請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45108完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童世煌 | |
| dc.contributor.author | Hwai-Te Chiu | en |
| dc.contributor.author | 邱懷德 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:04:48Z | - |
| dc.date.available | 2016-08-23 | |
| dc.date.copyright | 2011-08-23 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-22 | |
| dc.identifier.citation | 1. Binnig G, Rohrer H: Scanning Tunneling Microscopy. Ibm Journal of Research and Development 1986, 30(4):355-369.
2. Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE: C-60 - Buckminsterfullerene. Nature 1985, 318(6042):162-163. 3. Narayan RJ, Kumta PN, Sfeir C, Lee DH, Olton D, Choi DW: Nanostructured ceramics in medical devices: Applications and prospects. Jom-Us 2004, 56(10):38-43. 4. Clapp AR, Medintz IL, Mattoussi H: Forster resonance energy transfer investigations using quantum-dot fluorophores. Chemphyschem 2006, 7(1):47-57. 5. Tessler N, Medvedev V, Kazes M, Kan SH, Banin U: Efficient near-infrared polymer nanocrystat light-emitting diodes. Science 2002, 295(5559):1506-1508. 6. Huynh WU, Dittmer JJ, Alivisatos AP: Hybrid nanorod-polymer solar cells. Science 2002, 295(5564):2425-2427. 7. Fahmi A, Pietsch T, Mendoza C, Cheval N: Functional hybrid materials. Mater Today 2009, 12(5):44-50. 8. Murray RW: Nanoelectrochemistry: Metal nanoparticles, nanoelectrodes, and nanopores. Chemical Reviews 2008, 108(7):2688-2720. 9. Sohn BH, Choi JM, Yoo SI, Yun SH, Zin WC, Jung JC, Kanehara M, Hirata T, Teranishi T: Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer micelles. J Am Chem Soc 2003, 125(21):6368-6369. 10. Lehn JM: SUPRAMOLECULAR CHEMISTRY - SCOPE AND PERSPECTIVES MOLECULES, SUPERMOLECULES, AND MOLECULAR DEVICES. Angewandte Chemie-International Edition in English 1988, 27(1):89-112. 11. Ciferri A: Supramolecular liquid crystallinity as a mechanism of supramolecular polymerization. Liquid Crystals 1999, 26(4):489-494. 12. Meier DJ: THEORY OF BLOCK COPOLYMERS .I. DOMAIN FORMATION IN A-B BLOCK COPOLYMERS. Journal of Polymer Science Part C-Polymer Symposium 1969(26PC):81-&. 13. Helfand E: BLOCK COPOLYMER THEORY .3. STATISTICAL-MECHANICS OF MICRODOMAIN STRUCTURE. Macromolecules 1975, 8(4):552-556. 14. Helfand E, Wasserman ZR: BLOCK COPOLYMER THEORY .4. NARROW INTERPHASE APPROXIMATION. Macromolecules 1976, 9(6):879-888. 15. Helfand E, Wasserman ZR: BLOCK COPOLYMER THEORY .5. SPHERICAL DOMAINS. Macromolecules 1978, 11(5):960-966. 16. Helfand E, Wasserman ZR: BLOCK CO-POLYMER THEORY .6. CYLINDRICAL DOMAINS. Macromolecules 1980, 13(4):994-998. 17. Leibler L: THEORY OF MICROPHASE SEPARATION IN BLOCK CO-POLYMERS. Macromolecules 1980, 13(6):1602-1617. 18. Vavasour JD, Whitmore MD: SELF-CONSISTENT MEAN FIELD-THEORY OF THE MICROPHASES OF DIBLOCK COPOLYMERS. Macromolecules 1992, 25(20):5477-5486. 19. Matsen MW, Schick M: STABLE AND UNSTABLE PHASES OF A DIBLOCK COPOLYMER MELT. Phys Rev Lett 1994, 72(16):2660-2663. 20. Matsen MW, Bates FS: Unifying weak- and strong-segregation block copolymer theories. Macromolecules 1996, 29(4):1091-1098. 21. Matsen MW, Bates FS: Origins of complex self-assembly in block copolymers. Macromolecules 1996, 29(23):7641-7644. 22. Hajduk DA, Takenouchi H, Hillmyer MA, Bates FS, Vigild ME, Almdal K: Stability of the perforated layer (PL) phase in diblock copolymer melts. Macromolecules 1997, 30(13):3788-3795. 