請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45136
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃榮山(Long-Sun Huang) | |
dc.contributor.author | Po-Chun Tsai | en |
dc.contributor.author | 蔡伯駿 | zh_TW |
dc.date.accessioned | 2021-06-15T04:05:54Z | - |
dc.date.available | 2010-02-11 | |
dc.date.copyright | 2010-02-11 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-02-08 | |
dc.identifier.citation | [1] P. Poredos, 'Endothelial dysfunction in the pathogenesis of atherosclerosis,' Clin Appl Thromb Hemost, vol. 7, pp. 276-280, Oct 2001.
[2] P. V. Targonski, P. O. Bonetti, G. M. Pumper, S. T. Higano, D. R. Holmes, Jr., and A. Lerman, 'Coronary endothelial dysfunction is associated with an increased risk of cerebrovascular events,' Circulation, vol. 107, pp. 2805-2809, Jun 10 2003. [3] K. Kathir and M. R. Adams, 'Endothelial dysfunction as a predictor of acute coronary syndromes,' Semin Vasc Med, vol. 3, pp. 355-362, Nov 2003. [4] D. L. Fry, 'Acute vascular endothelial changes associated with increased blood velocity gradients,' Circ Res, vol. 22, pp. 165-197, Feb 1968. [5] G. M. Walker, H. C. Zeringue, and D. J. Beebe, 'Microenvironment design considerations for cellular scale studies,' Lab Chip, vol. 4, pp. 91-97, Apr 2004. [6] M. S. Tsai, S. M. Hwang, Y. L. Tsai, F. C. Cheng, J. L. Lee, and Y. J. Chang, 'Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells,' Biol Reprod, vol. 74, pp. 545-551, Mar 2006. [7] P. De Coppi, G. Bartsch, Jr., M. M. Siddiqui, T. Xu, C. C. Santos, L. Perin, G. Mostoslavsky, A. C. Serre, E. Y. Snyder, J. J. Yoo, M. E. Furth, S. Soker, and A. Atala, 'Isolation of amniotic stem cell lines with potential for therapy,' Nat Biotechnol, vol. 25, pp. 100-106, Jan 2007. [8] M. H. Ross, Histology: A Text and Atlas, Third Edition ed.: Lippincott Williams & Wilkins, 1995. [9] C. F. Dewey, Jr., 'Effects of fluid flow on living vascular cells,' J Biomech Eng, vol. 106, pp. 31-35, Feb 1984. [10] J. A. Frangos, S. G. Eskin, L. V. McIntire, and C. L. Ives, 'Flow effects on prostacyclin production by cultured human endothelial cells,' Science, vol. 227, pp. 1477-1479, Mar 22 1985. [11] S. Akimoto, M. Mitsumata, T. Sasaguri, and Y. Yoshida, 'Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21(Sdi1/Cip1/Waf1),' Circ Res, vol. 86, pp. 185-190, Feb 4 2000. [12] H. Wang, G. M. Riha, S. Yan, M. Li, H. Chai, H. Yang, Q. Yao, and C. Chen, 'Shear stress induces endothelial differentiation from a murine embryonic mesenchymal progenitor cell line,' Arterioscler Thromb Vasc Biol, vol. 25, pp. 1817-1823, Sep 2005. [13] K. Yamamoto, T. Takahashi, T. Asahara, N. Ohura, T. Sokabe, A. Kamiya, and J. Ando, 'Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress,' J Appl Physiol, vol. 95, pp. 2081-2088, Nov 2003. [14] C. C. Wu, Y. C. Chao, C. N. Chen, C. Shu, Y. C. Chen, C. C. Chien, J. J. Chiu, and B. L. Yen, 'Synergism of biochemical and mechanical stimuli in the differentiation of human placenta-derived multipotent cells into endothelial cells,' Journal of biomechanics, vol. 41, pp. 813-821, Nov 2008. [15] 福井三郎, 杉野幸夫, 細胞培養: 藝軒圖書, 1989. [16] H. Takamatsu and N. Kumagae, 'Survival of biological cells deformed in a narrow gap,' J Biomech Eng, vol. 124, pp. 780-783, Dec 2002. [17] E. Bramanti, F. Ferri, C. Sortino, M. Onor, G. Raspi, and M. Venturini, 'Characterization of denatured proteins by hydrophobic interaction chromatography: a preliminary study,' Biopolymers, vol. 69, pp. 293-300, Jul 2003. [18] P. J. Torry, G. T. Taylor, M. Nullet, S. K. Sharma and B. E. Liebert, 'Protein adsorption from seawater onto solid substrata: II. Behavior of bound protein and its influence on interfacial proteins,' Mar. Chem, vol. 47(1), pp. 21-39, 1994. [19] N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger, 'Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates,' Nat Cell Biol, vol. 3, pp. 466-472, May 2001. [20] A. I. Teixeira, G. A. Abrams, P. J. Bertics, C. J. Murphy, and P. F. Nealey, 'Epithelial contact guidance on well-defined micro- and nanostructured substrates,' J Cell Sci, vol. 116, pp. 1881-192, May 2003. [21] C. S. Chen, J. L. Alonso, E. Ostuni, G. M. Whitesides, and D. E. Ingber, 'Cell shape provides global control of focal adhesion assembly,' Biochem Biophys Res Commun, vol. 307, pp. 355-361, Jul 2003. [22] C. M. Nelson and C. S. Chen, 'Cell-cell signaling by direct contact increases cell proliferation via a PI3K-dependent signal,' FEBS Lett, vol. 514, pp. 238-242, Mar 2002. [23] X. F. Walboomers, H. J. Croes, L. A. Ginsel, and J. A. Jansen, 'Growth behavior of fibroblasts on microgrooved polystyrene,' Biomaterials, vol. 19, pp. 1861-1868, Oct 1998. [24] S. Chang, Y. Popowich, R. S. Greco, and B. Haimovich, 'Neutrophil survival on biomaterials is determined by surface topography,' J Vasc Surg, vol. 37, pp. 1082-1090, May 2003. [25] M. Hirashima, H. Kataoka, S. Nishikawa, and N. Matsuyoshi, 'Maturation of embryonic stem cells into endothelial cells in an in vitro model of vasculogenesis,' Blood, vol. 93, pp. 1253-1263, Feb 15 1999. [26] H. Wang, G. M. Riha, S. Yan, M. Li, H. Chai, H. Yang, Q. Yao, and C. Chen, 'Shear Stress Induces Endothelial Differentiation From a Murine Embryonic Mesenchymal Progenitor Cell Line,' Arterioscler Thromb Vasc Biol, vol. 25, pp. 1817-1823, Sep 2005. [27] J. Ando, H. Nomura, and A. Kamiya, 'The effect of fluid shear stress on the migration and proliferation of cultured endothelial cells,' Microvasc Res, vol. 33, pp. 62-70, Jan 1987. [28] W. B. Amos and J. G. White, 'How the confocal laser scanning microscope entered biological research,' Biol Cell, vol. 95, pp. 335-342, Sep 2003. [29] J. C. Voyta, D. P. Via, C. E. Butterfield, and B. R. Zetter, 'Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein,' J Cell Biol, vol. 99, pp. 2034-2040, Dec 1984. [30] S. Chien, 'Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell,' Am J Physiol Heart Circ Physiol, vol. 292, pp. H1209-H1224, Mar 2007. [31] 蔣雅郁, '微流體剪應力對內皮細胞與多能羊水幹細胞分化之影響,' Jul 2008. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45136 | - |
dc.description.abstract | 幹細胞治療在心血管疾病的應用上漸漸受到關注,利用微機電製程製造的微晶片,提供比公分尺寸的實驗更接近人體的培養環境,例如細胞和細胞間的距離以及類似人體血管的培養體積,在這理論基礎下,微機電技術製造的微晶片提供流體剪應力的刺激,可以加速羊水幹細胞分化成內皮細胞
內皮細胞有沿著流場方向排列的特性,匯整人類羊水幹細胞在12 dyne/cm2 剪應力刺激24小時後的排列方向統計資料,剪應力刺激3小時後的排列角度分布和24小時的結果接近,表示其有相近的分化結果,此外,剪應力12 dyne/cm2 作用3小時以及24小時後,血小板與內皮細胞貼附分子(platelet endothelial cell adhesion molecule ,PECAM-1) 和 溫偉伯因子(von Willebrand Factor, vWF)都有明顯的表現,經過3小時的剪應力刺激,血小板與內皮細胞貼附分子, 溫偉伯因子以及血管內皮生長因子受體(vascular endothelial growth factor-2 receptor, VEGFR)的基因表現量都超過10倍以上,另外經過剪應力刺激後,在基質膠(matrigel) 基底上,觀察到低密度脂蛋白的堆積以及網狀結構形成,細胞在剪應力12 dyne/cm2 刺激下,分化程度比3, 6, and 18 dyne/cm2來的高 在巨觀尺寸的實驗架構下,需要數天才能達到分化的結果,而微流道系統成功的提供了快速分化的環境,人類羊水細胞在微流道系統的培養環境下,3小時就有明顯分化結果,本研究顯現出其在幹細胞的治療以及心血管疾病的研究上的潛力 | zh_TW |
dc.description.abstract | Stem cell therapies for cardiovascular diseases are of great growing interest. Micro-electro-mechanism-system (MEMS) fabricated chips provide more in vivo like cell-to-cell distance and culturing volume than that in centimetre-scaled experiments. In this thesis, we are able to accelerate the process of endothelial differentiation of human amniotic fluid stem cells (hAFSCs) by the stimulation of fluidic shear stress in a MEMS-fabricated micro device.
Cells aligning to flow directions is a known property of endothelial cells. hAFSCs affected by 12 dyne/cm2 of shear stress were compiled statistics for the arrangement angles toward the flow direction in a 24-hour period. The angular distribution of cells after 3 hours of stress stimulation approaches to that of cells after 24 hours, indicating similar degrees of endothelial differentiation. Both cell samples stimulated by 12 dyne/cm2 stress after 3 hours and 24 hours exhibit protein expressions of platelet endothelial cell adhesion molecule (PECAM-1) and von Willebrand Factor (vWF). Over ten folds of gene expressions in PECAM-1, vWF and vascular endothelial growth factor-2 receptor (VEGFR) appeared after 3 hours stimulation. Uptakes of ac-LDL and formation of tube-like structure on Matrigel were also observed after shear stress stimulation. Cells stimulated by 12dyne/cm2 shear stress have higher degrees of differentiation than those stimulated by 3, 6, and 18 dyne/cm2 shear stress. Utilizing 3 hours to achieve differentiation instead of days in macro-scale experiments, this micro fluidic system has been proved successful for a rapid shear stress stimulation of hAFSCs differentiation into endothelial cells. This research shows its great potential in stem cell therapy and cardiovascular disease studies. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:05:54Z (GMT). No. of bitstreams: 1 ntu-99-R96543051-1.pdf: 5275540 bytes, checksum: ea53400f11008b2688edff1162c15f97 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 第一章 序論 1
1-1 前言 1 1-2 研究動機 3 1-3 文獻探討 5 1-4 研究方法 10 1-5 論文架構 11 第二章 實驗原理 12 2-1 細胞培養環境之控制 12 2-1-1 傳統細胞培養技術 12 2-1-2 微尺寸培養對細胞之影響 16 2-2 流體剪應力對細胞之影響與計算 19 2-3 流體剪應力對幹細胞分化為內皮細胞之影響 22 2-4 即時定量聚合酶連鎖反應 24 2-5 雷射共軛焦顯微鏡 25 2-6 血管生成與低密度脂蛋白攝取 26 第三章 製程設計與實驗方法 26 3-1 微流道晶片設計與製造 27 3-1-1 微流道晶片規格與設計 27 3-1-2 聚二甲基矽氧烷微流道製作 28 3-1-3 微流道晶片整合 29 3-2 實驗系統之架設 31 3-3 羊水幹細胞之培養 32 3-4 羊水幹細胞之剪應力刺激 33 第四章 實驗結果 35 4-1 羊水幹細胞受剪應力影響之排列效果 35 4-2 羊水幹胞受剪應力影響後之基因型表現 41 4-3 羊水幹胞受剪應力影響後之蛋白質表現 42 4-4 羊水幹細胞受剪應力影響後之血管生成實驗 46 第五章 結論以及未來展望 48 5-1 結論 48 5-2 未來展望 49 參考文獻 51 | |
dc.language.iso | zh-TW | |
dc.title | 微流體剪應力對羊水幹細胞分化為內皮細胞之影響 | zh_TW |
dc.title | the effects of microfluidic shear stress on endothelial differentiation of amniotic fluid stem cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃效民(Shiaw-Min Hwang),王安邦(An-Bang Wang) | |
dc.subject.keyword | 幹細胞,微流體,內皮細胞, | zh_TW |
dc.subject.keyword | stem cell,micro fluidics,endothelial cells, | en |
dc.relation.page | 53 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-02-09 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 5.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。