請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45143
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃火鍊(Fore-Lien Huang) | |
dc.contributor.author | Chia-Hsiung Cheng | en |
dc.contributor.author | 鄭嘉雄 | zh_TW |
dc.date.accessioned | 2021-06-15T04:06:11Z | - |
dc.date.available | 2010-02-24 | |
dc.date.copyright | 2010-02-24 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-02-08 | |
dc.identifier.citation | References
Agaisse H, Perrimon N (2004) The roles of JAK/STAT signaling in Drosophila immune responses. Immunol Rev 198: 72-82 Agaisse H, Petersen UM, Boutros M, Mathey-Prevot B, Perrimon N (2003) Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury. Dev Cell 5(3): 441-450 Aoki N, Matsuda T (2000) A cytosolic protein-tyrosine phosphatase PTP1B specifically dephosphorylates and deactivates prolactin-activated STAT5a and STAT5b. J Biol Chem 275(50): 39718-39726 Aravind L, Koonin EV (2000) SAP - a putative DNA-binding motif involved in chromosomal organization. Trends Biochem Sci 25(3): 112-114 Arbouzova NI, Zeidler MP (2006) JAK/STAT signalling in Drosophila: insights into conserved regulatory and cellular functions. Development 133(14): 2605-2616 Arora T, Liu B, He H, Kim J, Murphy TL, Murphy KM, Modlin RL, Shuai K (2003) PIASx is a transcriptional co-repressor of signal transducer and activator of transcription 4. J Biol Chem 278(24): 21327-21330 Baeg GH, Zhou R, Perrimon N (2005) Genome-wide RNAi analysis of JAK/STAT signaling components in Drosophila. Genes Dev 19(16): 1861-1870 Barillas-Mury C, Han YS, Seeley D, Kafatos FC (1999) Anopheles gambiae Ag-STAT, a new insect member of the STAT family, is activated in response to bacterial infection. EMBO J 18(4): 959-967 Binari R, Perrimon N (1994) Stripe-specific regulation of pair-rule genes by hopscotch, a putative Jak family tyrosine kinase in Drosophila. Genes Dev 8(3): 300-312 Boutros M, Agaisse H, Perrimon N (2002) Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev Cell 3(5): 711-722 Brown S, Hu N, Hombria JC (2001) Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless. Curr Biol 11(21): 1700-1705 Cameron IR, Possee RD (1989) Conservation of polyhedrin gene promoter function between Autographa californica and Mamestra brassicae nuclear polyhedrosis viruses. Virus Res 12: 183-199 Chang MS, Chang GD, Leu JH, Huang FL, Chou CK, Huang CJ, Lo TB (1996) Expression, characterization, and genomic structure of carp JAK1 kinase gene. DNA Cell Biol 15(10): 827-844 Chen HW, Chen X, Oh SW, Marinissen MJ, Gutkind JS, Hou SX (2002) mom identifies a receptor for the Drosophila JAK/STAT signal transduction pathway and encodes a protein distantly related to the mammalian cytokine receptor family. Genes Dev 16(3): 388-398 Chen WY, Ho KC, Leu JH, Liu KF, Wang HC, Kou GH, Lo CF (2008) WSSV infection activates STAT in shrimp. Dev Comp Immunol 32(10): 1142-1150 Chen Y, Wen R, Yang S, Schuman J, Zhang EE, Yi T, Feng GS, Wang D (2003) Identification of Shp-2 as a Stat5A phosphatase. J Biol Chem 278(19): 16520-16527 Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, Shuai K (1997) Specific inhibition of Stat3 signal transduction by PIAS3. Science 278(5344): 1803-1805 Copf T, Schroder R, Averof M (2004) Ancestral role of caudal genes in axis elongation and segmentation. Proc Natl Acad Sci U S A 101(51): 17711-17715 Deryckere F, Gannon F (1994) A one-hour minipreparation technique for extraction of DNA-binding proteins from animal tissues. Biotechniques 16(3): 405 Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D, Hetru C, Hoffmann JA, Imler JL (2005) The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila. Nat Immunol 6(9): 946-953 Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K, Matsumoto A, Tanimura S, Ohtsubo M, Misawa H, Miyazaki T, Leonor N, Taniguchi T, Fujita T, Kanakura Y, Komiya S, Yoshimura A (1997) A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387(6636): 921-924 Gilbert MM, Weaver BK, Gergen JP, Reich NC (2005) A novel functional activator of the Drosophila JAK/STAT pathway, unpaired2, is revealed by an in vivo reporter of pathway activation. Mech Dev 122(7-8): 939-948 Greenhalgh CJ, Hilton DJ (2001) Negative regulation of cytokine signaling. J Leukoc Biol 70(3): 348-356 Harrison DA, McCoon PE, Binari R, Gilman M, Perrimon N (1998) Drosophila unpaired encodes a secreted protein that activates the JAK signaling pathway. Genes Dev 12(20): 3252-3263 Hilton DJ (1999) Negative regulators of cytokine signal transduction. Cell Mol Life Sci 55(12): 1568-1577 Hombria JC, Brown S (2002) The fertile field of Drosophila Jak/STAT signalling. Curr Biol 12(16): R569-575 Hou SX, Zheng Z, Chen X, Perrimon N (2002) The Jak/STAT pathway in model organisms: emerging roles in cell movement. Dev Cell 3(6): 765-778 Hou XS, Melnick MB, Perrimon N (1996) Marelle acts downstream of the Drosophila HOP/JAK kinase and encodes a protein similar to the mammalian STATs. Cell 84(3): 411-419 Ihle JN, Kerr IM (1995) Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet 11(2): 69-74 John S, Vinkemeier U, Soldaini E, Darnell JE, Jr., Leonard WJ (1999) The significance of tetramerization in promoter recruitment by Stat5. Mol Cell Biol 19(3): 1910-1918 Kiger AA, Jones DL, Schulz C, Rogers MB, Fuller MT (2001) Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294(5551): 2542-2545 Klingmuller U, Lorenz U, Cantley LC, Neel BG, Lodish HF (1995) Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80(5): 729-738 Kolkovski S, Curnow J, King J (2004) Intensive rearing system for fish larvae research II - Artemia hatching and enriching system. Aquacultural Engineering 31(3-4): 309-317 Kwon EJ, Park HS, Kim YS, Oh EJ, Nishida Y, Matsukage A, Yoo MA, Yamaguchi M (2000) Transcriptional regulation of the Drosophila raf proto-oncogene by Drosophila STAT during development and in immune response. J Biol Chem 275(26): 19824-19830 Leu JH, Chang MS, Yao CW, Chou CK, Chen ST, Huang CJ (1998) Genomic organization and characterization of the promoter region of the round-spotted pufferfish (Tetraodon fluviatilis) JAK1 kinase gene. Biochim Biophys Acta 1395(1): 50-56 Leu JH, Yan SJ, Lee TF, Chou CM, Chen ST, Hwang PP, Chou CK, Huang CJ (2000) Complete genomic organization and promoter analysis of the round-spotted pufferfish JAK1, JAK2, JAK3, and TYK2 genes. DNA Cell Biol 19(7): 431-446 Liang P, MacRae TH (1999) The synthesis of a small heat shock/alpha-crystallin protein in Artemia and its relationship to stress tolerance during development. Dev Biol 207(2): 445-456 Lin CC, Chou CM, Hsu YL, Lien JC, Wang YM, Chen ST, Tsai SC, Hsiao PW, Huang