請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45135
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張靜文(Ching-Wen Chang) | |
dc.contributor.author | Fang-Chen Chou | en |
dc.contributor.author | 周芳禛 | zh_TW |
dc.date.accessioned | 2021-06-15T04:05:52Z | - |
dc.date.available | 2015-03-12 | |
dc.date.copyright | 2010-03-12 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-02-08 | |
dc.identifier.citation | Agranovski, V., Ristovski, Z., Hargreaves, M., Blackall, P. J. and Morawska, L. (2003). Real-time measurement of bacterial aerosols with the UVAPS: performance evaluation. Journal of Aerosol Science 34:301-317.
Alvarez, A. J., Buttner, M. P. and Stetzenbach, L. D. (1995). PCR for bioaerosol monitoring: sensitivity and environmental interference. Appl Environ Microbiol 61:3639-3644. Angenent, L. T., Kelley, S. T., St Amand, A., Pace, N. R. and Hernandez, M. T. (2005). Molecular identification of potential pathogens in water and air of a hospital therapy pool. Proc Natl Acad Sci U S A 102:4860-4865. Blatny, J. M., Reif, B. A., Skogan, G., Andreassen, O., Hoiby, E. A., Ask, E., Waagen, V., Aanonsen, D., Aaberge, I. S. and Caugant, D. A. (2008). Tracking airborne Legionella and Legionella pneumophila at a biological treatment plant. Environ Sci Technol 42:7360-7367. Blatt, S. P., Parkinson, M. D., Pace, E., Hoffman, P., Dolan, D., Lauderdale, P., Zajac, R. A. and Melcher, G. P. (1993). Nosocomial Legionnaires' disease: aspiration as a primary mode of disease acquisition. American Journal of Medicine 95:16-22. Chang, B., Sugiyama, K., Taguri, T., Amemura-Maekawa, J., Kura, F. and Watanabe, H. (2009). Specific detection of viable Legionella cells by combined use of photoactivated ethidium monoazide and PCR/real-time PCR. Appl Environ Microbiol 75:147-153. Chen, N. T. and Chang, C. W. (2010). Rapid quantification of viable legionellae in water and biofilm using ethidium monoazide coupled with real-time quantitative PCR. Journal of applied microbiology (accepted). Chen, P. S. and Li, C. S. (2005a). Bioaerosol characterization by flow cytometry with fluorochrome. J Environ Monit 7:950-959. Chen, P. S. and Li, C. S. (2005b). Sampling performance for bioaerosols by flow cytometry with fluorochrome. Aerosol science and Technology 39:231-237. Chen, P. S. and Li, C. S. (2005c). Real-time quantitative PCR with gene probe, fluorochrome and flow cytometry for microorganism analysis. J Environ Monit 7:257-262. Clark Burton, N., Adhikari, A., Grinshpun, S. A., Hornung, R. and Reponen, T. (2005). The effect of filter material on bioaerosol collection of Bacillus subtilis spores used as a Bacillus anthracis simulant. J Environ Monit 7:475-480. Delgado-Viscogliosi, P., Solignac, L. and Delattre, J. M. (2009). Viability PCR, a culture-independent method for rapid and selective quantification of viable Legionella pneumophila cells in environmental water samples. Appl Environ Microbiol 75:3502-3512. Deloge-Abarkan, M., Ha, T. L., Robine, E., Zmirou-Navier, D. and Mathieu, L. (2007). Detection of airborne Legionella while showering using liquid impingement and fluorescent in situ hybridization (FISH). J Environ Monit 9:91-97. Ding, P. H. and Wang, C. S. (1997). Effect of sampling time on the sampling efficiency of all-glass impinger-30 samplers for E coli aerosol. Journal of aerosol science 28:671-672. Dutil, S., Veillette, M., Meriaux, A., Lazure, L., Barbeau, J. and Duchaine, C. (2007). Aerosolization of mycobacteria and legionellae during dental treatment: low exposure despite dental unit contamination. Environ Microbiol 9:2836-2843. Engelhart, S., Glasmacher, A., Simon, A. and Exner, M. (2007). Air sampling of Aspergillus fumigatus and other thermotolerant fungi: comparative performance of the Sartorius MD8 airport and the Merck MAS-100 portable bioaerosol sampler. Int J Hyg Environ Health 210:733-739. Engleberg, N. C., Carter, C., Weber, D. R., Cianciotto, N. P. and Eisenstein, B. I. (1989). DNA sequence of mip, a Legionella pneumophila gene associated with macrophage infectivity. Infect. Immun. 57:1263-1270. Fisher, R. A. and Yates, F. (1963) Statistical Tables for Biological, Agricultural, and Medical Research. 6th ed., Longman, London, p 134-139. Fraser, D. W. (1980) Legionellosis: Evidence of Airborne Transmission. Annals of the New York Academy of Sciences, vol. 353, issue 1, p 61-66. Gedalanga, P. B. and Olson, B. H. (2009). Development of a quantitative PCR method to differentiate between viable and nonviable bacteria in environmental water samples. Appl Microbiol Biotechnol 82:587-596. Gray, V. L., Muller, C. T., Watkins, I. D. and Lloyd, D. (2008). Peptones from diverse sources: pivotal determinants of bacterial growth dynamics. Journal of applied microbiology 104:554-565. Grinshpun, S. A., Willeke, K., Ulevicius, V., Donnelly, J., Lin, X. and Mainelis, G. (1996). Collection of airborne microorganisms:advantages and disadvantages of different methods. Journal of aerosol science 27:247-248. Grinshpun, S. A., Willeke, K., Ulevicius, V., Juozaitis, A., Terzieva, S., Donnelly, J., Stelma, G. N. and Brenner, K. P. (1997). Effect of impaction, bounce and reaerosolization on the collection efficiency of impingers. Aerosol science and Technology 26:326-342. Hambraeus, A. and Benediktsdottir, E. (1980). Airborne non-sporeforming anaerobic bacteria. J Hyg (Lond) 84:181-189. Heidelberg, J. F., Shahamat, M., Levin, M., Rahman, I., Stelma, G., Grim, C. and Colwell, R. R. (1997). Effect of aerosolization on culturability and viability of gram-negative bacteria. Appl Environ Microbiol 63:3585-3588. Heldal, K., Skogstad, A. and Eduard, W. (1996). Improvements in the quantification of airborne micro-organisms in the farm environment by epifluorescence microscopy. Annals of Occupational Hygiene 40:437-447. Herman, L. (1997). Detection of viable and dead listeria monocytogenes by PCR. Food microbiology 14:103-110. Hogan, C. J., Jr., Kettleson, E. M., Lee, M. H., Ramaswami, B., Angenent, L. T. and Biswas, P. (2005). Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. J Appl Microbiol 99:1422-1434. Inoue, D., Tsutsui, H., Yamazaki, Y., Sei, K., Soda, S., Fujita, M. and Ike, M. (2008). Application of real-time polymerase chain reaction (PCR) coupled with ethidium monoazide treatment for selective quantification of viable bacteria in aquatic environment. Water Sci Technol 58:1107-1112. Ishimatsu, S., Miyamoto, H., Hori, H., Tanaka, I. and Yoshida, S. (2001). Sampling and detection of Legionella pneumophila aerosols generated from an industrial cooling tower. Ann Occup Hyg 45:421-427. Jensen, P. A., Todd, W. F., Davis, G. N. and Scarpino, P. V. (1992). Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria. Am Ind Hyg Assoc J 53:660-667. Jerome, V., Hermann, M., Hilbrig, F. and Freitag, R. (2007). Development of a fed-batch process for the production of a dye-linked formaldehyde dehydrogenase in Hyphomicrobium zavarzinii ZV 580. Applied Microbiology and Biotechnology 77:779-788. Johnsson, T., Nikkila, P., Toivonen, L., Rosenqvist, H. and Laakso, S. (1995). Cellular fatty acid profiles of Lactobacillus and Lactococcus strains in relation to the oleic acid content of the cultivation medium. Applied and Environmental Microbiology 61:4497-4499. Kane, A. V. and Plaut, A. G. (1996). Unique susceptibility of Helicobacter pylori to simethicone emulsifiers in alimentary therapeutic agents. Antimicrobial Agents and Chemotherapy 40:500-502. Kenny, L. C., Bowry, A., Crook, B. and Stancliffe, J. D. (1999). Field testing of a personal size-selective bioaerosol sampler. Ann Occup Hyg 43:393-404. Kenny, L. C., Stancliffe, J. D., Crook, B., Stagg, S., Griffiths, W. D., Stewart, I. W. and Futter, S. J. (1998). The adaptation of existing personal inhalable aerosol samplers for bioaerosol sampling. Am Ind Hyg Assoc J 59:831-841. Klappenbach, J. A., Saxman, P. R., Cole, J. R. and Schmidt, T. M. (2001). rrndb: the Ribosomal RNA Operon Copy Number Database. Nucleic Acids Res 29:181-184. Klaucke, D. N., Vogt, R. L., LaRue, D., Witherell, L. E., Orciari, L. A., Spitalny, K. C., Pelletier, R., Cherry, W. B. and Novick, L. F. (1984). Legionnaires' disease: the epidemiology of two outbreaks in Burlington, Vermont, 1980. Am J Epidemiol 119:382-391. Lebaron, P., Servais, P., Agogue, H., Courties, C. and Joux, F. (2001). Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems? Appl Environ Microbiol 67:1775-1782. Lee, J. L. and Levin, R. E. (2007). Quantification of total viable bacteria on fish fillets by using ethidium bromide monoazide real-time polymerase chain reaction. Int J Food Microbiol 118:312-317. Li, C. S., Hao, M. L., Lin, W. H., Chang, C. W. and Wang, C. S. (1999). Evaluation of microbial samplers for bacterial microorganisms. Aerosol science and Technology 30:100-108. Li, C. S. and Li, Y. C. (1999a). Sampling performance of impactors for fungal spores and yeast cells. Aerosol science and Technology 31:226-230. Li, C. S. and Lin, Y. C. (1999b). Sampling performance of impactors for bacterial bioaerosols. Aerosol science and Technology 30:280-287. Li, C. S. and Lin, Y. C. (2001). Storage effects on bacterial concentration: determination of impinger and filter samples. Sci Total Environ 278:231-237. Li, C. S., Tseng, C. C., Lai, H. H. and Chang, C. W. (2003). Ultraviolet germicidal irradiation and titanium dioxide photocatalyst for controlling Legionella pneumophila. Aerosol science and Technology 37:961-966. Li, Y. Z. and Nan, Z. B. (2009). Nutritional study on Embellisia astragali, a fungal pathogen of milk vetch (Astragalus adsurgens). Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 95:275-284. Lin, W. H. and Li, C. S. (1998). The effect of sampling time and flow rates on the bioefficiency of three fungal spore sampling methods. Aerosol science and Technology 28:511-522. Lin, W. H. and Li, C. S. (1999). Evaluation of impingement and filtration methods for yeast bioaerosol sampling. Aerosol science and Technology 30:119-126. Lin, W. H. and Li, C. S. (2003). Influence of storage on the fungal concentration determination of impinger and filter samples. AIHA J (Fairfax, Va) 64:102-107. Lin, X., Reponen, T., Willeke, K., Wang, Z., Grinshpun, S. A. and Trunov, M. (2000). Survival of airborne microorganisms during swirling aerosol collection. Aerosol science and Technology 32:184-196. Lin, X., Reponen, T. A., Willeke, K., Grinshpun, S. A., Foarde, K. K. and Ensor, D. S. (1999). Long-term sampling of airborne bacteria and fungi into a non-evaporating liquid. Atmospheric Environment 33:4291-4298. Lin, X., Willeke, K., Ulevicius, V. and Grinshpun, S. A. (1997). Effect of sampling time on the collection efficiency of all-glass impingers. American industrial hygiene association journal 58:480-488. Lin, X. J., Reponen, T., Willeke, K., Wang, Z., Grinshpun, S. A. and Trunov, M. (2000). Survival of airborne microorganisms during swirling aerosol collection. Aerosol science and Technology 32:184-196. Lisby, G. and Dessau, R. (1994). Construction of a DNA amplification assay for detection of Legionella species in clinical samples. Eur J Clin Microbiol Infect Dis 13:225-231. Lundgren, D. A. and Gunderson, T. C. (1975). Efficiency and loading characteristics of EPA's high-temperature quartz fiber filter media. Am Ind Hyg Assoc J 36:866-872. Lundholm, I. M. (1982). Comparison of methods for quantitative determinations of airborne bacteria and evaluation of total viable counts. Applied and Environmental Microbiology 44:179-183. Macher, J. M. (1989). Positive-hole correction of multiple-jet impactors for collecting viable microorganisms. Am Ind Hyg Assoc J 50:561-568. Macher, JM and Burge HA, 2001. Sampling Biological Aerosols. Chapter 23. In: Air Sampling Instruments. 9th edition. American Conference of Government Industrial Hygienists, Cincinnati, OH. Macher, J. M. and First, M. W. (1984). Personal air samplers for measuring occupational exposures to biological hazards. Am Ind Hyg Assoc J 45:76-83. Mathieu, L., Robine, E., Deloge-Abarkan, M., Ritoux, S., Pauly, D., Hartemann, P. and Zmirou-Navier, D. (2006). Legionella bacteria in aerosols: sampling and analytical approaches used during the legionnaires disease outbreak in Pas-de-Calais. J Infect Dis 193:1333-1335. McDougald, D., Rice, S. A., Weichart, D. and Kjelleberg, S. (1998). Nonculturability:adaptation or debilitation? FEMS microbiology ecology 25:1-9. Millipore Corporation. (2006). Analytical Sample Preparation, Membrane Filter, Holders and Accessories. Billerica, MA, USA, p23. Morales-Morales, H. A., Vidal, G., Olszewski, J., Rock, C. M., Dasgupta, D., Oshima, K. H. and Smith, G. B. (2003). Optimization of a reusable hollow-fiber ultrafilter for simultaneous concentration of enteric bacteria, protozoa, and viruses from water. Applied and Environmental Microbiology 69:4098-4102. Mukoda, T. J., Todd, L. A. and Sobsey, M. D. (1994). PCR and gene probes for detecting bioaerosols. Journal of aerosol science 25:1523-1532. Nguyen, T. M., Ilef, D., Jarraud, S., Rouil, L., Campese, C., Che, D., Haeghebaert, S., Ganiayre, F., Marcel, F., Etienne, J. and Desenclos, J. C. (2006). A community-wide outbreak of legionnaires disease linked to industrial cooling towers--how far can contaminated aerosols spread? J Infect Dis 193:102-111. Nugent, P. G., Cornett, J., Stewart, I. W. and Parkes, H. C. (1997). Personal monitoring of exposure to genetically modified microorganisms in bioaerosols:rapid and sensitive detection using PCR. Journal of aerosol science 28:525-538. Oliver, J. D. (2005). The viable but nonculturable state in bacteria. J Microbiol 43:93-100. Oppliger, A., Charriere, N., Droz, P. O. and Rinsoz, T. (2008). Exposure to bioaerosols in poultry houses at different stages of fattening; use of real-time PCR for airborne bacterial quantification. Ann Occup Hyg 52:405-412. Paez-Rubio, T., Viau, E., Romero-Hernandez, S. and Peccia, J. (2005). Source bioaerosol concentration and rRNA gene-based identification of microorganisms aerosolized at a flood irrigation wastewater reuse site. Appl Environ Microbiol 71:804-810. Pascual, L., Perez-Luz, S., Amo, A., Moreno, C., Apraiz, D. and Catalan, V. (2001). Detection of Legionella pneumophila in bioaerosols by polymerase chain reaction. Can J Microbiol 47:341-347. Perola, O., Kauppinen, J., Kusnetsov, J., Karkkainen, U. M., Luck, P. C. and Katila, M. L. (2005). Persistent Legionella pneumophila colonization of a hospital water supply: efficacy of control methods and a molecular epidemiological analysis. APMIS 113:45-53. Pisz, J. M., Lawrence, J. R., Schafer, A. N. and Siciliano, S. D. (2007). Differentiation of genes extracted from non-viable versus viable micro-organisms in environmental samples using ethidium monoazide bromide. J Microbiol Methods 71:312-318. Polaczyk, A. L., Narayanan, J., Cromeans, T. L., Hahn, D., Roberts, J. M., Amburgey, J. E. and Hill, V. R. (2008). Ultrafiltration-based techniques for rapid and simultaneous concentration of multiple microbe classes from 100-L tap water samples. Journal of Microbiological Methods 73:92-99. Polaczyk, A. L., Roberts, J. M. and Hill, V. R. (2007). Evaluation of 1MDS electropositive microfilters for simultaneous recovery of multiple microbe classes from tap water. Journal of Microbiological Methods 68:260-266. Qian, Y., Willeke, K., Ulevicius, V., Grinshpun, S. A. and Donnelly, J. (1995). Dynamic size spectrometry of airborne microorganisms: laboratory evaluation and calibration. Atmospheric Enuironment 29:1123-1129. Rasmussen, R. (2001) Quantification on the LightCycler instrument. In Meuer,S., Wittwer, C. and Nakagawara,K. (eds), Rapid Cycle Real-time PCR: Methods and Applications. Springer, Heidelberg, pp. 21–34. Rudi, K., Moen, B., Dromtorp, S. M. and Holck, A. L. (2005). Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl Environ Microbiol 71:1018-1024. Rule, A. M., Kesavan, J., Schwab, K. J. and Buckley, T. J. (2007). Application of flow cytometry for the assessment of preservation and recovery efficiency of bioaerosol samplers spiked with Pantoea agglomerans. Environ Sci Technol 41:2467-2472. Sirigul, C., Wongwit, W., Phanprasit, W., Paveenkittiporn, W., Blacksell, S. D. and Ramasoota, P. (2006). Development of a combined air sampling and quantitative real-time PCR method for detection of Legionella spp. Southeast Asian J Trop Med Public Health 37:503-507. Sartorius, Gelatin Membrane Filter Method: For quantitative, validatable air monitoring in isolators and clean rooms. Soejima, T., Iida, K., Qin, T., Taniai, H., Seki, M., Takade, A. and Yoshida, S. (2007). Photoactivated ethidium monoazide directly cleaves bacterial DNA and is applied to PCR for discrimination of live and dead bacteria. Microbiol Immunol 51:763-775. Soejima, T., Iida, K., Qin, T., Taniai, H., Seki, M. and Yoshida, S. (2008). Method To Detect Only Live Bacteria during PCR Amplification. J Clin Microbiol 46:2305-2313. Stafford, R. G. and Ettinger, H. J. (1971). Comparison of filter media against liquid and solid aerosols. Am Ind Hyg Assoc J 32:319-326. Steinert, M., Emody, L., Amann, R. and Hacker, J. (1997). Resuscitation of viable but nonculturable Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii. Applied and Environmental Microbiology 63:2047-2053. Stewart, S. L., Grinshpun, S. A., Willeke, K., Terzieva, S., Ulevicius, V. and Donnelly, J. (1995). Effect of impact stress on microbial recovery on an agar surface. Appl Environ Microbiol 61:1232-1239. Su, H. P., Tseng, L. R., Tzeng, S. C., Chou, C. Y. and Chung, T. C. (2006). A legionellosis case due to contaminated spa water and confirmed by genomic identification in Taiwan. Microbiol Immunol 50:371-377. Terzieva, S., Donnelly, J., Ulevicius, V., Grinshpun, S. A., Willeke, K., Stelma, G. N. and Brenner, K. P. (1996). Comparison of methods for detection and enumeration of airborne microorganisms collected by liquid impingement. Applied and Environmental Microbiology 62:2264-2272. Thorne, P. S., Kiekhaefer, M. S., Whitten, P. and Donham, K. J. (1992). Comparison of bioaerosol sampling methods in barns housing swine. Applied and Environmental Microbiology 58:2543-2551. Van Droogenbroeck, C., Van Risseghem, M., Braeckman, L. and Vanrompay, D. (2009). Evaluation of bioaerosol sampling techniques for the detection of Chlamydophila psittaci in contaminated air. Vet Microbiol 135:31-37. Wang, L., Li, Y. and Mustapha, A. (2009). Detection of viable Escherichia coli O157:H7 by ethidium monoazide real-time PCR. J Appl Microbiol 107:1719-1728. Wang, Z., Reponen, T., Grinshpun, S. A., Gorny, R. L. and Willeke, K. (2001). Effect Effect sampling time and air humidity on the bioefficient of filter samplers for bioaerosol collection. Journal of aerosol science 32:661-674. Willeke, K., Grinshpun, S. A., Ulevicius, V., Terzieva, S., Donnelly, J., Stewart, S. and Juozaitis, A. (1995). Microbial stress, bounce and re-aerosolization in bioaerosol samplers. Journal of aerosol science 26:883-884. Willeke, K., Lin, X. and Grinshpun, S. A. (1998). Improved Aerosol Collection by Combined Impaction and Centrifugal Motion. Aerosol Science and Technology 28:439-456. Woo, A. H., Yu, V. L. and Goetz, A. (1986). Potential in-hospital modes of transmission of Legionella pneumophila. Demonstration experiments for dissemination by showers, humidifiers, and rinsing of ventilation bag apparatus. Am J Med 80:567-573. Yao, M. and Mainelis, G. (2007). Analysis of portable impactor performance for enumeration of viable bioaerosols. J Occup Environ Hyg 4:514-524. Zuravleff, J. J., Yu, V. L., Shonnard, J. W., Rihs, J. D. and Best, M. (1983). Legionella pneumophila contamination of a hospital humidifier. Demonstration of aerosol transmission and subsequent subclinical infection in exposed guinea pigs. Am Rev Respir Dis 128:657-661. 王玉純,臭氧對生物氣膠殺菌效率之評估,國立臺灣大學環境衛生研究所, 2002. 陳培詩,環境中生物氣膠之偵測-螢光顯微鏡、流式細胞移與定量PCR, 國立臺灣大學環境衛生研究所2005. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45135 | - |
dc.description.abstract | 吸入空氣中具可培養性或活性的嗜肺性退伍軍人菌可能會導致退伍軍人症的發生,因此定量空氣中具可培養性或活性的嗜肺性退伍軍人菌濃度是重要的環境衛生議題。然而當細菌被氣膠化或是被生物氣膠採樣器採下來後,其可培養性可能因過程中壓力的影響而降低,但卻不影響細菌的活性。過去生物氣膠採樣器評估之研究,分析方法多以定量可培養性及總退伍軍人菌為主,欠缺評估空氣中活性退伍軍人菌的研究。而且目前並無研究探討以培養基收集的採樣器間、液體收集的採樣器間及濾紙收集的採樣器間採集空氣中嗜肺性退伍軍人菌之效能。
本研究以培養法、即時定量聚合酶鏈鎖反應(Real-time quantitative polymerase chain reaction)及ethidium monoazide結合qPCR (EMA-qPCR)評估以培養基收集的採樣器 (MAS-100及Andersen一階採樣器)、液體收集的採樣器(BioSampler, AGI-30及MAS-100)及以濾紙收集的採樣器(IOM採樣器結合明膠濾紙(gelatin filter)及濾紙匣結合聚碳酸酯樹脂濾紙(polycarbonate filter))採集空氣中可培養性、活性及總嗜肺性退伍軍人菌(Legionella pneumophila)或大腸桿菌(Escherichia coli)之效能。根據採樣效能以培養法及EMA-qPCR偵測的結果得知,部分空氣中嗜肺性退伍軍人菌及大腸桿菌採樣後喪失了可培養性,但仍保持其細胞膜完整性。採樣器評估比較結果發現: Andersen一階採樣器採集可培養性細菌之效能優於MAS-100。採樣時間小於4分鐘時,液體收集的BioSampler和AGI-30優於以培養基收集的採樣器。BioSampler和AGI-30以去離子無菌水採樣60分鐘並每採樣15分鐘補充一次收集液時,採集可培養性或活性嗜肺性退伍軍人菌的效能優於BioSampler及AGI-30僅以Tween 80混合收集液或以去離子無菌水採樣但採樣過程中不補充液體之效能,而且也優於濾紙收集的採樣器。然而濾紙收集的採樣器採樣30或60分鐘時,採集總嗜肺性退伍軍人菌的效能優於液體收集的採樣器。此外,IOM採樣器結合明膠濾紙(gelatin filter)採樣270分鐘時,其採集可培養性及活性嗜肺性退伍軍人菌的效能優於濾紙匣結合聚碳酸酯樹脂濾紙的採樣效能,但其採集總嗜肺性退伍軍人菌之效能劣於濾紙匣結合聚碳酸酯樹脂濾紙之效能。對採集可培養性及活性細菌而言,BioSampler、AGI-30及MAS-100採集嗜肺性退伍軍人菌的效能一致優於大腸桿菌。 總結來說,EMA-qPCR可應用於環境定量空氣中具活性嗜肺性退伍軍人菌之濃度,採樣器部分,因BioSampler及AGI-30輔以補充液體的步驟可以有效的保持採樣後嗜肺性退伍軍人菌之可培養性及活性,建議以此方法進一步於環境中進行長達60分鐘的採樣。而空氣中總細菌濃度之定量,則建議使用濾紙收集的採樣器。 | zh_TW |
dc.description.abstract | It is expected that inhalation of culturable or viable L. pneumophila may result in Legionnaires’ disease. Thus, quantification of culturable or viable airborne L. pneumophila is an important environmental health issue. However, as the bacteria are aerosolized or sampled by bioaerosol samplers, the sampling stresses might decrease cellular culturability but not affect the viability. Previous studies evaluated the performance of samplers for airborne Legionella have presented the results by quantification of culturable or total cells, whereas the level of viable cells remains unknown. Moreover, no study has been conducted to determine the difference in performance among different agar-based samplers, liquid-based samplers or filter-based samplers for airborne L. pneumophila.
In this study, the performance of agar-based samplers (MAS-100 and Andersen one stage), liquid-based samplers (BioSampler, AGI-30 and MAS-100) and filter-based samplers (IOM with gelatin filter and cassette with polycarbonate filter) for collecting culturable, viable or total L.egionella pneumophila or E.scherichia coli determined by culture assay, real-time quantitative polymerase chain reaction (qPCR) and ethidium monoazide combined with qPCR (EMA-qPCR) were evaluated. According to the performance of samplers for L. pneumophila and E. coli determined by culture and EMA-qPCR, it was observed that a portion of L. pneumophila and E. coli was nonculturable but membrane-intact after being collected from the air. Evaluating and comparing the performance of samplers, the results showed that Andersen one stage performed better than MAS-100 for collecting both culturable L. pneumophila and E. coli. The performances of liquid-based BioSampler and AGI-30 for culturable L. pneumophila were greater than that of agar-based samplers in less than 4-min sampling time. In addition, for BioSampler and AGI-30, it was more efficient to use sterile and filtered de-ionized water (DW) to collect both culturable and viable L. pneumophila for 60 min and replenish the water every 15 min than to use Tween 80 mixture or DW without replenishment for collection. And the performance of BioSampler and AGI-30 with DW and replenishment for culturable and viable L. pneumophila were better than that of filter-based samplers. However, the performance for total L. pneumophila was better in filter-based samplers than in any liquid-based samplers for 30- and 60-min sampling time. Furthermore, IOM sampler with gelatin filter showed greater performance for collecting culturable and viable L. pneumophila than cassette with polycarbonate filter for 270-min sampling time. As for collecting total cells, the result was opposite. For sampling viable and total L. pneumophila and E. coli, the performance of BioSampler, AGI-30 and MAS-100 were consistently better for L. pneumophila than for E. coli. In conclusion, EMA-qPCR could be applied to quantify the concentration of viable airborne L. pneumophila. The refilling process on BioSampler and AGI-30 may be effective to remain the culturability and viability of L. pneumophila, and it was further recommended monitoring and sampling for 60-min in field. As for quantification of total cells, filter-based samplers were suggested. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:05:52Z (GMT). No. of bitstreams: 1 ntu-99-R96844012-1.pdf: 1924077 bytes, checksum: 49b98a9cd9b9719587eaadc0a7861a91 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員會審定書………………………………………………………….………..Ⅰ
致謝………………………………………………………………………….………..Ⅲ 中文摘要…………………………………………………………………….………..Ⅳ 英文摘要…………………………………………………………………….………..Ⅵ Chapter 1 Introduction 1 1.1 Legionella pneumophila 1 1.2 Escherichia coli 2 1.3 Evaluation of bioaerosol samplers 2 1.3.1 Agar-based samplers 3 1.3.2 Liquid-based samplers 6 1.3.3 Filter-based samplers 10 1.4 Analytical methods for bioaerosols 14 1.4.1 Culture assay 14 1.4.2 Conventional and real-time quantitative polymerase chain reaction 16 1.4.3 Ethidium monoazide qPCR 20 Chapter 2 Motivations for this study 24 Chapter 3 Objectives of the study 25 Chapter 4 Structure of the study 27 4.1 Construction and testing of a bioaerosol generation system 27 4.2 Viability and culturability of E. coli and L. pneumophila in liquid 28 4.3 Evaluation of bioaerosol samplers, the type and replenishment of collection fluids 29 Chapter 5 Materials and Methods 30 5.1 Test microorganisms 30 5.2 Medium 30 5.3 Preparation of L. pneumophila and E. coli suspension 33 5.4 Bioaerosol generation system 34 5.5 Evaluation of Bioaerosol samplers 37 5.5.1 Agar-based samplers 38 5.5.1.1 Andersen one stage sampler 38 5.5.1.2 MAS-100 sampler 38 5.5.2 Liquid-based samplers 39 5.5.2.1 All glass impinger (AGI-30) 39 5.5.2.2 Biosampler 39 5.5.2.3 MAS-100 sampler with liquid medium 40 5.5.3 Filter samplers 41 5.5.3.1 Pretreatment methods of filters 41 5.5.3.2 Cassette in conjunction with polycarbonate filter. 43 5.5.3.3 IOM in conjunction with gelatin filter 43 5.6 Culture assay 44 5.6.1 Culture assay for agar-based samplers 44 5.6.2 Culture assay for liquid-based samplers 44 5.6.3 Culture assay for filter samplers 45 5.7 EMA treatment 46 5.8 DNA extraction 46 5.9 Real-time qPCR with gene probe 47 5.9.1 Legionella pneumophila 47 5.9.2 E. coli 48 5.9.3 QA/QC of real-time qPCR 49 5.10 Calculation of sampling performance 50 5.11 Definitions of viability and culturability 51 5.12 Quality assurance and quality control 52 5.12.1 Air flowrate in the exposure chamber 52 5.12.2 Relative humidity in exposure chamber 52 5.12.3 Airborne particle concentration in the exposure chamber 53 5.12.4 Size distribution of airborne bacteria in the exposure chamber 53 5.12.5 Viability and culturability of L. pneumophila in collision nebulizer before and after operations 54 5.12.6 Viability and culturability of E. coli and L. pneumophila in liquid determined by BacLight–Epifluorescent Microscopy, EMA-qPCR/real-time qPCR and culture assay 55 5.13 Statistic methods 58 Chapter 6 Results 60 6.1 Air flowrate in bioaerosol generation system 60 6.1.1 Air flowrate of nebulizer 60 6.1.2 Air flowrate of dry air 60 6.1.3 Air flowrate of wet air 60 6.1.4 Relative humidity in exposure chamber 61 6.1.5 Concentration of bioaerosols generated 61 6.1.6 Size distribution of airborne bacteria 61 6.1.7 Viability and culturability of L. pneumophila in collision nebulizer before and after operations 62 6.2 Viability of L. pneumophila and E. coli determined by BacLight–Epifluorescent Microscopy, EMA-qPCR, qPCR and culture assay 62 6.3 Treatment methods on recovery of L. pneumophila from filters 63 6.4 Performance of bioaerosol samplers for L. pneumophila 63 6.4.1 Agar-based samplers 63 6.4.2 Liquid-based samplers 64 6.4.2.1 Biosampler, AGI-30 and MAS-100 collected with Tween 80 mixture 64 6.4.2.2 BioSampler and AGI-30 collected with DW 65 6.4.3 Effect of collection media on sampling performance 66 6.4.4 Effect of replenished process on performance of BioSampler and AGI-30 68 6.4.5 Cassette with polycarbonate filter and IOM with gelatin filter 69 6.4.6 Comparison of agar-based and liquid-based samplers 70 6.4.7 Comparison of performance among filter-based samplers and liquid-based samplers for 30-min sampling 70 6.4.8 Comparison of performance among filter-based samplers and liquid-based samplers for 60-min sampling 71 6.4.9 Loss rate of collection fluid in liquid-based samplers 72 6.5 Performance of bioaerosol samplers for E. coli 73 6.5.1 Agar-based samplers 73 6.5.2 Liquid-based samplers - Biosampler, AGI-30 and MAS-100 sampler with Tween 80 mixture 74 6.6 Comparison of performance of bioaerosol samplers for L. pneumophila and E. coli 75 6.6.1 Agar-based samplers 75 6.6.2 Liquid-based samplers - Biosampler, AGI-30 and MAS-100 with Tween 80 mixture 76 Chapter 7 Discussions 148 7.1 Sampling performance of agar-based samplers for L. pneumophila and E. coli 148 7.2 Effect of collection media on sampling performance 149 7.3 Performance of liquid-based samplers 153 7.4 Cassette with polycarbonate filter and IOM with gelatin filter 158 7.5 Comparison of agar-based and liquid-based samplers for L. pneumophila 163 7.6 Comparison of performance among filter-based samplers and liquid-based samplers for 30- and 60-min sampling 164 7.7 Effect of methods on sampling performance 166 Chapter 8 Conclusions and suggestions 169 Chapter 9 Appendix 172 Chapter 10 References 201 | |
dc.language.iso | en | |
dc.title | 生物氣膠採樣器效能評估-暴露艙研究 | zh_TW |
dc.title | A Chamber Study on Performance Evaluation of Bioaerosol Samplers | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 曾俊傑(Chun-Chieh Tseng),李書安(Shu-An Lee) | |
dc.subject.keyword | 空氣中的,嗜肺性退伍軍人菌,大腸桿菌,可培養性,活性,效能,生物氣膠採樣器,補充收集液,即時定量聚合酶,鏈鎖反應,ethidium monoazide,EMA-qPCR, | zh_TW |
dc.subject.keyword | airborne,Legionella pneumophila,Escherichia coli,culturable,viable,performance,bioaerosol samplers,replenishment,real-time qPCR,ethidium monoazide,EMA-qPCR, | en |
dc.relation.page | 214 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-02-09 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
顯示於系所單位: | 環境衛生研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 1.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。