23. Hajduk DA, Harper PE, Gruner SM, Honeker CC, Kim G, Thomas EL, Fetters LJ: THE GYROID - A NEW EQUILIBRIUM MORPHOLOGY IN WEAKLY SEGREGATED DIBLOCK COPOLYMERS. Macromolecules 1994, 27(15):4063-4075. 24. Alward DB, Kinning DJ, Thomas EL, Fetters LJ: EFFECT OF ARM NUMBER AND ARM MOLECULAR-WEIGHT ON THE SOLID-STATE MORPHOLOGY OF POLY(STYRENE-ISOPRENE) STAR BLOCK COPOLYMERS. Macromolecules 1986, 19(1):215-224. 25. Thomas EL, Alward DB, Kinning DJ, Martin DC, Handlin DL, Fetters LJ: ORDERED BICONTINUOUS DOUBLE-DIAMOND STRUCTURE OF STAR BLOCK COPOLYMERS - A NEW EQUILIBRIUM MICRODOMAIN MORPHOLOGY. Macromolecules 1986, 19(8):2197-2202. 26. Takenaka M, Hashimoto T: Evaluation of interface curvature in complex fluids from scattered intensity. Physica A 2000, 276(1-2):22-29. 27. Thomas EL, Anderson DM, Henkee CS, Hoffman D: PERIODIC AREA-MINIMIZING SURFACES IN BLOCK COPOLYMERS. Nature 1988, 334(6183):598-601. 28. Ikkala O, ten Brinke G: Hierarchical self-assembly in polymeric complexes: Towards functional materials. Chem Commun 2004(19):2131-2137. 29. Maki-Ontto R, de Moel K, de Odorico W, Ruokolainen J, Stamm M, ten Brinke G, Ikkala O: 'Hairy tubes': Mesoporous materials containing hollow self-organized cylinders with polymer brushes at the walls. Adv Mater 2001, 13(2):117-121. 30. Polushkin E, van Ekenstein GA, Dolbnya I, Bras W, Ikkala O, ten Brinke G: In situ radial small angle synchrotron X-ray scattering study of shear-induced macroscopic orientation of hierarchically structured comb-shaped supramolecules. Macromolecules 2003, 36(5):1421-1423. 31. Polushkin E, Bondzic S, de Wit J, van Ekenstein GA, Dolbnya I, Bras W, Ikkala O, ten Brinke G: In-situ SAXS study on the alignment of ordered systems of comb-shaped supramolecules: A shear-induced cylinder-to-cylinder transition. Macromolecules 2005, 38(5):1804-1813. 32. Sidorenko A, Tokarev I, Minko S, Stamm M: Ordered reactive nanomembranes/nanotemplates from thin films of block copolymer supramolecular assembly. J Am Chem Soc 2003, 125(40):12211-12216. 33. Makinen R, Ruokolainen J, Ikkala O, de Moel K, ten Brinke G, De Odorico W, Stamm M: Orientation of supramolecular self-organized polymeric nanostructures by oscillatory shear flow. Macromolecules 2000, 33(9):3441-3446. 34. Bondzic S, de Wit J, Polushkin E, Schouten AJ, ten Brinke G, Ruokolainen J, Ikkala O, Dolbnya I, Bras W: Self-assembly of supramolecules consisting of octyl gallate hydrogen bonded to polyisoprene-block-poly(vinylpyridine) diblock copolymers. Macromolecules 2004, 37(25):9517-9524. 35. van Ekenstein GA, Polushkin E, Nijland H, Ikkala O, ten Brinke G: Shear alignment at two length scales: Comb-shaped supramolecules self-organized as cylinders-within-lamellar hierarchy. Macromolecules 2003, 36(10):3684-3688. 36. Ruokolainen J, ten Brinke G, Ikkala O: Supramolecular polymeric materials with hierarchical structure-within-structure morphologies. Adv Mater 1999, 11(9):777-780. 37. Ruokolainen J, Saariaho M, Ikkala O, ten Brinke G, Thomas EL, Torkkeli M, Serimaa R: Supramolecular routes to hierarchical structures: Comb-coil diblock copolymers organized with two length scales. Macromolecules 1999, 32(4):1152-1158. 38. Ruotsalainen T, Turku J, Heikkila P, Ruokolainen J, Nykanen A, Laitinen T, Torkkeli M, Serimaa R, ten Brinke G, Harlin A et al: Towards internal structuring of electrospun fibers by hierarchical self-assembly of polymeric comb-shaped supramolecules. Adv Mater 2005, 17(8):1048-+. 39. Luyten MC, van Ekenstein G, ten Brinke G, Ruokolainen J, Ikkala O, Torkkeli M, Serimaa R: Crystallization and cocrystallization in supramolecular comb copolymer-like systems: Blends of poly(4-vinylpyridine) and pentadecylphenol. Macromolecules 1999, 32(13):4404-4410. 40. Tiitu M, Volk N, Torkkeli M, Serimaa R, ten Brinke G, Ikkala O: Cylindrical self-assembly and flow alignment of comb-shaped supramolecules of electrically conducting polyaniline. Macromolecules 2004, 37(19):7364-7370. 41. Ikkala O, Ruokolainen J, Tenbrinke G, Torkkeli M, Serimaa R: MESOMORPHIC STATE OF POLY(VINYLPYRIDINE)-DODECYLBENZENESULFONIC ACID COMPLEXES IN BULK AND IN XYLENE SOLUTION. Macromolecules 1995, 28(21):7088-7094. 42. Kosonen H, Valkama S, Hartikainen J, Eerikainen H, Torkkeli M, Jokela K, Serimaa R, Sundholm F, ten Brinke G, Ikkala O: Mesomorphic structure of poly(styrene)-block-poly(4-vinylpyridine) with oligo(ethylene oxide)sulfonic acid side chains as a model for molecularly reinforced polymer electrolyte. Macromolecules 2002, 35(27):10149-10154. 43. Kosonen H, Valkama S, Ruokolainen J, Torkkeli M, Serimaa R, ten Brinke G, Ikkala O: One-dimensional optical reflectors based on self-organization of polymeric comb-shaped supramolecules. Eur Phys J E 2003, 10(1):69-75. 44. Chen HL, Hsiao MS: Self-assembled mesomorphic complexes of branched poly(ethylenimine) and dodecylbenzenesulfonic acid. Macromolecules 1999, 32(9):2967-2973. 45. Valkama S, Lehtonen O, Lappalainen K, Kosonen H, Castro P, Repo T, Torkkeli M, Serimaa R, ten Brinke G, Leskela M et al: Multicomb polymeric supramolecules and their self-organization: Combination of coordination and ionic interactions. Macromol Rapid Comm 2003, 24(9):556-560. 46. Yin Y, Alivisatos AP: Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437(7059):664-670. 47. Hutchison JE, Dahl JA, Maddux BLS: Toward greener nanosynthesis. Chemical Reviews 2007, 107(6):2228-2269. 48. Murray CB, Norris DJ, Bawendi MG: Synthesis and Characterization of Nearly Monodisperse Cde (E = S, Se, Te) Semiconductor Nanocrystallites. J Am Chem Soc 1993, 115(19):8706-8715. 49. Kumar S, Nann T: Shape control of II-VI semiconductor nanomateriats. Small 2006, 2(3):316-329. 50. Yu WW, Peng XG: Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew Chem Int Edit 2002, 41(13):2368-2371. 51. Wang X, Zhuang J, Peng Q, Li YD: A general strategy for nanocrystal synthesis. Nature 2005, 437(7055):121-124. 52. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R: Synthesis of Thiol-Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System. Journal of the Chemical Society-Chemical Communications 1994(7):801-802. 53. Teranishi T, Hasegawa S, Shimizu T, Miyake M: Heat-induced size evolution of gold nanoparticles in the solid state. Adv Mater 2001, 13(22):1699-1701. 54. Zhao F, Yang Y: Heat-Induced Formation of Monodisperse Gold Nanoparticles in Different Conditions. J Disper Sci Technol 2010, 31(4):471-478. 55. Nikoobakht B, El-Sayed MA: Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 2003, 15(10):1957-1962. 56. Zhang H, Han JS, Yang B: Structural Fabrication and Functional Modulation of Nanoparticle-Polymer Composites. Adv Funct Mater 2010, 20(10):1533-1550. 57. Chan YNC, Craig GSW, Schrock RR, Cohen RE: Synthesis of Palladium and Platinum Nanoclusters within Microphase-Separated Diblock Copolymers. Chem Mater 1992, 4(4):885-894. 58. Saito R, Okamura S, Ishizu K: Introduction of Colloidal Silver into a Poly(2-Vinyl Pyridine) Microdomain of Microphase Separated Poly(Styrene-B-2-Vinyl Pyridine) Film. Polymer 1992, 33(5):1099-1101. 59. Hashimoto T, Harada M, Sakamoto N: Incorporation of metal nanoparticles into block copolymer nanodomains via in-situ reduction of metal ions in microdomain space. Macromolecules 1999, 32(20):6867-6870. 60. Sohn BH, Seo BH: Fabrication of the multilayered nanostructure of alternating polymers and gold nanoparticles with thin films of self-assembling diblock copolymers. Chem Mater 2001, 13(5):1752-1757. 61. Yang B, Lu CL: High refractive index organic-inorganic nanocomposites: design, synthesis and application. J Mater Chem 2009, 19(19):2884-2901. 62. Bronstein LM, Seregina MV, Platonova OA, Kabachii YA, Chernyshov DM, Ezernitskaya MG, Dubrovina LV, Bragina TP, Valetsky PM: Synthesis of Pd-, Pt-, and Rh-containing polymers derived from polystyrene-polybutadiene block copolymers; micellization of diblock copolymers due to complexation. Macromol Chem Physic 1998, 199(7):1357-1363. 63. Hamdoun B, Ausserre D, Joly S, Gallot Y, Cabuil V, Clinard C: New nanocomposite materials. Journal De Physique Ii 1996, 6(4):493-501. 64. Yeh SW, Wei KH, Sun YS, Jeng US, Liang KS: CdS nanoparticles induce a morphological transformation of poly(styrene-b-4-vinylpyridine) from hexagonally packed cylinders to a lamellar structure. Macromolecules 2005, 38(15):6559-6565. 65. Chiu JJ, Kim BJ, Kramer EJ, Pine DJ: Control of nanoparticle location in block copolymers. J Am Chem Soc 2005, 127(14):5036-5037. 66. Binder WH: Supramolecular assembly of nauoparticles at liquid-liquid interfaces. Angew Chem Int Edit 2005, 44(33):5172-5175. 67. Bockstaller MR, Lapetnikov Y, Margel S, Thomas EL: Size-selective organization of enthalpic compatibilized nanocrystals in ternary block copolymer/particle mixtures. J Am Chem Soc 2003, 125(18):5276-5277. 68. Thompson RB, Ginzburg VV, Matsen MW, Balazs AC: Predicting the mesophases of copolymer-nanoparticle composites. Science 2001, 292(5526):2469-2472. 69. Lee JY, Thompson RB, Jasnow D, Balazs AC: Entropically driven formation of hierarchically ordered nanocomposites. Phys Rev Lett 2002, 89(15):-. 70. Spontak RJ, Shankar R, Bowman MK, Krishnan AS, Hamersky MW, Samseth J, Bockstaller MR, Rasmussen KO: Selectivity- and size-induced segregation of molecular and nanoscale species in microphase-ordered triblock copolymers. Nano Letters 2006, 6(9):2115-2120. 71. Glogowski E, Tangirala R, Russell TP, Emrick T: Functionalization of nanoparticles for dispersion in polymers and assembly in fluids. J Polym Sci Pol Chem 2006, 44(17):5076-5086. 72. Templeton AC, Wuelfing MP, Murray RW: Monolayer protected cluster molecules. Accounts of Chemical Research 2000, 33(1):27-36. 73. Hong R, Fischer NO, Emrick T, Rotello VM: Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications. Chem Mater 2005, 17(18):4617-4621. 74. Alivisatos AP, Owen JS, Park J, Trudeau PE: Reaction chemistry and ligand exchange at cadmium-selenide nanocrystal surfaces. J Am Chem Soc 2008, 130(37):12279-+. 75. Beard MC, Midgett AG, Law M, Semonin OE, Ellingson RJ, Nozik AJ: Variations in the Quantum Efficiency of Multiple Exciton Generation for a Series of Chemically Treated PbSe Nanocrystal Films. Nano Letters 2009, 9(2):836-845. 76. Ruokolainen J, Tanner J, Tenbrinke G, Ikkala O, Torkkeli M, Serimaa R: Poly(4-Vinyl Pyridine)/Zinc Dodecyl Benzene Sulfonate Mesomorphic State Due to Coordination Complexation. Macromolecules 1995, 28(23):7779-7784. 77. Antonietti M, Conrad J, Thunemann A: Polyelectrolyte-Surfactant Complexes - a New-Type of Solid, Mesomorphous Material. Macromolecules 1994, 27(21):6007-6011. 78. Ober CK, Wegner G: Polyelectrolyte-surfactant complexes in the solid state: Facile building blocks for self-organizing materials. Adv Mater 1997, 9(1):17-&. 79. Kato T, Frechet JMJ: Stabilization of a Liquid-Crystalline Phase through Noncovalent Interaction with a Polymer Side-Chain. Macromolecules 1989, 22(9):3818-3819. 80. Stewart D, Imrie CT: Toward supramolecular side-chain liquid crystal polymers .5. The template receptor approach. Macromolecules 1997, 30(4):877-884. 81. White TJ, Serak SV, Tabiryan NV, Vaia RA, Bunning TJ: Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers (vol 19, pg 1080, 2009). J Mater Chem 2009, 19(48):9284-9284. 82. Ikkala O, Valkama S, Ruotsalainen T, Nykanen A, Laiho A, Kosonen H, ten Brinke G, Ruokolainen J: Self-assembled structures in diblock copolymers with hydrogen-bonded amphiphilic plasticizing compounds. Macromolecules 2006, 39(26):9327-9336. 83. Ruokolainen J, Makinen R, Torkkeli M, Makela T, Serimaa R, ten Brinke G, Ikkala O: Switching supramolecular polymeric materials with multiple length scales. Science 1998, 280(5363):557-560. 84. Zhao Y, Thorkelsson K, Mastroianni AJ, Schilling T, Luther JM, Rancatore BJ, Matsunaga K, Jinnai H, Wu Y, Poulsen D et al: Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nat Mater 2009, 8(12):979-985. 85. Lo CT, Kuo PY: Synthesis and Magnetic Properties of Iron Phosphide Nanorods. J Phys Chem C 2010, 114(11):4808-4815. 86. Kabalnov AS, Pertzov AV, Shchukin ED: OSTWALD RIPENING IN 2-COMPONENT DISPERSE PHASE SYSTEMS - APPLICATION TO EMULSION STABILITY. Colloids and Surfaces 1987, 24(1):19-32. 87. Kabalnov AS, Shchukin ED: OSTWALD RIPENING THEORY - APPLICATIONS TO FLUOROCARBON EMULSION STABILITY. Adv Colloid Interfac 1992, 38:69-97. 88. Ratke L, Voorhees PW: Growth and coarsening : Ostwald ripening in material processing. Berlin ; New York: Springer; 2002. 89. Tung SH, Lee CH: Microdomain control in block copolymer-based supramolecular thin films through varying the grafting density of additives. Soft Matter 2011, 7(12):5660-5668. 90. Xiang HQ, Shin K, Kim T, Moon SI, McCarthy TJ, Russell TP: Block copolymers under cylindrical confinement. Macromolecules 2004, 37(15):5660-5664. 91. Russell TP, Dobriyal P, Xiang HQ, Kazuyuki M, Chen JT, Jinnai H: Cylindrically Confined Diblock Copolymers. Macromolecules 2009, 42(22):9082-9088. 92. Busch P, Posselt D, Smilgies DM, Rheinlander B, Kremer F, Papadakis CM: Lamellar diblock copolymer thin films investigated by tapping mode atomic force microscopy: Molar-mass dependence of surface ordering. Macromolecules 2003, 36(23):8717-8727. 93. Yu C-H, Chuang Y-H, Tung S-H: Self-Assembly of Polystyrene-b-Poly(4-vinylpyridine) in Deoxycholic Acid Melt. Polymer, In Press, Accepted Manuscript. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45108 | - |
| dc.description.abstract | 本實驗利用不同分子量的超分子共聚物PS-b-P4VP(PDP)與奈米粒子混摻,對分子量大小造成奈米粒子不同的空間分布結果進行探討,實驗發現在分子量較小的超分子共聚物中,奈米粒子在P4VP(PDP)區間的分布會隨PDP的多寡而有顯著的影響;但對於大分子量的超分子共聚物而言,奈米粒子並不會隨著PDP的增加而有不同的分布,而是會在靠近P4VP(PDP)區間中間位置均勻分散。且奈米粒子會傾向存在於界面彎曲的區域當中。此外,我們將奈米柱加入超分子系統當中,發現PDP增加而產生的結晶會迫使奈米柱形成特殊的堆疊,此堆疊在超分子共聚物當中會使奈米柱以垂直PS-b-P4VP所形成的層狀方向排列而存在於P4VP(PDP)相當中。若PDP比例更高時,則會形成溶液中特有的液胞型態,且奈米粒子及奈米柱在此狀況下亦能選擇性地分散在P4VP(PDP)區間。
小分子扮演在此系統中扮演多重角色,不僅僅為奈米粒子及團聯式共聚物的混摻的媒介,亦可改變團聯式共聚物兩鏈段的體積分率而使超分子共聚物的型態改變,且在小分子比例很高時,小分子可扮演類似選擇性溶劑的角色而膨潤其中一鏈段,進而形成溶液中特有的液胞結構。這些多重的可調性功能使此系統具有廣泛的應用發展性。 | zh_TW |
| dc.description.abstract | It is confirmed that the incorporation of nanoparticles and nanorods into block copolymer-based supramolecules of poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) possess well selective spatial distribution into P4VP(PDP) microdomain. In this study, we investigate the effect of molecular weight of block copolymer on the spatial distribution of nanoparticles controlled by small molecules. With small molecular weight block copolymer, the spatial distribution of nanoparticles varies with different amount of PDP. However, with large molecular weight block copolymer, nanoparticles disperse around the center of P4VP(PDP) domain regardless of the amount of PDP. Favorable incorporation of nanoparticles into bended lamella is observed. Moreover, Nanorods tend to orientate perpendicular to the lamella of PS-b-P4VP when forming special aggregations of nanorods in the presence of excess free PDP in P4VP(PDP) microdomain.
Small molecules not only tailor the incorporation of various nanoparticles into supramolecular assembly by favorable mixing properties, but direct the supramolecular assembly to various morphologies. Besides, small molecules with excess amount can swell the P4VP(PDP) domain in similar to the effect of selective solvent toward P4VP. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:04:48Z (GMT). No. of bitstreams: 1 ntu-100-R98549025-1.pdf: 10704124 bytes, checksum: f711346f81be3211e2b84f4bf1f8c24f (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌謝 II
摘要 III Abstract IV 目錄 V 圖目錄 VIII 表目錄 XIV 一、 緒論 1 二、 文獻回顧 2 2-1 功能性奈米混合材料 2 2-2團聯式共聚物及超分子共聚物 5 2-2-1 團聯式共聚物之微相分離型態 6 2-2-2 梳狀超分子共聚物之微相分離型態 13 2-3 奈米粒子的合成 19 2-4 奈米粒子與團聯式共聚物的混摻 23 2-4-1 同時還原法(In-situ) 23 2-4-2 異地還原法(Ex-situ) 26 2-4-3 奈米粒子在混合材料中的空間分布及排列 30 2-5 由小分子引導的奈米粒子與超分子共聚物的混摻 33 三、 實驗方法與儀器 37 3-1 材料 37 3-2 實驗步驟 39 3-2-1 Nanoparticles的合成 39 3-2-2 奈米柱的合成 40 3-2-3混合材料的製備 40 3-2-4薄膜的製備與側面TEM分析 41 3-3 儀器原理 42 3-3-1 穿透式電子顯微鏡(TEM) 42 3-3-2 濺鍍機 43 四、 實驗結果與討論 44 4-1 碘蒸氣染色對奈米粒子在超分子共聚物中混摻的影響 44 4-2 不同分子量的超分子共聚物及PDP比例對奈米粒子混摻的影響 50 4-3 奈米柱在混合材料當中的特殊排列 72 五、 結論 85 參考文獻 86 | |
| dc.language.iso | zh-TW | |
| dc.subject | 奈米柱 | zh_TW |
| dc.subject | 雙團聯式共聚物 | zh_TW |
| dc.subject | 奈米粒子 | zh_TW |
| dc.subject | 超分子共聚物 | zh_TW |
| dc.subject | supramolecule | en |
| dc.subject | block-copolymer | en |
| dc.subject | nanorod | en |
| dc.subject | nanoparticle | en |
| dc.title | 奈米粒子與奈米柱在超分子共聚物中的空間分布探討 | zh_TW |
| dc.title | The Spatial Distribution of Nanoparticles and Nanorods in Block Copolymer-Based Supramolecules of PS-b-P4VP | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖文彬,邱文英 | |
| dc.subject.keyword | 雙團聯式共聚物,奈米粒子,奈米柱,超分子共聚物, | zh_TW |
| dc.subject.keyword | block-copolymer,supramolecule,nanoparticle,nanorod, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-23 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 10.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
