteoporotic trochanteric fractures. Clin Orthop Relat Res 2004:87-92. 35. Szpalski M, Descamps PY, Hayez JP, et al. Prevention of hip lag screw cut-out by cement augmentation: description of a new technique and preliminary clinical results. J Orthop Trauma 2004;18:34-40. 36. Bramlet DG. Use of the talon hip compression screw in intertrochanteric fractures of the hip. Clin Orthop Relat Res 2004:93-100. 37. Brumback RJ, Ellison TS, Poka A, et al. Intramedullary nailing of femoral shaft fractures. Part III: Long-term effects of static interlocking fixation. J Bone Joint Surg Am 1992;74:106-12. 38. Van Rietbergen B, Huiskes R, Eckstein F, et al. Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Miner Res 2003;18:1781-8. 39. Baohua l I RMA. Composition and Mechanical Properties of Cancellous Bone from the Femoral Head of Patients with Osteoporosis or Osteoarthritis. Journal of Bone and Mineral Research 1997;12:641-51. 40. Sommers MB, Roth C, Hall H, et al. A laboratory model to evaluate cutout resistance of implants for pertrochanteric fracture fixation. J Orthop Trauma 2004;18:361-8. 41. Muller MF NS, Koch P, Schatzker J. . The comprehensive classification of fractures of the long bones.: Springer-Verlag, 1990:116-21. 42. Mayhew PM, Thomas CD, Clement JG, et al. Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 2005;366:129-35. 43. Seebeck J, Goldhahn J, Stadele H, et al. Effect of cortical thickness and cancellous bone density on the holding strength of internal fixator screws. J Orthop Res 2004;22:1237-42. 44. HerbertT Kaufer LSM, David Sonstegard. Stable Fixation of Intertrochanteric Fractures: A BIOMECHANICAL EVALUATION. J. Bone Joint Surg. Am 1974;56:899 - 907. 45. Sim E, Schmiedmayer HB, Lugner P. Mechanical factors responsible for the obstruction of the gliding mechanism of a dynamic hip screw for stabilizing pertrochanteric femoral fractures. J Trauma 2000;49:995-1001. 46. Bowman SM, Guo XE, Cheng DW, et al. Creep contributes to the fatigue behavior of bovine trabecular bone. J Biomech Eng 1998;120:647-54. 47. Bayraktar HH, Morgan EF, Niebur GL, et al. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech 2004;37:27-35. 48. Elder S, Frankenburg E, Goulet J, et al. Biomechanical evaluation of calcium phosphate cement-augmented fixation of unstable intertrochanteric fractures. J Orthop Trauma 2000;14:386-93. 49. Wu CC, Shih CH, Lee MY, et al. Biomechanical analysis of location of lag screw of a dynamic hip screw in treatment of unstable intertrochanteric fracture. J Trauma 1996;41:699-702. 50. Ohman C, Baleani M, Perilli E, et al. Mechanical testing of cancellous bone from the femoral head: Experimental errors due to off-axis measurements. J Biomech 2007;40:2426-33. 51. O'Brien PJ. The Sliding Hip Screw Is Better Than Short Femoral Nails for Extracapsular Femoral Fracture. J. Bone Joint Surg. Am 2004;86-A:1836. 52. Davis TR, Sher JL, Horsman A, et al. Intertrochanteric femoral fractures. Mechanical failure after internal fixation. J Bone Joint Surg Br 1990;72:26-31. 53. Kotecha A, Meyers C. Re: The use of computer navigation in performing minimally invasive surgery for intertrochanteric hip fracture--the experience in Singapore. Injury 2007;38:870; author reply -1. 54. Rokito AS, Koval KJ, Zuckerman JD. Technical pitfalls in the use of the sliding hip screw for fixation of intertrochanteric hip fractures. Contemp Orthop 1993;26:349-56. 55. Schipper IB, Steyerberg EW, Castelein RM, et al. Treatment of unstable trochanteric fractures. Randomised comparison of the gamma nail and the proximal femoral nail. J Bone Joint Surg Br 2004;86:86-94. 56. Laros GS. The role of osteoporosis in intertrochanteric fractures. Orthop Clin North Am 1980;11:525-37. 57. Kendoff D, Citak M, Gardner MJ, et al. Improved accuracy of navigated drilling using a drill alignment device. J Orthop Res 2007;25:951-7. 58. Rajasekaran S, Kamath V, Shetty AP. Intraoperative iso-C three-dimensional navigation in excision of spinal osteoid osteomas. Spine 2008;33:E25-9. 59. Novak EJ, Silverstein MD, Bozic KJ. The cost-effectiveness of computer-assisted navigation in total knee arthroplasty. J Bone Joint Surg Am 2007;89:2389-97. 60. Lekovic GP, Potts EA, Karahalios DG, et al. A comparison of two techniques in image-guided thoracic pedicle screw placement: a retrospective study of 37 patients and 277 pedicle screws. J Neurosurg Spine 2007;7:393-8. 61. Liebergall M, Ben-David D, Weil Y, et al. Computerized navigation for the internal fixation of femoral neck fractures. J Bone Joint Surg Am 2006;88:1748-54. 62. Langlotz F. Potential pitfalls of computer aided orthopedic surgery. Injury 2004;35 Suppl 1:S-A17-23. 63. Theocharopoulos N, Perisinakis K, Damilakis J, et al. Occupational exposure from common fluoroscopic projections used in orthopaedic surgery. J Bone Joint Surg Am 2003;85-A:1698-703. 64. Giannoudis PV, McGuigan J, Shaw DL. Ionising radiation during internal fixation of extracapsular neck of femur fractures. Injury 1998;29:469-72. 65. Leidig G, Minne HW, Sauer P, et al. A study of complaints and their relation to vertebral destruction in patients with osteoporosis. Bone Miner 1990;8:217-29. 66. Nevitt MC, Ettinger B, Black DM, et al. The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 1998;128:793-800. 67. Kado DM, Duong T, Stone KL, et al. Incident vertebral fractures and mortality in older women: a prospective study. Osteoporos Int 2003;14:589-94. 68. Leech JA, Dulberg C, Kellie S, et al. Relationship of lung function to severity of osteoporosis in women. Am Rev Respir Dis 1990;141:68-71. 69. Pluijm SM, Tromp AM, Smit JH, et al. Consequences of vertebral deformities in older men and women. J Bone Miner Res 2000;15:1564-72. 70. Ross PD, Davis JW, Epstein RS, et al. Pain and disability associated with new vertebral fractures and other spinal conditions. J Clin Epidemiol 1994;47:231-9. 71. Belkoff SM, Mathis JM, Fenton DC, et al. An ex vivo biomechanical evaluation of an inflatable bone tamp used in the treatment of compression fracture. Spine 2001;26:151-6. 72. Molloy S, Mathis JM, Belkoff SM. The effect of vertebral body percentage fill on mechanical behavior during percutaneous vertebroplasty. Spine 2003;28:1549-54. 73. Tohmeh AG, Mathis JM, Fenton DC, et al. Biomechanical efficacy of unipedicular versus bipedicular vertebroplasty for the management of osteoporotic compression fractures. Spine 1999;24:1772-6. 74. Bai B, Jazrawi LM, Kummer FJ, et al. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fractures. Spine 1999;24:1521-6. 75. Belkoff SM, Maroney M, Fenton DC, et al. An in vitro biomechanical evaluation of bone cements used in percutaneous vertebroplasty. Bone 1999;25:23S-6S. 76. Belkoff SM, Mathis JM, Erbe EM, et al. Biomechanical evaluation of a new bone cement for use in vertebroplasty. Spine 2000;25:1061-4. 77. Dean JR, Ison KT, Gishen P. The strengthening effect of percutaneous vertebroplasty. Clin Radiol 2000;55:471-6. 78. Belkoff SM, Mathis JM, Jasper LE, et al. The biomechanics of vertebroplasty. The effect of cement volume on mechanical behavior. Spine 2001;26:1537-41. 79. Belkoff SM, Mathis JM, Jasper LE, et al. An ex vivo biomechanical evaluation of a hydroxyapatite cement for use with vertebroplasty. Spine 2001;26:1542-6. 80. Heini PF, Berlemann U, Kaufmann M, et al. Augmentation of mechanical properties in osteoporotic vertebral bones--a biomechanical investigation of vertebroplasty efficacy with different bone cements. Eur Spine J 2001;10:164-71. 81. Higgins KB, Harten RD, Langrana NA, et al. Biomechanical effects of unipedicular vertebroplasty on intact vertebrae. Spine 2003;28:1540-7; discussion 8. 82. Tomita S, Molloy S, Jasper LE, et al. Biomechanical comparison of kyphoplasty with different bone cements. Spine 2004;29:1203-7. 83. Steens J, Verdonschot N, Aalsma AM, et al. The influence of endplate-to-endplate cement augmentation on vertebral strength and stiffness in vertebroplasty. Spine 2007;32:E419-22. 84. Furtado N, Oakland RJ, Wilcox RK, et al. A biomechanical investigation of vertebroplasty in osteoporotic compression fractures and in prophylactic vertebral reinforcement. Spine 2007;32:E480-7. 85. Cotten A, Dewatre F, Cortet B, et al. Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology 1996;200:525-30. 86. Wenger M, Markwalder TM. Cement leakage and the need for prophylactic fenestration of the spinal canal during vertebroplasty. J Bone Joint Surg Am 2002;84-A:689; author reply -90. 87. Baroud G, Crookshank M, Bohner M. High-viscosity cement significantly enhances uniformity of cement filling in vertebroplasty: an experimental model and study on cement leakage. Spine 2006;31:2562-8. 88. Loeffel M, Ferguson SJ, Nolte LP, et al. Vertebroplasty: experimental characterization of polymethylmethacrylate bone cement spreading as a function of viscosity, bone porosity, and flow rate. Spine 2008;33:1352-9. 89. Marden FA, Putman CM. Cement-embolic stroke associated with vertebroplasty. AJNR Am J Neuroradiol 2008;29:1986-8. 90. Chen JK, Lee HM, Shih JT, et al. Combined extraforaminal and intradiscal cement leakage following percutaneous vertebroplasty. Spine 2007;32:E358-62. 91. Teng MM, Cheng H, Ho DM, et al. Intraspinal leakage of bone cement after vertebroplasty: a report of 3 cases. AJNR Am J Neuroradiol 2006;27:224-9. 92. Chen YJ, Tan TS, Chen WH, et al. Intradural cement leakage: a devastatingly rare complication of vertebroplasty. Spine 2006;31:E379-82. 93. Schmidt R, Cakir B, Mattes T, et al. Cement leakage during vertebroplasty: an underestimated problem? Eur Spine J 2005;14:466-73. 94. Monticelli F, Meyer HJ, Tutsch-Bauer E. Fatal pulmonary cement embolism following percutaneous vertebroplasty (PVP). Forensic Sci Int 2005;149:35-8. 95. Stricker K, Orler R, Yen K, et al. Severe hypercapnia due to pulmonary embolism of polymethylmethacrylate during vertebroplasty. Anesth Analg 2004;98:1184-6, table of contents. 96. Scroop R, Eskridge J, Britz GW. Paradoxical cerebral arterial embolization of cement during intraoperative vertebroplasty: case report. AJNR Am J Neuroradiol 2002;23:868-70. 97. Lee BJ, Lee SR, Yoo TY. Paraplegia as a complication of percutaneous vertebroplasty with polymethylmethacrylate: a case report. Spine 2002;27:E419-22. 98. Harrington KD. Major neurological complications following percutaneous vertebroplasty with polymethylmethacrylate : a case report. J Bone Joint Surg Am 2001;83-A:1070-3. 99. Moreland DB, Landi MK, Grand W. Vertebroplasty: techniques to avoid complications. Spine J 2001;1:66-71. 100. Cotten A, Boutry N, Cortet B, et al. Percutaneous vertebroplasty: state of the art. Radiographics 1998;18:311-20; discussion 20-3. 101. Chadha M, Balain B, Maini L, et al. Pedicle morphology of the lower thoracic, lumbar, and S1 vertebrae: an Indian perspective. Spine 2003;28:744-9. 102. Datir SP, Mitra SR. Morphometric study of the thoracic vertebral pedicle in an Indian population. Spine 2004;29:1174-81. 103. Graham J, Ahn C, Hai N, et al. Effect of bone density on vertebral strength and stiffness after percutaneous vertebroplasty. Spine 2007;32:E505-11. 104. Rhyne A, 3rd, Banit D, Laxer E, et al. Kyphoplasty: report of eighty-two thoracolumbar osteoporotic vertebral fractures. J Orthop Trauma 2004;18:294-9. 105. Ledlie JT, Renfro M. Balloon kyphoplasty: one-year outcomes in vertebral body height restoration, chronic pain, and activity levels. J Neurosurg 2003;98:36-42. 106. Nussbaum DA, Gailloud P, Murphy K. A review of complications associated with vertebroplasty and kyphoplasty as reported to the Food and Drug Administration medical device related web site. J Vasc Interv Radiol 2004;15:1185-92. 107. Ortiz AO, Natarajan V, Gregorius DR, et al. Significantly reduced radiation exposure to operators during kyphoplasty and vertebroplasty procedures: methods and techniques. AJNR Am J Neuroradiol 2006;27:989-94. 108. Ananthakrishnan D, Berven S, Deviren V, et al. The effect on anterior column loading due to different vertebral augmentation techniques. Clin Biomech (Bristol, Avon) 2005;20:25-31. 109. Trout AT, Kallmes DF, Kaufmann TJ. New fractures after vertebroplasty: adjacent fractures occur significantly sooner. AJNR Am J Neuroradiol 2006;27:217-23. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45146 | - |
| dc.description.abstract | 骨質疏鬆所引起的骨折是骨科醫師執行手術的大宗。當面對這一群患者的手術時,往往會遭遇到許多困難及挑戰。在這幾年的研究當中,我們嘗試著選擇了幾項或許可以改進的部分加以研究。其結果在第二至第六章來呈現。本論文包括兩大部份: 第一部分嘗試著解決近端股骨轉子間骨折困難固定的問題以在手術當中如何改善螺釘定位的問題;第二部分嘗試改進椎體成型術的一些手術步驟,希望能減少骨水泥溢流的機會。
人體屍骨是用來作為生物力學研究上最好的材料。因為它的性質與構造,符合解剖學上的真實性。但是由於人體屍骨非常的昂貴而且取之不易,基於生物力學測試上的需要,在第二章中我們我們嘗試著利用豬隻的股骨進行生物力學的測試。但是實驗結果顯示,其生物力學的反應與我們所預期的骨質疏鬆症之反應截然不同。其原因可能是豬隻的股骨強度太高所致。從這個實驗,我們可得到一些結論: 即豬股骨不宜拿來做骨鬆症的生物力學模擬實驗。由此推論應該還可以再進一步推廣至其他研究範圍,諸如脊椎骨以及四肢骨折之骨鬆症生物力學研究,還是使用具有骨質疏鬆特質的材料為宜。 由於骨質疏鬆之故,螺釘與股骨頭接合力減少,因此轉子間骨折之固定有時容易失敗。為了增加螺釘的固定效果,在第三章中,我們改良了股骨滑動螺釘的設計,把螺釘的直徑加大,以容許橫向互鎖式螺絲穿過而可以固定在股骨頸內側。如此可以增加螺釘對近端骨片固定的效果。由於第二章研究的結果,我們知道豬股骨並不適用於骨鬆症的研究,而且人體屍骨獲得不易。為了實驗的需要,我們採用低強度的人造假骨來模擬骨鬆症股骨轉子間的骨折。經實驗結果顯示,如果在股骨滑動螺釘上加上橫向互鎖式螺絲,可以明顯的加強螺釘固定效果。因此如果臨床上有機會採用本法,或許能減少手術失敗的機率。 在股骨轉子間骨折手術時,螺釘尖端應該放置於股骨頭中心位置,而且越靠近軟骨下 (subchondral bone)越好。如此螺釘能與較硬的骨質結合,手術成功的機會較高。反之如果螺釘尖端未能打在股骨頭的中心點,則螺釘位移或穿出於股骨頭的機會增加。在美國每一年會有二十五萬人次近端股骨骨折的新病例發生。施行這種手術會有一定的失敗比例,如果失敗率以百分之五來計算,那麼ㄧ年就可能產生數千例手術失敗的個案。推究手術失敗的因素,最多還是醫師未能將螺釘打在理想的位置。因此如果有好的辦法,能增加螺釘放置的準確性,那麼手術失敗的個案就可以顯著的減少。為了以上的目的,在第四章中,我們設計了一種新的骨髓內瞄準裝置,希望能增加螺釘放置的準確度。在兩年的期間裡面,我們以六十個患者作為樣本,分兩組進行手術。ㄧ組以傳統方法利用骨折床復位及手術。第二組以新設計的骨髓內瞄準器 (intramedullary guide)協助螺釘的定位。結果發現,如果以骨髓內瞄準器輔助手術定位,可以顯著的增加螺釘定位的準確性。由於螺釘可以被打在較佳的位置,因此可以預期螺釘位移及手術失敗的機會也可以大幅度的降低。以骨髓內瞄準器輔助手術定位,也可以大幅降低手術中X-光透視的時間,這樣對於降低醫事人員以及患者的幅射劑量都很有幫助。以骨髓內瞄準器輔助手術定位,手術的時間也可以大幅度的縮短,這樣對於減低老年患者手術的併發症也有所幫助。 第五章的研究與椎體成型術有關。由於人口老化的關係,人類的骨質會隨著年紀的增長而逐漸的流失。而影響所及,脊椎骨骨折已成為人類最常見的骨折之一。目前常用的手術方法是椎體成型術(vertebroplasty)。骨水泥在低黏度高壓力的情況下注入椎體內。但是這種手術方式常會有骨水泥溢流的情形發生。如果溢流至心肺系統,有可能造成心肺衰竭;如果溢流至脊椎腔內則可能造成神經損傷。本篇研究係利用迷你手術(mini invasive open surgery)方式將骨水泥的黏度提高至黏塑性情況下送入椎體內。臨床上 6 個患者術後疼痛的情形均大幅度的減低,骨水泥也沒有溢流的情況發生。我們進一步行生物力學實驗,以證實此手術方法有效。實驗採用七個人體胸椎行壓迫性骨折以及黏塑性椎體成型術(viscoplastic bone cement vertebroplasty)。由實驗數據顯示,骨水泥以黏塑性狀態下灌注至椎體內,可以有效的增強椎體強度。因此臨床上所觀察到手術後患者的疼痛症狀得到緩解,可以由生物力學實驗的結果加以說明。由試樣的切片觀察,骨水泥與椎體骨小樑之間有很好的結合,因此黏塑性骨水泥椎體成型術可說是一種安全經濟有效的手術方式。或許可以成為傳統椎體成型術或汽球擴張椎體成型術的另一種可能替代手術方案。 總之,我們嘗試著去改良一些在骨質疏鬆症手術時所遭遇到的一些問題,希望本篇的研究結果對於後續臨床上的工作以及未來的研究會有一些的幫忙。 | zh_TW |
| dc.description.abstract | During the past few years, several existing problems in the treatment of osteoporotic fractures were selected for study. The results are presented in chapter two to six. This essay consists of two major parts. For the first part, the task of fixation failure and aiming problems for the treatment of proximal femoral fractures were studied. In the second part, we concentrated on improving the techniques of vertebroplasty to avoid cement leakage.
For the biomechanical study of proximal femoral fractures, a proper specimen is needed for testing. Because the source of cadaver specimens is scarce and the preservation of specimens is difficult.We tried to apply a porcine model to perform the mechanical test in the pilot study which is discussed in chapter 2. Unfortunately, the result was disappointing; the non-osteoporotic specimen is so tough that its performance is completely different than we had expected. So, it may not be appropriate to use non-porotic specimens to simulate the osteoporotic proximal femoral fractures. This conclusion may be expanded to other fields, such as spinal or skeletal biomechanical studies. Owing to osteoporosis, the internal fixation of proximal femoral intertrochanteric fractures can easily be failed. In order to strengthen the fixation effect in the surgery, in chapter 3 we modified the traditional Dynamic Hip Screw by increasing the diameter of the lag screw. The diameter of the lag screw is enlarged so that two transfixing screws are allowed to pass through it and be affixed to the femoral neck. We applied weak saw bone to simulate the osteoporotic proximal femoral fracture and fixation. The biomechanical results of this study showed that the strengthening effect of the modified lag screw can be significant. Because malposition of lag screw is one of the most important reasons of fixation failure, the increase in accuracy of the lag screw position is extremely important. Because the lag screw tip can be incorporated with the strong subchondral bone, and hence the chance of lag screw migration can be decreased. In order to increase the accuracy of surgery, in chapter 4, we have designed a new intramedullary guiding device. A clinical test was performed to validate the feasibility of using the guide. From the results of the study, the accuracy of the lag screw placement can be increased; so the expected fixation failure would be decreased. The fluoroscopy time can be decreased as well which is helpful for the patient and medical personnel. Other benefits of the technique are an increase in operation efficiency and a decrease in operation time as well. Vertebroplasty is commonly used in the treatment of unhealed painful vertebral fractures. The cement is injected into the fractured vertebra in low viscosity and high pressure, where cement leakage is common. Severe complications can result if cement leaks into the spinal canal and pulmonary area. To reduce the above complications, Kyphoplasty was developed; cement is injected at lower pressure and higher viscosity. However, the material cost of Kyphoplasty is high and there exists a risk of bone fragment extrusion into the spinal canal while the balloon is inflated. To avoid the above potential complications in chapter 5, vertebroplasty is performed with mini invasive open surgery. A small wound and a cavity is created at the vertebral body by a curate. When the cement is in the state of viscoplastisity, it is delivered into the cavity of the vertebral body and then tamped for compactness. We have successful experiences in 6 cases. Because cement is delivered in a high viscous state, the risk of leakage is extremely low and pain relief is excellent in all cases. To validate the biomechanical effectiveness of the above technique; we performed a biomechanical test in seven human cadaveric thoracic vertebrae. From the experimental data, the viscoplastic state bone cement vertebroplasty can restore the strength of a fractured vertebra. The restored strength can explain the clinical observed pain relief of the patient. From the macroscopic view of the sliced specimen, there was good bonding between bone cement and trabecular bone. In summary, we tried to improve the technique and solve some of the problems which are encountered in the treatment of osteoporotic proximal femoral fractures and spine compression fractures. We hope these works do help increase the efficacy of surgery and decrease complications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:06:18Z (GMT). No. of bitstreams: 1 ntu-99-D90548015-1.pdf: 1340523 bytes, checksum: 0bfd643e5613aba556ff0e731a8d5c4f (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書 …………………………………………………………………i
誌謝 …………………………………………………………………………………ii 中文摘要 ………………………………………………………………………… iii 英文摘要 …………………………………………………………………………vi 第一章 序論 ……………………………………………………………………1 1.1.1. 前言………………………………………………………………………1 1.2.1. 骨鬆症及近端股骨轉子間骨折 ………………………………………1 1.2.2. 近端股骨轉子間骨折治療方式之沿革…………………………………2 1.2.3. 股骨轉子間骨折治療失敗的原因………………………………………3 1.2.4. 新型股骨頸固定滑動股骨螺釘的運用 ………………………………6 1.2.5. 新型骨髓內瞄準器的運用 …………………………………………6 1.2.6. 實驗目的(第一部份) …………………………………………………6 1.3.1. 脊椎骨之解剖及骨鬆症骨折 ……………………………………7 1.3.2. 脊椎壓迫性骨折治療方式之沿革 ……………………………………8 1.3.3. 黏塑性椎體成型術 ………………………………………………10 1.3.4. 實驗目的(第二部份) …………………………………………………10 第一部份 骨鬆症股骨轉子間骨折之研究…………………………………………11 第二章 股骨轉子間骨折生物力學研究-豬股骨模型 …………………………11 2.1. 前言 ……………………………………………………………………11 2.2. 材料與方法 ……………………………………………………………12 2.3. 結果 ……………………………………………………………………14 2.4. 討論 ……………………………………………………………………15 第三章 新型互鎖式股骨頸固定滑動螺釘生物力學研究 ………………………17 3.1. 前言 ……………………………………………………………………17 3.2. 材料與方法 ……………………………………………………………19 3.3. 結果 ………………………………………………………………22 3.4. 討論 …………………………………………………………………26 第四章 新型骨髓內瞄準器用於股骨轉子間骨折手術能增進手術之準確性 …30 4.1. 前言 ……………………………………………………………………30 4.2. 材料與方法 ……………………………………………………………32 4.3. 結果 ……………………………………………………………………38 4.4. 討論 ……………………………………………………………………40 第二部份 骨鬆症脊椎壓迫性骨折之研究 ………………………………………43 第五章 以黏塑性骨水泥治療脊椎壓迫性骨折-生物力學實驗以及臨床報告 …………………………………………………………………43 5.1. 前言 ……………………………………………………………………43 5.2. 材料與方法 ……………………………………………………………44 5.3. 結果 ………………………… …………………………………………49 5.4. 討論 ……………………………………………………………………55 第六章 討論及研究 ………………………………………………………………66 6.1. 目前研究待改進之處以及未來研究之建議 …………………………66 6.2. 結論 ……………………………………………………………………67 6.3.未來可能的發展 …………………………………………………………68 參考文獻 ……………………………………………………………………………69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 骨質疏鬆 | zh_TW |
| dc.subject | 螺釘位移 | zh_TW |
| dc.subject | 椎體成型術 | zh_TW |
| dc.subject | 脊椎骨折 | zh_TW |
| dc.subject | 股骨轉子間骨折 | zh_TW |
| dc.subject | vertebroplasty | en |
| dc.subject | osteoporosis | en |
| dc.subject | femoral intertrochanteric fracture | en |
| dc.subject | lag screw cutout | en |
| dc.subject | spine compression fracture | en |
| dc.title | 由骨質疏鬆所導致股骨及脊椎骨骨折之研究 | zh_TW |
| dc.title | The Study of Osteoporosis Induced Femoral and Vertebral Fractures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 趙振綱(Ching-Kong Chao),林晉(Jinn Kin),孫瑞昇(Jui-Sheng Sun),陳文哲(Wen-Jer Chen),曾永輝(Yang-Hwei Tsuang),楊曙華(Shu-Hwa Yang) | |
| dc.subject.keyword | 骨質疏鬆,股骨轉子間骨折,螺釘位移,脊椎骨折,椎體成型術, | zh_TW |
| dc.subject.keyword | osteoporosis,femoral intertrochanteric fracture,lag screw cutout,spine compression fracture,vertebroplasty, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-02-08 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