CJ (2004) Characterization of two mosquito STATs, AaSTAT and CtSTAT. Differential regulation of tyrosine phosphorylation and DNA binding activity by lipopolysaccharide treatment and by Japanese encephalitis virus infection. J Biol Chem 279(5): 3308-3317 Liu B, Gross M, ten Hoeve J, Shuai K (2001) A transcriptional corepressor of Stat1 with an essential LXXLL signature motif. Proc Natl Acad Sci U S A 98(6): 3203-3207 Liu B, Liao J, Rao X, Kushner SA, Chung CD, Chang DD, Shuai K (1998) Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci U S A 95(18): 10626-10631 Liu WJ, Chang YS, Wang AH, Kou GH, Lo CF (2007) White spot syndrome virus annexes a shrimp STAT to enhance expression of the immediate-early gene ie1. J Virol 81(3): 1461-1471 MacRae TH (2003) Molecular chaperones, stress resistance and development in Artemia franciscana. Semin Cell Dev Biol 14(5): 251-258 Marques A, Dhont J, Sorgeloos P, Bossier P (2006) Immunostimulatory nature of beta-glucans and baker's yeast in gnotobiotic Artemia challenge tests. Fish Shellfish Immunol 20(5): 682-692 Marques A, Dinh T, Ioakeimidis C, Huys G, Swings J, Verstraete W, Dhont J, Sorgeloos P, Bossier P (2005) Effects of bacteria on Artemia franciscana cultured in different gnotobiotic environments. Appl Environ Microbiol 71(8): 4307-4317 Mowen KA, Tang J, Zhu W, Schurter BT, Shuai K, Herschman HR, David M (2001) Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. Cell 104(5): 731-741 Muller P, Kuttenkeuler D, Gesellchen V, Zeidler MP, Boutros M (2005) Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature 436(7052): 871-875 Myers MP, Andersen JN, Cheng A, Tremblay ML, Horvath CM, Parisien JP, Salmeen A, Barford D, Tonks NK (2001) TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J Biol Chem 276(51): 47771-47774 O'Connell PA, Pinto DM, Chisholm KA, MacRae TH (2006) Characterization of the microtubule proteome during post-diapause development of Artemia franciscana. Biochim Biophys Acta 1764(5): 920-928 Parisien JP, Lau JF, Rodriguez JJ, Ulane CM, Horvath CM (2002) Selective STAT protein degradation induced by paramyxoviruses requires both STAT1 and STAT2 but is independent of alpha/beta interferon signal transduction. J Virol 76(9): 4190-4198 Penninger JM, Irie-Sasaki J, Sasaki T, Oliveira-dos-Santos AJ (2001) CD45: new jobs for an old acquaintance. Nat Immunol 2(5): 389-396 Sasaki A, Yasukawa H, Shouda T, Kitamura T, Dikic I, Yoshimura A (2000) CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J Biol Chem 275(38): 29338-29347 Schindler C, Darnell JE, Jr. (1995) Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem 64: 621-651 Schindler U, Wu P, Rothe M, Brasseur M, McKnight SL (1995) Components of a Stat recognition code: evidence for two layers of molecular selectivity. Immunity 2(6): 689-697. Sliva D, Haldosen LA (1996) STAT-like DNA-binding activity in Spodoptera frugiperda cells. Biochem Biophys Res Commun 225(2): 562-569 Smith GE, Summers MD, Fraser MJ (1983) Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 3: 2156-2165 Soltanian S (2007) Protection of gnotobiotic Artemia against Vibrio campbellii using baker's yeast strains and extracts. PhD thesis, Ghent University, Belgium Soltanian S, Francois JM, Dhont J, Arnouts S, Sorgeloos P, Bossier P (2007a) Enhanced disease resistance in Artemia by application of commercial beta-glucans sources and chitin in a gnotobiotic Artemia challenge test. Fish Shellfish Immunol 23(6): 1304-1314 Soltanian S, Thai TQ, Dhont J, Sorgeloos P, Bossier P (2007b) The protective effect against Vibrio campbellii in Artemia nauplii by pure beta-glucan and isogenic yeast cells differing in beta-glucan and chitin content operated with a source-dependent time lag. Fish Shellfish Immunol 23(5): 1003-1014 Sorgeloos P, Dhert P, Candreva P (2001) Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture 200(1-2): 147-159 Sung SC, Fan TJ, Chou CM, Leu JH, Hsu YL, Chen ST, Hsieh YC, Huang CJ (2003) Genomic structure, expression and characterization of a STAT5 homologue from pufferfish (Tetraodon fluviatilis). Eur J Biochem 270(2): 239-252 Sung YY, Ashame MF, Chen S, Macrae TH, Sorgeloos P, Bossier P (2009) Feeding Artemia franciscana (Kellogg) larvae with bacterial heat shock protein, protects from Vibrio campbellii infection. J Fish Dis 32(8): 675-685 Sung YY, Pineda C, MacRae TH, Sorgeloos P, Bossier P (2008) Exposure of gnotobiotic Artemia franciscana larvae to abiotic stress promotes heat shock protein 70 synthesis and enhances resistance to pathogenic Vibrio campbellii. Cell Stress Chaperones 13(1): 59-66 ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, David M, Shuai K (2002) Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol 22(16): 5662-5668 Tulina N, Matunis E (2001) Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science 294(5551): 2546-2549 Ulane CM, Rodriguez JJ, Parisien JP, Horvath CM (2003) STAT3 ubiquitylation and degradation by mumps virus suppress cytokine and oncogene signaling. J Virol 77(11): 6385-6393 Verschuere L, Heang H, Criel G, Sorgeloos P, Verstraete W (2000) Selected bacterial strains protect Artemia spp. from the pathogenic effects of Vibrio proteolyticus CW8T2. Appl Environ Microbiol 66(3): 1139-1146 Verschuere L, Rombaut G, Huys G, Dhont J, Sorgeloos P, Verstraete W (1999) Microbial control of the culture of Artemia juveniles through preemptive colonization by selected bacterial strains. Appl Environ Microbiol 65(6): 2527-2533 Watanabe S, Arai K (1996) Roles of the JAK-STAT system in signal transduction via cytokine receptors. Curr Opin Genet Dev 6(5): 587-596 Wawersik M, Milutinovich A, Casper AL, Matunis E, Williams B, Van Doren M (2005) Somatic control of germline sexual development is mediated by the JAK/STAT pathway. Nature 436(7050): 563-567 Wilks AF, Harpur AG, Kurban RR, Ralph SJ, Zurcher G, Ziemiecki A (1991) Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase. Mol Cell Biol 11(4): 2057-2065 Wu TR, Hong YK, Wang XD, Ling MY, Dragoi AM, Chung AS, Campbell AG, Han ZY, Feng GS, Chin YE (2002) SHP-2 is a dual-specificity phosphatase involved in Stat1 dephosphorylation at both tyrosine and serine residues in nuclei. J Biol Chem 277(49): 47572-47580 Yan R, Luo H, Darnell JE, Jr., Dearolf CR (1996) A JAK-STAT pathway regulates wing vein formation in Drosophila. Proc Natl Acad Sci U S A 93(12): 5842-5847 Yeh MS, Cheng CH, Chou CM, Hsu YL, Chu CY, Chen GD, Chen ST, Chen GC, Huang CJ (2008) Expression and characterization of two STAT isoforms from Sf9 cells. Dev Comp Immunol 32(7): 814-824 Yoshimura A (1998) The CIS family: negative regulators of JAK-STAT signaling. Cytokine Growth Factor Rev 9(3-4): 197-204 You M, Yu DH, Feng GS (1999) Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Mol Cell Biol 19(3): 2416-2424 Zeidler MP, Bach EA, Perrimon N (2000) The roles of the Drosophila JAK/STAT pathway. Oncogene 19(21): 2598-2606 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45143 | - |
dc.description.abstract | 在本論文中,我們選殖出豐年蝦的蛋白激酶JAK與轉錄因子STAT,經由胺基酸的序列比對,豐年蝦與果蠅的蛋白激酶,雖然只有19%的相同性及33%的相似性,但是包含有完整的七個蛋白激酶保留性區域(JAK homology domain, JH domain)。另外,豐年蝦與果蠅的轉錄因子,則有較高的30%相同性。由這些低相同性的結果推測,無脊椎動物中不同的物種,在其蛋白激酶與轉錄因子具有其特異性。RT-PCR分析的結果顯示,豐年蝦蛋白激酶與轉錄因子在發育過程中呈現持續性的表現,與果蠅的蛋白激酶與轉錄因子在發育過程中表現特性相同。另外,我們也將豐年蝦蛋白激酶的JH1區域接合到轉錄因子的碳端(C-terminal)末端,構築了持續性活化的轉錄因子,AfSTAT-JH1, 可自行活化其酪胺酸處(tyrosine residue),進而具有結合到果蠅Raf啟動子上的轉錄因子特定結合區域的能力。在SF9昆蟲細胞中,包含豐年蝦蛋白激酶和轉錄因子都具有轉錄活化(transactivation)果蠅Raf和totA啟動子的能力。然而,酪胺酸處磷酸化的活化態豐年蝦轉錄因子並未偵測到,經由細胞原位分析實驗顯示,大部份的豐年蝦轉錄因子都停留在細胞質中。我們的結果證實,包含蛋白激酶和轉錄因子都存在於豐年蝦的基因體中,將來對於研究JAK/STAT訊號傳遞路徑在豐年蝦的發育與免疫反應,提供了一個重要的基礎。 | zh_TW |
dc.description.abstract | In this study, we isolated and characterized both JAK and STAT genes from Artemia, Artemia franciscana. Although AfJAK showed only 19% identity (33% similarity) to the Drosophila Hop protein, AfJAK contained the characteristic JAK homology domain (JH domain) from JH1 to JH7. On the other hand, AfSTAT showed higher identity (30%) to Drosophila STAT (STAT92E). The low identities of AfJAK and SfSTAT to Drosophila Hop and STAT92E suggest that JAK and STAT proteins are unique in each different species of invertebrate. RT-PCR analysis showed that both AfJAK and AfSTAT transcripts were ubiquitously expressed in the embryo, which is similar to the expression patterns of Drosophila Hop and STAT92E mRNAs during development. In addition, we generated a constitutively active form of AfSTAT by fusing the JH1 domain of AfJAK to the C-terminal end of AfSTAT. This fusion protein, AfSTAT-JH1, autophosphorylated on its tyrosine residue and was able to bind to specific DNA motifs including the STAT-binding motifs in the Drosophila Raf promoter. Both AfJAK and AfSTAT proteins elicited the transactivation potential toward the fly Raf and totA promoter in Sf9 cells. However, tyrosine phosphorylation of AfSTAT was not detected, which is consistent with the cellular localization analysis that most AfSTAT proteins were in the cytoplasm. Our results demonstrate that both JAK and STAT are present in the genome of Artemia, which can serve as the basis for further investigations to explore the role of the JAK/STAT signal pathway in the development and immune response of brine shrimp. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:06:11Z (GMT). No. of bitstreams: 1 ntu-99-D93b43003-1.pdf: 4606597 bytes, checksum: 605e130be4d902b1f11a6d2916e3d5d3 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 中文摘要 1
Abstract 2 Abbreviation 4 Introduction 5 The importance of Artemia 5 The Life Cycle of Artemia 6 The immune responses in Artemia 6 The JAK/STAT signal pathway in mammals 7 The JAK protein family 8 The STAT protein family 8 Specific aims 16 Materials and Methods 17 Total RNA isolation and first-strand complementary (c)DNA synthesis 17 Cell culture 17 Preparation of nuclear extracts 18 Isolation of the JAK and STAT cDNA fragments of A. franciscana 18 Plasmid construction 19 Rapid amplification of cDNA ends (RACE) 20 RT-PCR 21 Sequence analysis and phylogenetic tree analysis 22 Isolation Drosophila totA promoter from genomic DNA 22 Expressions of AfJAK-HA, AfSTAT-HA, and AfSTAT-HA-JH1 in cultured cells 23 Western blot analysis 23 Subcellular localization and image analysis 24 Transactivation assay 24 Electrophoretic mobility shift assay (EMSA) 25 Results 26 Cloning and characterization of the AfJAK and AfSTAT genes 26 Phylogenetic analysis of the AfSTAT and AfJAK proteins 27 Expression profiles of the AfJAK and AfSTAT transcripts at different developmental stages 28 Expression and DNA-binding property of the AfSTAT-HA-JH1 fusion protein that is constitutively active in tyrosine phosphorylation 29 Both AfJAK and AfSTAT proteins displayed similar transactivation abilities toward the Drosophila Raf promoter in Sf9 cells 31 Both AfSTAT-HA and AfSTAT-HA-JH1 proteins displayed similar transactivation abilities toward the Drosophila totA promoter in Sf9 cells 33 Conclusion and perspective 41 Figures 43 Figure 1. Alignment of deduced amino acid sequences of AfJAK with those of human JAK family members and Drosophila hopscotch (Hop). 44 Figure 2. Alignment of deduced amino acid sequences of AfSTAT with those of STAT proteins from different species. 46 Figure 3. Phylogenetic tree analysis of JAK family proteins from invertebrate and vertebrate species. 48 Figure 4. Phylogenetic tree analysis of STAT proteins from various species. 50 Figure 5. Expression profiles of AfJAK and AfSTAT transcripts in embryos by RT-PCR. 51 Figure 6. Western blot analysis of total cell lysates from cells transfected with pCMV-AfSTAT-HA, pCMV-AfSTAT-HA-JH1, and mock as a negative control. 52 Figure 7. Intracellular localization of AfJAK-HA, AfSTAT-HA, and AfSTAT-JH1 in COS-1 cells by fluorescent microscopy. 54 Figure 8. Electrophoretic mobility shift assay (EMSA) of the AfSTAT-HA and AfSTAT-HA-JH1 fusion protein. 56 Figure 9. Transactivation abilities of the AfJAK and AfSTAT proteins toward a fly Raf promoter in Sf9 cells. 58 Figure 10. Western blot analysis of total cell lysates from cells transfected with pIZ/V5-AfJAK-HA, pIZ/V5-AfSTAT-HA, and pIZ/V5-AfSTAT-JH1. 59 Figure 11. Intracellular localization of AfJAK-HA, AfSTAT-HA, and AfSTAT-JH1 in Sf9 cells by fluorescent microscopy. 60 Figure 12. Transactivation abilities of the AfSTAT-HA and AfSTAT-HA-JH1 proteins toward a fly TotA promoter in Sf9 cells. 62 References 63 | |
dc.language.iso | en | |
dc.title | 豐年蝦蛋白激酶JAK與轉錄因子STAT基因表現與特性分析 | zh_TW |
dc.title | Expression and characterization of the JAK kinase and STAT protein from brine shrimp, Artemia franciscana | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-1 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 黃銓珍(Chang-Jen Huang) | |
dc.contributor.oralexamcommittee | 李明亭(Ming-Ting Lee),黃鵬鵬(Pung-Pung Hwang),黃聲蘋(Sheng-Ping L. Hwang) | |
dc.subject.keyword | 豐年蝦,蛋白激酶,轉錄因子,轉錄活化,免疫反應, | zh_TW |
dc.subject.keyword | JAK,STAT,DNA binding,Brine shrimp,Artemia franciscana, | en |
dc.relation.page | 70 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-02-08 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
顯示於系所單位: | 分子與細胞生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 4.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。