Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45074
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇慧敏(Hui-Min Su)
dc.contributor.authorAnn-Che Hsiaoen
dc.contributor.author蕭安哲zh_TW
dc.date.accessioned2021-06-15T04:03:29Z-
dc.date.available2015-03-12
dc.date.copyright2010-03-12
dc.date.issued2010
dc.date.submitted2010-02-11
dc.identifier.citationAlli PM, Pinn ML, Jaffee EM, McFadden JM & Kuhajda FP (2005) Fatty acid synthase inhibitors are chemopreventive for mammary cancer in neu-N transgenic mice. Oncogene 24, 39-46.
Alo PL, Visca P, Marci A, Mangoni A, Botti C & Di Tondo U (1996) Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients. Cancer 77, 474-482.
Anderson SM, Rudolph MC, McManaman JL & Neville MC (2007) Key stages in mammary gland development. Secretory activation in the mammary gland: it's not just about milk protein synthesis! Breast Cancer Res 9, 204.
Bandyopadhyay S, Zhan R, Wang Y, Pai SK, Hirota S, Hosobe S, Takano Y, Saito K, Furuta E, Iiizumi M, Mohinta S, Watabe M, Chalfant C & Watabe K (2006) Mechanism of apoptosis induced by the inhibition of fatty acid synthase in breast cancer cells. Cancer Res 66, 5934-5940.
Bengoechea-Alonso MT & Ericsson J (2007) SREBP in signal transduction: cholesterol metabolism and beyond. Curr Opin Cell Biol 19, 215-222.
Berquin IM, Min Y, Wu R, Wu J, Perry D, Cline JM, Thomas MJ, Thornburg T, Kulik G, Smith A, Edwards IJ, D'Agostino R, Zhang H, Wu H, Kang JX & Chen YQ (2007) Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. J Clin Invest 117, 1866-1875.
Botolin D, Wang Y, Christian B & Jump DB (2006) Docosahexaneoic acid (22:6,n-3) regulates rat hepatocyte SREBP-1 nuclear abundance by Erk- and 26S proteasome-dependent pathways. J Lipid Res 47, 181-192.
Bougnoux P, Hajjaji N, Ferrasson MN, Giraudeau B, Couet C & Le Floch O (2009) Improving outcome of chemotherapy of metastatic breast cancer by docosahexaenoic acid: a phase II trial. Br J Cancer 101, 1978-1985.
Bustamante E, Morris HP & Pedersen PL (1981) Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J Biol Chem 256, 8699-8704.
Calviello G, Di Nicuolo F, Gragnoli S, Piccioni E, Serini S, Maggiano N, Tringali G, Navarra P, Ranelletti FO & Palozza P (2004) n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. Carcinogenesis 25, 2303-2310.
Calviello G, Serini S, Piccioni E & Pessina G (2009) Antineoplastic effects of n-3 polyunsaturated fatty acids in combination with drugs and radiotherapy: preventive and therapeutic strategies. Nutr Cancer 61, 287-301.
Carroll KK (1975) Experimental evidence of dietary factors and hormone-dependent cancers. Cancer Res 35, 3374-3383.
Chajes V, Cambot M, Moreau K, Lenoir GM & Joulin V (2006) Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Res 66, 5287-5294.
Chajes V, Sattler W, Stranzl A & Kostner GM (1995) Influence of n-3 fatty acids on the growth of human breast cancer cells in vitro: relationship to peroxides and vitamin-E. Breast Cancer Res Treat 34, 199-212.
Chamras H, Ardashian A, Heber D & Glaspy JA (2002) Fatty acid modulation of MCF-7 human breast cancer cell proliferation, apoptosis and differentiation. J Nutr Biochem 13, 711-716.
Chiang CT, Way TD, Tsai SJ & Lin JK (2007) Diosgenin, a naturally occurring steroid, suppresses fatty acid synthase expression in HER2-overexpressing breast cancer cells through modulating Akt, mTOR and JNK phosphorylation. FEBS Lett 581, 5735-5742.
Clegg DJ, Wortman MD, Benoit SC, McOsker CC & Seeley RJ (2002) Comparison of central and peripheral administration of C75 on food intake, body weight, and conditioned taste aversion. Diabetes 51, 3196-3201.
Colas S, Maheo K, Denis F, Goupille C, Hoinard C, Champeroux P, Tranquart F & Bougnoux P (2006) Sensitization by dietary docosahexaenoic acid of rat mammary carcinoma to anthracycline: a role for tumor vascularization. Clin Cancer Res 12, 5879-5886.
Colas S, Paon L, Denis F, Prat M, Louisot P, Hoinard C, Le Floch O, Ogilvie G & Bougnoux P (2004) Enhanced radiosensitivity of rat autochthonous mammary tumors by dietary docosahexaenoic acid. Int J Cancer 109, 449-454.
Ettinger SL, Sobel R, Whitmore TG, Akbari M, Bradley DR, Gleave ME & Nelson CC (2004) Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res 64, 2212-2221.
Fay MP, Freedman LS, Clifford CK & Midthune DN (1997) Effect of different types and amounts of fat on the development of mammary tumors in rodents: a review. Cancer Res 57, 3979-3988.
Foster JS, Fernando RI, Ishida N, Nakayama KI & Wimalasena J (2003) Estrogens down-regulate p27Kip1 in breast cancer cells through Skp2 and through nuclear export mediated by the ERK pathway. J Biol Chem 278, 41355-41366.
Funabashi H, Kawaguchi A, Tomoda H, Omura S, Okuda S & Iwasaki S (1989) Binding site of cerulenin in fatty acid synthetase. J Biochem 105, 751-755.
Furuta E, Pai SK, Zhan R, Bandyopadhyay S, Watabe M, Mo YY, Hirota S, Hosobe S, Tsukada T, Miura K, Kamada S, Saito K, Iiizumi M, Liu W, Ericsson J & Watabe K (2008) Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res 68, 1003-1011.
Graner E, Tang D, Rossi S, Baron A, Migita T, Weinstein LJ, Lechpammer M, Huesken D, Zimmermann J, Signoretti S & Loda M (2004) The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell 5, 253-261.
Hamilton JA, Era S, Bhamidipati SP & Reed RG (1991) Locations of the three primary binding sites for long-chain fatty acids on bovine serum albumin. Proc Natl Acad Sci U S A 88, 2051-2054.
Hanahan D & Weinberg RA (2000) The hallmarks of cancer. Cell 100, 57-70.
Hardman WE, Avula CP, Fernandes G & Cameron IL (2001) Three percent dietary fish oil concentrate increased efficacy of doxorubicin against MDA-MB 231 breast cancer xenografts. Clin Cancer Res 7, 2041-2049.
Hilakivi-Clarke L, Onojafe I, Raygada M, Cho E, Clarke R & Lippman ME (1996) Breast cancer risk in rats fed a diet high in n-6 polyunsaturated fatty acids during pregnancy. J Natl Cancer Inst 88, 1821-1827.
Ho TS, Ho YP, Wong WY, Chi-Ming Chiu L, Wong YS & Eng-Choon Ooi V (2007) Fatty acid synthase inhibitors cerulenin and C75 retard growth and induce caspase-dependent apoptosis in human melanoma A-375 cells. Biomed Pharmacother 61, 578-587.
Howell G, 3rd, Deng X, Yellaturu C, Park EA, Wilcox HG, Raghow R & Elam MB (2009) N-3 polyunsaturated fatty acids suppress insulin-induced SREBP-1c transcription via reduced trans-activating capacity of LXRalpha. Biochim Biophys Acta 1791, 1190-1196.
Huang HC, Way TD, Lin CL & Lin JK (2008) EGCG stabilizes p27kip1 in E2-stimulated MCF-7 cells through down-regulation of the Skp2 protein. Endocrinology 149, 5972-5983.
Jemal A, Siegel R, Ward E, Hao Y, Xu J & Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59, 225-249.
Jensen V, Ladekarl M, Holm-Nielsen P, Melsen F & Soerensen FB (1995) The prognostic value of oncogenic antigen 519 (OA-519) expression and proliferative activity detected by antibody MIB-1 in node-negative breast cancer. J Pathol 176, 343-352.
Jump DB, Clarke SD, MacDougald O & Thelen A (1993) Polyunsaturated fatty acids inhibit S14 gene transcription in rat liver and cultured hepatocytes. Proc Natl Acad Sci U S A 90, 8454-8458.
Jump DB, Clarke SD, Thelen A & Liimatta M (1994) Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids. J Lipid Res 35, 1076-1084.
Kato T, Shimano H, Yamamoto T, Ishikawa M, Kumadaki S, Matsuzaka T, Nakagawa Y, Yahagi N, Nakakuki M, Hasty AH, Takeuchi Y, Kobayashi K, Takahashi A, Yatoh S, Suzuki H, Sone H & Yamada N (2008) Palmitate impairs and eicosapentaenoate restores insulin secretion through regulation of SREBP-1c in pancreatic islets. Diabetes 57, 2382-2392.
Knowles LM & Smith JW (2007) Genome-wide changes accompanying knockdown of fatty acid synthase in breast cancer. BMC Genomics 8, 168.
Kuhajda FP (2000) Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 16, 202-208.
Kuhajda FP (2006) Fatty acid synthase and cancer: new application of an old pathway. Cancer Res 66, 5977-5980.
Kuhajda FP, Jenner K, Wood FD, Hennigar RA, Jacobs LB, Dick JD & Pasternack GR (1994) Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci U S A 91, 6379-6383.
Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL & Townsend CA (2000) Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc Natl Acad Sci U S A 97, 3450-3454.
Lee JY, Ye J, Gao Z, Youn HS, Lee WH, Zhao L, Sizemore N & Hwang DH (2003) Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids. J Biol Chem 278, 37041-37051.
Little JL, Wheeler FB, Fels DR, Koumenis C & Kridel SJ (2007) Inhibition of fatty acid synthase induces endoplasmic reticulum stress in tumor cells. Cancer Res 67, 1262-1269.
Liu H, Liu Y & Zhang JT (2008) A new mechanism of drug resistance in breast cancer cells: fatty acid synthase overexpression-mediated palmitate overproduction. Mol Cancer Ther 7, 263-270.
Liu L, Xie Y & Lou L (2006) PI3K is required for insulin-stimulated but not EGF-stimulated ERK1/2 activation. Eur J Cell Biol 85, 367-374.
Lu IF, Hasio AC, Hu MC, Yang FM & Su HM (2009) Docosahexaenoic acid induces proteasome-dependent degradation of estrogen receptor alpha and inhibits the downstream signaling target in MCF-7 breast cancer cells. J Nutr Biochem.
Martel PM, Bingham CM, McGraw CJ, Baker CL, Morganelli PM, Meng ML, Armstrong JM, Moncur JT & Kinlaw WB (2006) S14 protein in breast cancer cells: direct evidence of regulation by SREBP-1c, superinduction with progestin, and effects on cell growth. Exp Cell Res 312, 278-288.
McPherson K, Steel CM & Dixon JM (2000) ABC of breast diseases. Breast cancer-epidemiology, risk factors, and genetics. Bmj 321, 624-628.
Medes G, Thomas A & Weinhouse S (1953) Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res 13, 27-29.
Menendez JA, Colomer R & Lupu R (2005a) Inhibition of fatty acid synthase-dependent neoplastic lipogenesis as the mechanism of gamma-linolenic acid-induced toxicity to tumor cells: an extension to Nwankwo's hypothesis. Med Hypotheses 64, 337-341.
Menendez JA, Decker JP & Lupu R (2005b) In support of fatty acid synthase (FAS) as a metabolic oncogene: extracellular acidosis acts in an epigenetic fashion activating FAS gene expression in cancer cells. J Cell Biochem 94, 1-4.
Menendez JA & Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7, 763-777.
Menendez JA, Mehmi I, Atlas E, Colomer R & Lupu R (2004a) Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB. Int J Oncol 24, 591-608.
Menendez JA, Ropero S, Lupu R & Colomer R (2004b) Dietary fatty acids regulate the activation status of Her-2/neu (c-erbB-2) oncogene in breast cancer cells. Ann Oncol 15, 1719-1721.
Menendez JA, Ropero S, Mehmi I, Atlas E, Colomer R & Lupu R (2004c) Overexpression and hyperactivity of breast cancer-associated fatty acid synthase (oncogenic antigen-519) is insensitive to normal arachidonic fatty acid-induced suppression in lipogenic tissues but it is selectively inhibited by tumoricidal alpha-linolenic and gamma-linolenic fatty acids: a novel mechanism by which dietary fat can alter mammary tumorigenesis. Int J Oncol 24, 1369-1383.
Menendez JA, Vellon L, Mehmi I, Oza BP, Ropero S, Colomer R & Lupu R (2004d) Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells. Proc Natl Acad Sci U S A 101, 10715-10720.
Mettlin C (1999) Global breast cancer mortality statistics. CA Cancer J Clin 49, 138-144.
Monaco ME & Lippman ME (1977) Insulin stimulation of fatty acid synthesis in human breast cancer in long term tissue culture. Endocrinology 101, 1238-1246.
Monaco ME, Osborne CK, Bronzert TJ, Kidwell WR & Lippman ME (1983) Characterization of insulin regulation of lipid synthesis in MCF-7 human breast cancer cells. Breast Cancer Res Treat 3, 279-285.
Nakashima RA, Paggi MG & Pedersen PL (1984) Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells. Cancer Res 44, 5702-5706.
Ookhtens M, Kannan R, Lyon I & Baker N (1984) Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor. Am J Physiol 247, R146-153.
Pala V, Krogh V, Muti P, Chajes V, Riboli E, Micheli A, Saadatian M, Sieri S & Berrino F (2001) Erythrocyte membrane fatty acids and subsequent breast cancer: a prospective Italian study. J Natl Cancer Inst 93, 1088-1095.
Pardini RS (2006) Nutritional intervention with omega-3 fatty acids enhances tumor response to anti-neoplastic agents. Chem Biol Interact 162, 89-105.
Pizer ES, Jackisch C, Wood FD, Pasternack GR, Davidson NE & Kuhajda FP (1996a) Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells. Cancer Res 56, 2745-2747.
Pizer ES, Kurman RJ, Pasternack GR & Kuhajda FP (1997) Expression of fatty acid synthase is closely linked to proliferation and stromal decidualization in cycling endometrium. Int J Gynecol Pathol 16, 45-51.
Pizer ES, Thupari J, Han WF, Pinn ML, Chrest FJ, Frehywot GL, Townsend CA & Kuhajda FP (2000) Malonyl-coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts. Cancer Res 60, 213-218.
Pizer ES, Wood FD, Heine HS, Romantsev FE, Pasternack GR & Kuhajda FP (1996b) Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer. Cancer Res 56, 1189-1193.
Porstmann T, Griffiths B, Chung YL, Delpuech O, Griffiths JR, Downward J & Schulze A (2005) PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 24, 6465-6481.
Puig T, Vazquez-Martin A, Relat J, Petriz J, Menendez JA, Porta R, Casals G, Marrero PF, Haro D, Brunet J & Colomer R (2008) Fatty acid metabolism in breast cancer cells: differential inhibitory effects of epigallocatechin gallate (EGCG) and C75. Breast Cancer Res Treat 109, 471-479.
Rose DP (1997) Effects of dietary fatty acids on breast and prostate cancers: evidence from in vitro experiments and animal studies. Am J Clin Nutr 66, 1513S-1522S.
Schley PD, Brindley DN & Field CJ (2007) (n-3) PUFA alter raft lipid composition and decrease epidermal growth factor receptor levels in lipid rafts of human breast cancer cells. J Nutr 137, 548-553.
Schley PD, Jijon HB, Robinson LE & Field CJ (2005) Mechanisms of omega-3 fatty acid-induced growth inhibition in MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat 92, 187-195.
Shimano H, Yahagi N, Amemiya-Kudo M, Hasty AH, Osuga J, Tamura Y, Shionoiri F, Iizuka Y, Ohashi K, Harada K, Gotoda T, Ishibashi S & Yamada N (1999) Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J Biol Chem 274, 35832-35839.
Swinnen JV, Brusselmans K & Verhoeven G (2006) Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 9, 358-365.
Swinnen JV, Heemers H, Deboel L, Foufelle F, Heyns W & Verhoeven G (2000) Stimulation of tumor-associated fatty acid synthase expression by growth factor activation of the sterol regulatory element-binding protein pathway. Oncogene 19, 5173-5181.
Szutowicz A, Kwiatkowski J & Angielski S (1979) Lipogenetic and glycolytic enzyme activities in carcinoma and nonmalignant diseases of the human breast. Br J Cancer 39, 681-687.
Takahashi KA, Smart JL, Liu H & Cone RD (2004) The anorexigenic fatty acid synthase inhibitor, C75, is a nonspecific neuronal activator. Endocrinology 145, 184-193.
Thiebaut AC, Chajes V, Gerber M, Boutron-Ruault MC, Joulin V, Lenoir G, Berrino F, Riboli E, Benichou J & Clavel-Chapelon F (2009) Dietary intakes of omega-6 and omega-3 polyunsaturated fatty acids and the risk of breast cancer. Int J Cancer 124, 924-931.
Toit-Kohn JL, Louw L & Engelbrecht AM (2009) Docosahexaenoic acid induces apoptosis in colorectal carcinoma cells by modulating the PI3 kinase and p38 MAPK pathways. J Nutr Biochem 20, 106-114.
Turyn J, Schlichtholz B, Dettlaff-Pokora A, Presler M, Goyke E, Matuszewski M, Kmiec Z, Krajka K & Swierczynski J (2003) Increased activity of glycerol 3-phosphate dehydrogenase and other lipogenic enzymes in human bladder cancer. Horm Metab Res 35, 565-569.
Van de Sande T, De Schrijver E, Heyns W, Verhoeven G & Swinnen JV (2002) Role of the phosphatidylinositol 3'-kinase/PTEN/Akt kinase pathway in the overexpression of fatty acid synthase in LNCaP prostate cancer cells. Cancer Res 62, 642-646.
Vazquez-Martin A, Colomer R, Brunet J, Lupu R & Menendez JA (2008) Overexpression of fatty acid synthase gene activates HER1/HER2 tyrosine kinase receptors in human breast epithelial cells. Cell Prolif 41, 59-85.
Vibet S, Goupille C, Bougnoux P, Steghens JP, Gore J & Maheo K (2008) Sensitization by docosahexaenoic acid (DHA) of breast cancer cells to anthracyclines through loss of glutathione peroxidase (GPx1) response. Free Radic Biol Med 44, 1483-1491.
Vibet S, Maheo K, Gore J, Dubois P, Bougnoux P & Chourpa I (2007) Differential subcellular distribution of mitoxantrone in relation to chemosensitization in two human breast cancer cell lines. Drug Metab Dispos 35, 822-828.
Wagle S, Bui A, Ballard PL, Shuman H, Gonzales J & Gonzales LW (1999) Hormonal regulation and cellular localization of fatty acid synthase in human fetal lung. Am J Physiol 277, L381-390.
Wang HQ, Altomare DA, Skele KL, Poulikakos PI, Kuhajda FP, Di Cristofano A & Testa JR (2005) Positive feedback regulation between AKT activation and fatty acid synthase expression in ovarian carcinoma cells. Oncogene 24, 3574-3582.
Warburg O (1956) On respiratory impairment in cancer cells. Science 124, 269-270.
Wen B, Deutsch E, Opolon P, Auperin A, Frascogna V, Connault E & Bourhis J (2003) n-3 polyunsaturated fatty acids decrease mucosal/epidermal reactions and enhance antitumour effect of ionising radiation with inhibition of tumour angiogenesis. Br J Cancer 89, 1102-1107.
Weng MS, Ho CT, Ho YS & Lin JK (2007) Theanaphthoquinone inhibits fatty acid synthase expression in EGF-stimulated human breast cancer cells via the regulation of EGFR/ErbB-2 signaling. Toxicol Appl Pharmacol 218, 107-118.
Wolf I, Levanon-Cohen S, Bose S, Ligumsky H, Sredni B, Kanety H, Kuro-o M, Karlan B, Kaufman B, Koeffler HP & Rubinek T (2008) Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene 27, 7094-7105.
Wu M, Harvey KA, Ruzmetov N, Welch ZR, Sech L, Jackson K, Stillwell W, Zaloga GP & Siddiqui RA (2005) Omega-3 polyunsaturated fatty acids attenuate breast cancer growth through activation of a neutral sphingomyelinase-mediated pathway. Int J Cancer 117, 340-348.
Yang YA, Han WF, Morin PJ, Chrest FJ & Pizer ES (2002) Activation of fatty acid synthesis during neoplastic transformation: role of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Exp Cell Res 279, 80-90.
Yang YA, Morin PJ, Han WF, Chen T, Bornman DM, Gabrielson EW & Pizer ES (2003) Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c. Exp Cell Res 282, 132-137.
Yoon S, Lee MY, Park SW, Moon JS, Koh YK, Ahn YH, Park BW & Kim KS (2007) Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. J Biol Chem 282, 26122-26131.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45074-
dc.description.abstract乳癌細胞常伴隨著脂肪酸合成酶的過度表現以提升細胞內脂肪酸合成,並形成細胞增生時所需的磷脂質來源。二十二碳六烯酸(DHA)以及二十碳四烯酸(AA)對於腫瘤行常常扮演相反角色,如在生長方面DHA 可抑制細胞生長,而AA 則具有促進效果,但目前詳細機制不明。本實驗中假設造成此相反現象可能是經由透過調控脂肪酸合成酶所導致,因此將MCF-7 細胞培養在含0、10、60μM AA、OA 以及DHA 48 小時後,再利用胰島素刺激一小時,結果可得處理60μM DHA
可使脂肪酸合成酶表現量下降,並使細胞內Akt 磷酸化現象下降;且在IC50 測試中,60μM DHA 處理之下可以降低脂肪酸合成酶抑制劑Cerulenin 的使用量,並且可加強抑制細胞存活率的效果。但在10μM DHA 或10、60μM AA 以及OA 沒有此效果。綜合以上結果可得,DHA 可能透過調控脂肪酸合成酶表現降低乳癌細胞存活率,並且與Cerulenin 對於抑制細胞存活率具有協同效應。
zh_TW
dc.description.abstractFatty acid synthase (FAS) is up regulated in breast cancer for the de novo biosynthesis of fatty acids mainly to be incorporated into phospholipids for the cell proliferation.
Docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) have opposites on carcinogenesis, with DHA suppressing and AA promoting breast cancer growth. However, the mechanism is not clear. We examined whether the effect is mediated through changes FAS expression. MCF-7 cells were cultured in normal medium containing 0, 10 or 60 mM DHA, AA or oleic acid (OA, 18:1n-9) for 48 hrs, then were stimulated with 1 mg/ml insulin. 60 mM DHA supplementation resulted in down regulation of FAS expression, a reduction on phosphorylated Akt, a decrease in the IC50 of FAS inhibitor cerulenin and enhancing cerulenin-induced viability inhibition in MCF-7. In contrast, 10 mM DHA, 10 or 60mM AA and OA had no such effects. We propose that breast cancer cell viability is inhibited by DHA through down regulation of FAS expression and DHA has a synergistic effect on FAS inhibitor for the breast cancer therapy.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:03:29Z (GMT). No. of bitstreams: 1
ntu-99-R95441009-1.pdf: 1156705 bytes, checksum: 6e35b35f1dc3e45d5353f2acbb0c170e (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目錄
中文摘要---------------------------------------------------------------------------I
英文摘要---------------------------------------------------------------------------II
目錄---------------------------------------------------------------------------------III
圖表目錄---------------------------------------------------------------------------VI
第一章 文獻回顧 1
一 緒論 1
二 腫瘤細胞特性(Characteristics of cancer) 2
三 癌症細胞代謝(Metabolism in Cancer cell)        2
(一) 脂肪酸生合成 (Lipogenesis in cancer) 3
(二) 脂肪酸合成酶 (Fatty acid synthase,FAS) 3
(三) 一般組織的脂肪酸合成酶表現 4
(四)  腫瘤脂肪酸合成酶表現 4
四 脂肪酸合成酶(FAS)之調控 5
(一) PI3K/Akt路徑 5
(二) SREBP-1轉錄因子 6
(三) 其它蛋白與蛋白後修飾作用 7
五 脂肪酸合成酶為有潛力之治療標靶 7
(一) 脂肪酸合成酶及其抑制劑 7
(二)  抑制脂肪酸合成酶與腫瘤關係 8
六 不飽和脂肪酸 9
(一) 不飽和脂肪酸簡介 9
(二)  n-3多元不飽和脂肪酸與脂肪酸合成酶調控 9
(三)  n-3多元不飽和脂肪酸與乳癌治療 10
第二章 研究目的 11
一 研究動機 11
二 研究假說與架構 11
三 研究重要性 12
第三章 材料與方法 13
一 細胞培養實驗條件 13
二 不飽和脂肪配製(UFA Stock) 16
三 FAS活性檢測 (FAS activity) 17
四 MTT細胞存活率檢測 (Viability) 20
五 西方墨點法(Western Blot) 21
六 統計方式(Statistics) 26
第四章 研究結果 27
一 不飽和脂肪酸效應 27
(一) MCF-7 FAS蛋白表現 27
(二) FAS酵素活性 27
(三) MCF-7細胞存活率檢測 27
二 不飽和脂肪酸與胰島素誘發效應 28
(一) 胰島素刺激下,UFA 對於Akt蛋白磷酸化現象 28
(二) 胰島素刺激下,UFA對於MCF-7 FAS表現 28
(三) 胰島素刺激下,DHA添加可否增加抑制劑對抑制FAS表現29
(四) 胰島素刺激下,DHA與不同抑制劑對於MCF-7 FAS 活性之影 響 29
(五) 胰島素刺激下,UFA對於MCF-7 細胞存活率之影響 30
三 不飽和脂肪酸與共同處理FAS抑制劑Cerulenin的協同效應 30
(一) 不飽和脂肪酸與Cerulenin處理之IC50檢測 30
(二) DHA存在情況下Cerulenin處理對細胞毒殺性探討 31
第五章 討論 32
一 實驗條件建立 32
(一)乳癌細胞株選擇 32
(二)MCF-7細胞實驗條件選擇 32
二 DHA調控MCF-7細胞FAS蛋白機制 34
(一)DHA藉由調控PI3K/Akt路徑降低FAS蛋白表現 34
三 DHA與MCF-7細胞FAS活性 35
四 DHA與MCF-7細胞存活率探討 36
(一) UFA效應與細胞存活率探討 37
(二) Insulin誘導效應與細胞存活率探討 37
五 DHA與Cerulenin協同作用探討 38
六 DHA與SREBP-1 40
第六章 總結 43
參考文獻 67
dc.language.isozh-TW
dc.title探討不飽和脂肪酸對於人類乳癌細胞脂肪酸合成酶之可能調控路徑zh_TW
dc.titleMechanism of unsaturated fatty acids on fatty acid synthase in MCF-7 human breast cancer cell lineen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李明學,黃青真,呂紹俊
dc.subject.keyword二十二碳六烯酸,乳癌 細胞,脂肪酸合成&#37238,zh_TW
dc.subject.keywordDocosahexaenoic acid,Breast cancer cells,Fatty acid synthase,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2010-02-11
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
1.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved