Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45130
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李源弘
dc.contributor.authorI-Ting Linen
dc.contributor.author林翊庭zh_TW
dc.date.accessioned2021-06-15T04:05:40Z-
dc.date.available2014-02-11
dc.date.copyright2010-02-11
dc.date.issued2010
dc.date.submitted2010-02-08
dc.identifier.citation1. 盧香吟,『Immuno-PCR 於鼻咽癌早期診斷應用之研究』,國立台灣大學碩士論文(2006)
2. 包家駒、李芳仁、張東玄、張智芬、葉枚耕、趙崇義、黎耀基、魏耀揮,『進階版生物技術』,晟暐電腦排版有限公司 (1998)
3. 許元勳總校閱 ,『免疫學』,高立圖書有限公司(2003)
4.http://zh.wikipedia.org/w/index.php?title=%E9%85%B5%E7%B4%A0%E5%85%8D%E7%96%AB%E5%88%86%E6%9E%90%E6%B3%95&variant=zh-tw
5. Niemeyer, C. M., Adler, M., & Wacker, R. (2005). Immuno-PCR: high sensitivity
detection of proteins by nucleic acid amplification. TRENDS in Biotechnology 23(4), 208-216.
6. Case, M. C., Burt, A., D., Hughes, J., Palmer, J. M., Collier, J. D., Bassendine, M.F., Yeaman, S. J., Hughes, M. A., & Major, G. N. (1999). Enhanced
ultrasensitive detection of structurally diverse antigens using a single immuno-PCR assay protocol. Journal of Immunological Methods 223, 93–106.
7. Furuya, D., Yagihashi, A., Yajima, T., Kobayashi, D., Orita, K., Kurimoto, M., &
Watanabe, N. (2000). An immuno-polymerase chain reaction assay for human
interleukin-18. Journal of Immunological Methods 238, 173–180.
8. Sugawara, K., Kobayashi, D., Saito, K., Furuya, D., Araake, H., Yagihashi, A.,
Yajima , T., Hosoda, K., Kamimura, T., & Watanabe, N. (2000). A highly sensitive
immuno-polymerase chain reaction assay for human angiotensinogen using the identical first and second polyclonal antibodies. Clinica Chimica Acta 299, 45–54.
9. McKie, A., Samuel, D., Cohen, B., & Saunders, N. A. (2002). Development of a
quantitative immuno-PCR assay and its use to detect mumps-specific IgG in serum.
Journal of Immunological Methods 261, 167–175.
10. Adler, M., Langer, M., Witthohn, K., Eck, J., Blohm, D., & Niemeyer, C. M. (2003). Detection of viscumin in plasma samples by immuno-PCR. Biochemical and Biophysical Research Communications 300, 757–763.
11. Adler, M., Wacker, R., Niemeyer, C. M. (2003). A real-time immuno-PCR
assay for routine ultrasensitive quantification of proteins. Biochemical and
Biophysical Research Communications 308, 240–250.
12. Liang H., Cordova S. E., Kieft T. L., & Rogelj S. (2003). A highly sensitive
immuno-PCR assay for detecting group A streptococcus. Journal of Immunological
Methods 279, 101– 110.
13. Niemeyer C. M., Wacker R., & Adler M. (2003). Combination of DNA-directed
immobilization and immuno-PCR: very sensitive antigen detection by means of
self-assembled DNA-protein conjugates. Nucleic Acids Research, 31, 16: e90.
14.Chao H. Y., Wang Y. C., Tang S. S., & Liu H. W. (2004). A highly sensitive
immuno-polymerase chain reaction assay for Clostridium botulinum neurotoxin type A. Toxicon 43, 27–34.
15. Popov, C., Kulisch, W., Reithmaier, J. P., Dostalova, T., Jelinek, M., Anspach, N., & Hammann., C. (2007). Surface and bioproperties of nanocrystalline diamond/amorphous carbon nanocomposite films. Thin Solid Films, 515, 3, 8407-8411
16. Isberg, J., Hammersberg, J., Johansson, E., Wikström, T., Twitchen, D. J., Whitehead, A. J., Coe, S. E., & Scarsbrook, G. A. (2006). High carrier mobility in single-crystal plasma-deposited diamond. Science, 297, 5587, 1670-1672.
17. Spear, K. E., & Dismukes J. P. (1994). Synthetic diamond – Emerging CVD science and technology. New York: Wiley.
18. 張德富,『偏壓法生長方向性鑽石薄膜之研究』,國立交通大學博士論文(2008)
19. Maeda, H., Ohtsubo, K., Irie, M., & et al. (1995). Determination of diamond and diamond growth-rate and formation of highly oriented diamond film by microwave plasma-assisted chemical-vapor-deposition. Journal of Materials Research, 10, 12, 3115-3123.
20. Eversole, W. G. (1962). Synthesis of diamond. U. S. Patent, 3,030, 188
21. Davis, R. F. (1992). Diamond Films and Coatings Development, Properties, and
Applications. New Jersey: Noyes Park Ridge.
22. Lettington, & Steeds, J. W., (1994). Thin film diamond. London: Chapman & Hall
For the Royal Society.
23. Singh J. M. (1994). Nucleation and growth mechanism of diamond during hot-filament chemical vapor deposition. Science, 29, 2761-2766.
24. Frenklach M. R., Huang, K. D., W. Howard, K. E., & Spear, A. W. (1989). Homogeneous nucleation of diamond powder in the gas phase. Journal of Applied Physics. 66, 395.
25. Yarbrough, W. A., & Messier, R. Current issues and problems in the chemical vapor deposition of diamond. Science, 247, 49, 43, 688-696.
26. Yarbrough, W. A. (1991). Current research problems and opportunities in the vapor phase synthesis of diamond and cubic boron nitride. Journal of Vacuum Science Technology A, 39, 1145-1152
27. Yugo S., Kanai, T., Kimura, T., & Muto, T. (1991). Generation of diamond
nuclei by electric field in plasma chemical vapor deposition. Applied Physics Letters, 58, 1036.
28. Stoner, B. R., Ma, G. H., Wolter, S. D., Zhu, W., Wang, Y. C., Davis, F. &
Glass, J. T. (1993). Epitaxial nucleation of diamond on β-SiC via bias-enhanced
microwave plasma chemical vapor deposition. Diamond and Related Material, 2, 142.
29. Clausing, R. E., Heatherly, L., Horton, L. L., Specht, E. D., Begun, G. M., &
Wang, Z. L. (1992). Diamond and Related Material, 1, 411.
30. Wild, C. , Kohl, R., Herres, N., Muller-Sebert, W., & Koidl, P. (1994).
Oriented CVD diamond films: Twin formation, structure and morphology. Diamond and Related Material, 3, 373.
31. Okumura, Y., Kanayama, K., Tabaru, M., & Kawabata, Satoshi. (2007). Combustion synthesis of high-quality diamond film suitable for application in electronic devices. Proceedings of the Combustion Institute, 31, 1831–1838.
32. Huang, B.R., Chen, K. H., Hsu, J. F., Lin, S. C., & Chen, F. W. (2002). The annealing effect on the surface properties of the free-standing diamond films. Journal of Materials Science and Engineering, 34, 3, 185-189.
33. Zheng, L. X., O'Connell, M. J., Doorn, S. K., Liao, X. Z., Zhao, Y. H., Akhadov, E. A., Hoffbauer, M. A., Roop, B. J., Jia, Q. X., Dye, R. C. Peterson, D. E. Huang, S. M., Liu, J., & Zhu, Y. T. (2004). Ultralong Single-Wall Carbon Nanotubes. Nature Materials, 3, 673–676
34. Peigney, A., Laurent C., Flahaut E., Bacsa, R.R., Rousset, A. (2001). Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 39, 4, 507-514.
35. Che J., Çagin, T., Goddard, W. A. Ⅲ. (2000). Thermal conductivity of carbon nanotubes. Nanotechnology, 11, 65-69.
36. Pan Z. W., Xie, S. S., Chang, B. H., Sun, L. F., Zhou, W. Y., Wang, G., & Zhang, D. L. (1999). Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Applied Physics Letters, 74, 3152.
37. Smalley R. E. Seminar of Chemistry of Fullerene and carbon nanotubes-the 221th ACS national meeting, San Diego : 2001.1
38. 楊全紅,『奈米碳管的表面、孔隙及其與儲氫性能關係』,中國科學院金屬研究所博士後研究報告(2001)
39. Peigney, A., Laurent, C. H., Flahaut, E., Bacsa, R. R., & Rousset, A. (2001). Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 39, 507-514.
40. Henning, Th., & Salama, F. (1998). Carbon in the Universe. Science, 282, 5397, 2204-2210.
41. Hiura, H., Ebbesen, T. W., Fujita, K., Tanigaki, K., & Takada, T. (1994). Role of sp3 defect structures in graphite and carbon nanotubes. Nature, 367, 148-151.
42. Dresselhaus, M. S., Dresselhaus, G., & Avouris, P. (Eds.). (2001). Carbon
nanotubes: Synthesis, structure, properties, and applications. New York: Springer-Verlag Berlin Heidelberg.
43. Amelinckx, S., Bernaerts, D., Zhang, X. B., Zhang, X.F., Ivanov, V., Nagy, J.B. (1994). A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science, 265, 635-639.
44. Amelinckx, S., Lucas, A., Lambin, P., (1999). Electron diffraction and microscopy of nanotubes. Rep Prog Phys, 62, 1471-1524.
45. 成會明,『奈米碳管 』,五南圖書出版股份有限公司(2004)
46. Fonseca, A., Hernadi, K., Nagy, J. B., Bernaerts, D., Dudala, A., & Lucasa, A. (1996). J Mol Catal A, 17, 416-423
47. Fonseca, A., Hernadi, K., Piedigrosso, P. (1998). Synthesis of single- and multi-wall carbon nanotubes over supported catalysts. Appl Phys A., 67, 11-22.
48. Willems, I., Konya, Z., Colomer, J. -F., Van Tendeloo, G., Nagaraju, N., Fonseca, A., & Nagy, J. B. (2000). Control of the outer diameter of thin carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem Phys Letter, 317, 71-76.
49. Li, W. Z., Xie, S. S., Qian, L. X., et al. (1996). Science, 274, 1701.
50. Pan, Z. W., Xie, S. S., Chang, B. H., et al. (1999). Chem Phys Letter, 299, 97.
51. Cassel, E. M., Raymakers, J. A., Kong, J., et al. (1999). J Phys Chem B, 103, 6484.
52. Chen, P., Zhang, H. B., Lin, G. D., et al. (1997). Carbon, 35, 1495.
53. Kitiyanan, B., Alvarez, W. E., Harwell, J. H., & Resasco, D. E. (2000). Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts. Chem Phys Letter, 317, 497-503.
54. Chen, P., Wu, X., Lin, J., Li H., & and Tan, K. L. (2000). Comparative studies on the structure and electronic properties of carbon nanotubes prepared by the catalytic pyrolysis of CH4 and disproportionation of CO. Carbon, 38,1, 139-143.
55. Hernadi, K., Fonseca, A., Nagy, J.B., Siska, A., & Kiricsi, I. (2000). Appl Cata A, 199, 245.

56. Fan, Y. Y., Li, F., Cheng, H. M., Su, U. D., & Shen, Y. Z. H. (1998). J Mater Res, 113, 2342-2346.
57. Lindemann, F. A. (1910). The calculation of molecular vibration Frequencies. Physik. Z., 11, 609-612.
58. 邱維彥,『奈米碳管鍍上寬能隙材料及其場發射顯示器的應用』,大同大學碩士論文
59. 莊鎮宇,,『奈米碳管在熱裂解化學氣相沉積法中的成長機制研究』,國立清華大學博士論文, (2004)
60. Kukovitsky, E. F., L’vov, S. G., & Sainov, N. A. (2000). VLS-growth of carbon nanotubes from the vapor. Chemical Physics Letters, 317, 65-70.
61. Li, D. C., Dai, L., Huang, S., Mau, W. H. A., & Wang, Z. L. (2000). Structure and growth of aligned carbon nanotube films by pyrolysis. Chemical Physics Letters, 316, 349-355.
62. Kunadian, I., Andrews, R; Qian, D., & Mengüç, M. P. (2009). Growth kinetics of MWCNTs synthesized by a continuous-feed CVD method. Carbon, 47, 2, 384-395.
63. Xing, Y., Li, L., Chusuei, C. C., & Hull, R. V. (2005). Sonochemical Oxidation of Multiwalled Carbon Nanotubes. Langmuir, 21, 9, 4185-4190.
64. Musso, S., Porro, S., Vinante, M., Vanzetti, L., Ploeger, R,. Giorcelli, M., Possetti, B., Trotta, F., Pederzolli, C. &. Tagliaferro A. (2007). Modification of MWNTs obtained by thermal-CVD. Diamond & Related Materials 16, 1183–1187.
65. Elbert, D., & Hubbel, J. (1996). Surface Treatments of Polymers for Biocompatibility. Annu. Rev. Mater. Sc., 26, 294- 365.
66. Jeon, S., & Andrade, J. (1991). Protein—surface interactions in the presence of polyethylene oxide: II. Effect of protein size. Colloid Interface Sci., 142, 1, 159-166.
67. Bailey, J. E., Ollis, D. F. (1976). Biochemical engineering fundamentals. Chemical Engineering Education, 10, 4, 162-165.
68. Wilson, D. S., Nock, S. (2001). Functional protein microarrays. Current Opinion
in Chemical Biology, 6, 81-85
69. Vijayendran, R. A., Leckband, D. E. (2001). A quantitative assessment of
heterogeneity for surface-immobilized proteins. Analytical chemistry. 73, 471-480.
70. Gering, J. P., Quaroni, L., Chumanov, G. (2002). Immobilization of antibodies on
glass surfaces through sugar residues. Journal of Colloid and Interface Science 252,
50–56.
71. Nisnevitch, M., Kolog-Gulco, M., Trombka, D., Green, B. S., Firer, M. A. (2000).
Immobilization of antibodies onto glass wool. Journal of Chromatography B, 738,
217–223.
72.http://74.125.153.132/search?q=cache:M9-5MRMpVpYJ:en.wikipedia.org/wiki/Carbodiimide+O-acylisourea&cd=1&hl=zh-TW&ct=clnk&gl=tw
73. Grabrek, Z., Gergely, J. (1990). Zero-length crosslinking procedure with the use of active ssters. Analytical Biochemistry, 185, 131-135.

74. Olde Damink, L. H. H., Dijkstra, P. J., Luyn, M. J. A. van., Wachem, P. B. van., Nieuwenhuis, P., & Feijen, J. (1996). Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials, 17, 765-773.
75. Wilchek, M., & Bayer, E. A. (1999). Foreword and introduction to the book (strept)avidin-biotin system. Biomolecular Engineering, 16, 1-4.
76. Weber, P. C., Wendoloski, J. J., Pantoliano, M. W., Salemme, F. R. (1992). Crystallographic and thermodynamic comparison of natural and synthetic ligands bound to streptavidin. J. Am. Chem. Soc., 114, 3197-3200.
77. Hermanson, G. T. (1995). Bioconjugate Techniques. Academic Press.
78. Freitag, S., Trong, I. L,. Klumb, L. P., Stayton, S., Stenkamp, R. E. (1997).
Structural studies of the streptavidin binding loop. Protein Sci., 6. 1157-1166.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45130-
dc.description.abstract近日來生物分子檢測系統快速發展,並且大量應用在癌症的早期篩檢方面。常見的系統如immunoradiometric assay(IRMA)、fluorescence immunoassay(FIA)、chemiluminescence immunoassay(CLIA)、enzyme-linked immunoassay(ELISA)都頗有成效,但是在系統的靈敏性和專一性方面,仍然有許多改善空間。
本研究為了增加生物分子檢測的靈敏性,採用多壁奈米碳管當做基材,利用其高比表面積的特性,使系統能檢測的生物分子比一般固體基材更多,從而增加靈敏度。並且以抗體和抗原之間的專一性結合(specific binding)為基礎,讓系統中的抗體對生物分子或癌症抗原進行抓取。而被抓取的抗原,將會和系統中的偵測抗體-DNA片段複合物再做結合,其中DNA片段可用PCR技術複製,從而達到放大訊號,增加靈敏度的目的。
為了增加系統的專一性,而使微量生物分子檢測更加精確,本研究先在矽基板上以微波電漿輔助化學氣相沈積法(MPCVD)覆蓋一層疏水性的鑽石薄膜(diamond film)來減少親水性蛋白質與親水性基板之間的非專一性結合,然後在其上以熱燈絲化學氣相沈積法(HFCVD)成長出多壁奈米碳管(multiple-walled carbon nanotubes)。並將奈米碳管酸處理後接上聚氧乙烯二胺(PEG bis-amine),利用其立體障礙在液體之中的泳動現象,以及帶負電而產生的斥力,來減少非專一性結合的發生。
實驗結果顯示,在氫氣流量為300 sccm,甲烷流量20 sccm,氮氣流量1.5 sccm,腔體壓力100 torr,微波功率1200 W,成長時間180分鐘,並且在580°C下做一小時的熱處理的鑽石膜,最能兼具疏水性與鑽石膜品質,並且便於後續奈米碳管生長。而氮氣流量140 sccm、乙炔流量17.5 sccm,成長溫度800°C,前趨物昇華溫度200°C,成長時間120分鐘,則能夠生長出比表面積大,粗細均勻,長度較長,且較具方向性的奈米碳管。並且由實驗結果得知,本研究建構的生物分子檢測系統其偵測極限約在0.02μg/ml,而非對應性的抗原,只要濃度不超過200μg/ml,就不會因為非專一性結合而產生偽陽性的訊號。
zh_TW
dc.description.abstractBiomolecule detection system has been rapidly developed, and it has also been generally applied onto early diagnosis of cancer. Commonly seen system such as immunoradiometric assay(IRMA)、fluorescence immunoassay(FIA)、chemiluminescence immunoassay(CLIA)、enzyme-linked immunoassay(ELISA)、immuno-polymerase chain reaction(Immuno-PCR) are all functioning effectively. Among them, there is a system which is called immuno-PCR is working through specific binding between antibody in the system and the antigen/biomplecules. The antigen which is captured will be combined with detection antibody –DNA fragment complex in the system, and the DNA fragment can be duplicated by PCR technology to enlarge the signal. Therefore, the sensitivity of immuno-PCR is much better than the commonly used ELISA system.
So far we have known that immuno-PCR is to fix antibody on glass substrate by any means in order to catch antigen. However, the hydrophilic antigen or proteins are easily attached to hydrophilic glass substrate, and cause non-specific binding which leads to the inaccuracy in examination result.
To improve the accuracy in examination result, a layer of hydrophobic diamond film has been grown on silicon substrate by MPCVD to decrease non-specific binding, subsequently the multi-walled carbon nanotubes are grown on it by HFCVD. After that the substrate processed an acid treatment, and then connected with PEG bis-amine, which can decrease non-specific binding by its steric repulsion, and the repulsion due to its negative electricity, which caused a waving effect . Moreover, it was connected to the C-terminal of α-1 antitrypsin antibody, and let the N-terminal of antibody can still remain active and caught the corresponded α-1 antitrypsin protein. After that we added in the detection antibody, that is, biotinylated α-1 antitrypsin antibody, which could be captured by the α-1 antitrypsin protein on the substrate. At the same time, the detection antibody was connected to the biotinylated DNA fragment through streptavidin, therefore we could amplify the signal by PCR.

In order to know the sensitivity and specificity of the system, α-1 antitrypsin proteins with different concentration have been detected. Polylysine has also been added in to compare that if the non-specific binding has diminished or not.
The experiment result turns out that the diamond film which is under 300 sccm hydrogen, 20 sccm methane, 1.5 sccm nitrogen, 100 torr chamber pressure, 1200W microwave power, 180 minutes growing time and processed for 1 hour heat treatment under 580°C demonstrates best quality of hydrophobicity and is also better for following growth of carbon nanotubes, while under the condition of 140 sccm nitrogen, 17.5 sccm C2H2, growing temperature 800°C, precursor sublimed temperature 200°C, growing time 120 minutes can grow the carbon nanotubes which is longer, has larger specific surface area, with uniform thickness, and the directionality. Also, from the experiment result, it shows that the detection limit of the trace biomolecule detection system built up by this research is about 0.02 μg/ml, and the unwanted signal will not appear if the concentration of non-specific protein is less than 100 μg/ml.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:05:40Z (GMT). No. of bitstreams: 1
ntu-99-R96527004-1.pdf: 16258347 bytes, checksum: 42af653926745531476eccb0aaf5e19a (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents中文摘要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1.1 前言 1
1.2 免疫檢驗法 2
1.2.1 抗原-抗體反應(antigen-antibody reaction) 2
1.2.2 免疫檢驗法分類 3
1.2.2.1 免疫沉澱或凝集 3
1.2.2.2 免疫電泳 4
1.2.2.3 固相免疫分析 4
1.2.2.4 Immuno-polymerase chain reaction (Immuno-PCR) 7
1.3 研究目的 8
第二章 理論基礎 10
2.1 鑽石膜 10
2.1.1 鑽石的特性 10
2.1.2 鑽石的結構 10
2.1.3 鑽石膜的成長方法 13
2.1.4 鑽石膜的成核與成長機制 14
2.1.4.1 鑽石的成核 15
2.1.4.2提高鑽石孕核的方法 16
2.1.4.3 鑽石的成長 17
2.1.5 鑽石膜的熱處理 19
2.2 多璧奈米碳管 19
2.2.1 奈米碳管的特性 19
2.2.2 奈米碳管的結構 20
2.2.3 奈米碳管的成長方法 22
2.2.3.1 電弧法 22
2.2.3.2 催化熱解法 23
2.2.4 奈米碳管的成長機制 26
2.2.4.1 林德曼準則(Lindemann’ s criterion) 26
2.2.4.2 氣-液-固(VLS)機制 27
2.2.4.3 頂部成長(top growth)與底部成長(base growth) 28
2.2.5 奈米碳管的酸處理 30
2.3 聚氧乙烯二胺(PEG bis-amine) 32
2.3.1 PEG的應用 32
2.3.2 PEG減少非專一性吸附的原因 33
2.4 Immuno-PCR原理 33
2.4.1 生物固定化方法 33
2.4.1.1 基材直接和生物分子固定 34
2.4.1.2 活化基材後以交聯法固定 35
2.4.2 二次抗體與DNA片段標記物 38
2.4.2.1 Biotin 38
2.4.2.2 Streptavidin 40
2.4.2.3 Streptavidin-biotin的複雜結構(complex structure) 41
2.4.3 Polymerase chain reaction (PCR)原理 42
第三章 實驗方法 45
3.1 實驗儀器 45
3.2 實驗藥品 47
3.3 實驗流程 49
3.3.1 鑽石膜成長 50
3.3.1.1 基材前處理 50
3.3.1.2 鑽石膜沉積步驟 50
3.3.1.3 鑽石膜的熱處理 52
3.3.2 多璧奈米碳管的成長 52
3.3.2.1 多璧奈米碳管的沉積步驟 52
3.3.3 immuno-PCR檢測 54
3.3.3.1 酸處理方法 54
3.3.3.2 奈米碳管與PEG的連結 54
3.3.3.3 PEG與抗體的連結 55
3.3.3.4 加入不同濃度的α1- antitrypsin抗原以及polylysine protein 55
3.3.3.5 二次抗體和DNA片段標記物 55
3.3.3.6 聚合酶連鎖反應 56
3.4 分析方法 56
3.4.1 接觸角量測 56
3.4.2 拉曼光譜分析 57
3.4.3 掃描式電子顯微鏡 57
3.4.4 原子力顯微鏡 58
3.4.5 穿透式電子顯微鏡 58
3.4.6 傅立葉轉換紅外線光譜分析 59
3.4.7 熱重分析儀 59
3.4.8 BET比表面積分析 59
3.4.9十二烷基磺酸鈉-聚丙烯醯胺膠體電泳分析(SDS-PAGE) 60
3.4.9.1 SDS膠體電泳原理(Theory of SDS-PAGE) 60
3.4.9.2 板膠玻璃的架設(Setting of glass plate) 61
3.4.9.3 配製12.5%聚丙烯醯胺板膠(Preparation of acrylamide gel) 61
3.4.9.4蛋白質樣品的處理(Sample preparation) 63
3.4.9.5電泳緩衝液的製備(Preparation of running buffer) 63
3.4.9.6電泳之操作方法(Protocol for electrophoresis) 63
3.4.9.7 蛋白質染色(Protein stain) 64
3.4.10 瓊酯電泳 65
第四章 結果與討論 66
4.1 鑽石膜成長 66
4.1.1 基材預處理對鑽石膜成長的影響 66
4.1.2 壓力對鑽石膜成長的影響 69
4.1.3 甲烷流量對鑽石膜成長的影響 75
4.1.4 氮氣流量的影響 80
4.1.5 熱處理的影響 85
4.2 多壁奈米碳管的成長 88
4.2.1 不同成長溫度對多壁奈米碳管成長的影響 88
4.2.2 氮氣和乙炔不同流量比例對奈米碳管成長的影響 91
4.2.3 氮氣和乙炔流量比8:1下,不同總流量的影響 103
4.3 immuno-PCR檢測 106
4.3.1 奈米碳管的酸處理 106
4.3.2 PEG接枝 111
4.3.3 PEG與抗體的連結 113
4.4.3 Immuno-PCR 靈敏性測試 114
4.4.4 Immuno-PCR 專一性測試 115
第五章 結論 116
未來展望 118
參考文獻 119
dc.language.isozh-TW
dc.subject聚合酵素鏈鎖反應zh_TW
dc.subject鑽石膜zh_TW
dc.subject奈米碳管zh_TW
dc.subject抗體抗原專一性結合zh_TW
dc.subject聚氧乙烯二胺zh_TW
dc.subjectPEG bis-amineen
dc.subjectPCRen
dc.subjectdiamond filmen
dc.subjectcarbon nanotubesen
dc.subjectantibody-antigen specific bindingen
dc.title微量生物分子檢測系統zh_TW
dc.titleTrace Biomolecule detection systemen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.coadvisor林峰輝,吳玉祥
dc.contributor.oralexamcommittee陳克紹,張文固
dc.subject.keyword鑽石膜,奈米碳管,抗體抗原專一性結合,聚氧乙烯二胺,聚合酵素鏈鎖反應,zh_TW
dc.subject.keyworddiamond film,carbon nanotubes,antibody-antigen specific binding,PEG bis-amine,PCR,en
dc.relation.page127
dc.rights.note有償授權
dc.date.accepted2010-02-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
15.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved