請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45070完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王根樹(Gen-Shuh Wang) | |
| dc.contributor.author | Yun-Jie Wang | en |
| dc.contributor.author | 王韻捷 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:03:20Z | - |
| dc.date.available | 2010-03-12 | |
| dc.date.copyright | 2010-03-12 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-02-11 | |
| dc.identifier.citation | 1. Rook, J. J., Formation of haloforms during chlorination of natural waters. Water Treatment and Examination 1974, 23, (2), 234-243.
2. Bellar, T. A.; Lichtenberg, J. J.; Kroner, R. C., The occurrence of organohalides in chlorinated drinking waters. Journal American Water Works Association 1974, 66, 703-706. 3. Richardson, S. D.; Plewa, M. J.; Wagner, E. D.; Schoeny, R.; DeMarini, D. M., Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutation Research-Reviews in Mutation Research 2007, 636, (1-3), 178-242. 4. Najm, I.; Trussell, R. R., NDMA formation in water and wastewater. Journal American Water Works Association 2001, 93, (2), 92-99. 5. Krasner, S. W.; Westerhoff, P.; Chen, B.; Amy, G.; Nam, S.-N.; Chowdhury, Z. K.; Sinha, S.; Rittmann, B. E., Contribution of Wastewater to DBP Formation. Awwa Research Foundation: Denver, CO, USA, 2008. 6. USEPA, Alternative Disinfectants and Oxidants Guidance Manual. U.S. Environmental Protection Agency, Office of Water. EPA 815-R-99-014, 1999. 7. Werdehoff, K. S.; Singer, P. C., CHLORINE DIOXIDE EFFECTS ON THMFP, TOXFP, AND THE FORMATION OF INORGANIC BY-PRODUCTS. Journal American Water Works Association 1987, 79, (9), 107-113. 8. Letterman, R. D.; Amirtharajah, A.; O'Melia, C. R., Coagulation and flocculation. In Water Quality and Treatment, McGraw Hill: New York, 1999; pp 6.1-6.66. 9. USEPA (U.S. Environmental Protection Agency), Community Water System Survey - Volume II. Detailed Survey Result Tables and Methodology Report. EPA 815-R-97-001b, 1997. 10. Symons, J. M.; Bellar, T. A.; Carswell, J. K.; DeMarco, J.; Kropp, K. L.; Robeck, G. G.; Seeger, D. R.; Slocum, C. J. S.; Smith, B. L.; Stevens, A. A., National Organics Reconnaissance Survey for Halogenated Organics. Journal American Water Works Association 1975, 67, (11), 634-647. 11. USEPA, National Organics Monitoring Survey (NOMS). Technical Support Division, U.S. Environmental Protection Agency, Office of Drinking Water. Cincinnati, OH., 1978. 12. Krasner, S. W.; Weinberg, H. S.; Richardson, S. D.; Pastor, S. J.; Chinn, R.; Sclimenti, M. J.; Onstad, G. D.; Thruston, A. D., Occurrence of a new generation of disinfection byproducts. Environmental Science & Technology 2006, 40, (23),7175-7185. 13. McGuire, M. J.; Ferguson, D. W.; Gramith, J. T., Overview of Ozone Technology for Organics Control and Disinfection. Conference proceedings, AWWA Seminar on Practical Experiences with Ozone for Organics Control and Disinfection, Cincinnati, OH. 1990. 14. Legube, B.; Croue, J. P.; Delaat, J.; Dore, M., OZONATION OF AN EXTRACTED AQUATIC FULVIC-ACID - THEORETICAL AND PRACTICAL ASPECTS. Ozone-Science & Engineering 1989, 11, (1), 69-91. 15. Zhang, X.; Echigo, S.; Minear, R. A.; Plewa, M. J., Characterization and comparison of disinfection by-products of four major disinfectants. In Natural Organic Matter and Disinfection By-products: Characterization and Control in Drinking Water, Barrett, S. E.; Krasner, S. W.; Amy, G. L., Eds. American Chemical Society: Washinton, DC, 2000; pp 299-314. 16. Babcock, D. B.; Singer, P. C., CHLORINATION AND COAGULATION OF HUMIC AND FULVIC-ACIDS. Journal American Water Works Association 1979, 71, (3), 149-152. 17. Christman, R. F.; Norwood, D. L.; Millington, D. S.; Johnson, J. D.; Stevens, A. A., IDENTITY AND YIELDS OF MAJOR HALOGENATED PRODUCTS OF AQUATIC FULVIC-ACID CHLORINATION. Environmental Science & Technology 1983, 17, (10), 625-628. 18. Stevens, A. A.; Slocum, C. J.; Seeger, D. R.; Robeck, G. G., CHLORINATION OF ORGANICS IN DRINKING-WATER. Journal American Water Works Association 1976, 68, (11), 615-620. 19. Westerhoff, P.; Mash, H., Dissolved organic nitrogen in drinking water supplies: a review. Journal of Water Supply Research and Technology-Aqua 2002, 51, (8), 415-448. 20. WHO (World Health Organization), N-Nitrosodimethylamine in Drinking-water - Background document for development of WHO Guidelines for Drinking-water Quality. In WHO: Geneva, 2008. 21. Callahan, M. A.; Slimak, M. W.; Gabel, N. W., Water related environmental fate of 129 priority pollutants. Versar, Inc. : Springfield, VA. EPA-440-4-79-029a,b, 1979. 22. Clayton G.D.; Clayton F.E.; M.C., B., Patty's Industrial hygiene and toxicology. 3 ed.; John Wiley and Sons: New York, NY, 1981. 23. ATSDR (Agency for Toxic Substances and Disease Registry), Toxicological profile for N-nitrosodimethylamine. Prepared by the Syracuse Research Corporation in collaboration with the United States Environmental Protection AgencyUnited States Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry: Washington, DC, 1989. 24. Budavari, S., The Merck index-An encyclopedia of chemicals, drugs, and biologicals. 11 ed.; Merck & Co., Inc.: Rahway, NJ, 1989. 25. OME (Ontario Ministry of the Environment), N-Nitrosodimethylamine. Ontario Ministry of the Environment, Hazardous Contaminants Coordination Branch: Toronto, Ontario, 1991. 26. DMER; AEL, Pathways analysis using fugacity modelling of N-nitrosodimethylamine for the second Priority Substances List. Prepared for the Chemicals Evaluation Division, Commercial Chemicals Evaluation Branch, Environment Canada, Hull, Quebec. Peterborough, Ontario, Don Mackay Environmental Research;and Don Mills, Ontario, Angus Environmental Limited. In 1996; p 63. 27. SFPUC (San Francisco Public Utilities Commission) Nitrosodimethylamine (NDMA) Information. http://sfwater.org/detail.cfm/MC_ID/13/MSC_ID/166/MTO_ID/399/C_ID/1865/Keyword/NDMA 28. Brunnemann, K. D.; Hoffmann, D., Analysis of volatile nitrosamines in tobacco smoke and polluted indoor environments. Chemical studies on tobacco smoke LIX. 1978, 19, 343-356. 29. Stehlik, G.; Richter, O.; Altmann, H., Concentration of dimethylnitrosamine in the air of smoke-filled rooms. Ecotoxicology and Environmental Safety 1982, 6, 495-500. 30. Klus, H.; Begutter, H.; Scherer, G.; Tricker, A. R.; Adlkofer, F., Tobacco-Specific and Volatile N-Nitrosamines in Environmental Tobacco Smoke of Offices. Indoor and Built Environment 1992, 1, (6), 348-350. 31. Mitch, W. A.; Sharp, J. O.; Trussell, R. R.; Valentine, R. L.; Alvarez-Cohen, L.; Sedlak, D. L., N-nitrosodimethylamine (NDMA) as a drinking water contaminant: A review. Environmental Engineering Science 2003, 20, (5), 389-404. 32. Brubaker, K. L.; Stetter, J. R.; Demirgian, J. C.; Boparai, A.; Schneider, J. F., Products of the neutralization of hydrazine fuels with hypochlorite. Presented at the 1985 JANNAF Safety and Environmental Protection Subcommittee Meeting, Naval Postgraduate School, Monterey, CA, November 4-6, 1985. Argonne National Laboratory, Argonne, IL: CONF-8511110-4; DE86004049 In 1985. 33. Brubaker, K. L.; Bonilla, J.; Stamoudis, V. C.; Boparai, A. S.; Snyder, C. T., Products of the Neutralization of Hydrazine Fuels with Hypochlorite II. Presented at the 1987 JANNAF Safety and Environmental Protection Subcommittee Meeting, NASA/Lewis Research Center, Cleveland, OH, May 5-7, 1987. Argonne National Laboratory, Argonne, IL: CONF8705159-1; DE87011454. In 1987. 34. Richardson, S. D., Disinfection by-products and other emerging contaminants in drinking water. Trac-Trends in Analytical Chemistry 2003, 22, (10), 666-684. 35. Mirvish, S. S., Formation of N-nitroso compounds-chemistry, kinetics, and invivo occurrence. Toxicology and Applied Pharmacology 1975, 31, (3), 325-351. 36. Mitch, W. A.; Sedlak, D. L., Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination. Environmental Science & Technology 2002, 36, (4), 588-595. 37. IARC (International Agency for Research on Cancer), N-Nitrosodimethylamine. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. World Health Organization, Switzerland: 1978; Vol. 17:N-Nitroso Compounds, p 125-175. 38. Shapley, D., Nitrosamines: Scientists on the Trail of Prime Suspect in Urban Cancer. Science 1976, 191, (4224), 268-270. 39. Yagil, G.; Anbar, M., KINETICS OF HYDRAZINE FORMATION FROM CHLORAMINE AND AMMONIA. J. Am. Chem. Soc. 1962, 84, (10), 1797-&. 40. Mitch, W. A.; Sedlak, D. L., Factors controlling nitrosamine formation during wastewater chlorination. Water Science and Technology: Water Supply 2002, 2, (3), 191-198. 41. Choi, J.; Duirk, S. E.; Valentine, R. L., Mechanistic studies of N-nitrosodimethylamine (NDMA) formation in chlorinated drinking water. Journal of Environmental Monitoring 2002, 4, (2), 249-252. 42. Choi, J. H.; Valentine, R. L., Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product. Water Research 2002, 36, (4), 817-824. 43. Wilczak, A.; Assadi-Rad, A.; Lai, H. H.; Hoover, L. L.; Smith, J. F.; Berger, R.; Rodigari, F.; Beland, J. W.; Lazzelle, L. J.; Kinicannon, E. G.; Baker, H.; Heaney, C. T., Formation of NDMA in chloraminated water coagulated with DADMAC cationic polymer. Journal American Water Works Association 2003, 95, (9), 94-106. 44. Gerecke, A. C.; Sedlak, D. L., Precursors of N-mitrosodimethylamine in natural waters. Environmental Science & Technology 2003, 37, (7), 1331-1336. 45. Zhang, A. Q.; Mitchell, S. C.; Smith, R. L., DIMETHYLAMINE IN HUMAN URINE. Clin. Chim. Acta 1995, 233, (1-2), 81-88. 46. Finlayson-Pitts, B. J.; Pitts, J. N., Atmospheric chemistry. WileyInterscience: New York, 1986. 47. Chen, Z.; Valentine, R. L., Formation of N-nitrosodimethylamine (NDMA) from humic substances in natural water. Environmental Science & Technology 2007, 41, (17), 6059-6065. 48. Lee, W.; Westerhoff, P.; Croue, J. P., Dissolved organic nitrogen as a precursor for chloroform, dichloroacetonitrile, N-Nitrosodimethylamine, and trichloronitromethane. Environmental Science & Technology 2007, 41, (15), 5485-5490. 49. Tate, R. L.; Alexander, M., Stability of nitrosamines in samples of lake water, soil, and sewage. Journal of the National Cancer Institute 1975, 54, (2), 327-330. 50. Stefan, M. I.; Bolton, J. R., UV direct photolysis of N-nitrosodimethylamine (NDMA): Kinetic and product study. Helvetica Chimica Acta 2002, 85, (5), 1416-1426. 51. Jobb, D. B.; Hunsinger, R. B.; Meresz, O.; Taguchi, V. Removal of N-nitrosodimethylamine from the Ohsweken (Six Nations) water supply final report; Ontario Ministry of Environment and Energy: 1994. 52. OCWD, Orange County Water District Takes a Proactive Stance on Newly Regulated Compound N-Nitrosodimethylamine: OCWD Recommends Taking Two Drinking Water Wells Out of Service. 2000. 53. Lee, C.; Schmidt, C.; Yoon, J.; von Gunten, U., Oxidation of N-nitrosodimethylamine (NDMA) precursors with ozone and chlorine dioxide: Kinetics and effect on NDMA formation potential. Environmental Science & Technology 2007, 41, (6), 2056-2063. 54. Chen, Z.; Valentine, R. L., The influence of the pre-oxidation of natural organic matter on the formation of N-nitrosodimethylamine (NDMA). Environmental Science & Technology 2008, 42, (14), 5062-5067. 55. Oliver, J. E.; Kearney, P. C.; Konston, A., Degradation of herbicide-related nitrosamines in aerobic soils. Journal of Agricultural and Food Chemistry 1979, 27, 887-891. 56. Gunninson, D.; Zappi, M. E.; Teeter, C.; Pennington, J. C.; Bajpai, R., Attenuation mechanisms of N-nitrosodimethylamine at an operating intercept and treat ground water remediation system. Journal of Hazardous Materials 2000, B73, 179-197. 57. Mitch, W. A.; Sedlak, D. L., Characterization and fate of N-nitrosodimethylamine precursors in municipal wastewater treatment plants. Environmental Science & Technology 2004, 38, (5), 1445-1454. 58. IARC, Some Drinking-water Disinfectants and Contaminants, Including Arsenic. In Monographs on the Evaluation of Carcinogenic Risks to Humans. , Internation Agency for Research on Cancer: Lyon, France, 2004; Vol. 84. 59. IARC, Dry Clean, Some Chlorinated Solvents and Other Industrial Chemicals. In Monographs on the Evaluation of Carcinogenic Risks to Humans. , Internation Agency for Research on Cancer: Lyon, France, 1995; Vol. 63. 60. Cantor, K. P., Drinking water and cancer. Cancer causes control 1997, 8, 292-308. 61. Villanueva, C. M.; Cantor, K. P.; FGrimalt, J. O.; Malats, N.; Silverman, D.; Tardon, A.; Garcia-Closas, R.; Serra, C.; Carrato, A.; Castano-Vinyals, G.; Marcos, R.; Rothman, N.; Real, F. X.; Dosemeci, M.; Kogevinas, M., Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering and swimming in pools. American Journal of Epidemiology 2007, 165, 148-156. 62. USEPA, National primary drinking water regulations: disinfectants and disinfection byproducts; final rule, Federal Regulations. 1998, 63, 69390-69476. 63. USEPA, National primary drinking water regulations: stage 2 disinfectants an disinfection byproducts rule, Federal Regulations. 2006, 71, 387-493. 64. USEPA - IRIS database http://www.epa.gov/iris/subst/0045.htm 65. APHA (American Public Health Association), Standard Methods for Examination of Water and Wastewater. 20 ed.; American Public Health Association: 1998. 66. Wang, H.; Zhang, H.; Zhao, X., Determination of the total nitrogen in waste water with 2, 6-dimethylphenol by spectrophotometry. Chemical analysis and measurement 2003, 12, (6), 20-21. 67. USEPA, Methods for the determination of organic compounds in drinking water - Supplement . Determination of haloacetic acids and dalapon in drinking water by liquid-liquid extraction, derivatization and gas chromatography with electron capture detection (Method 552.2). EPA/600/R-95/131. 68. Hung, H. W.; Lin, T. F.; Chen, Y. M.; Chang, Y. C.; Chiu, C. H.; Chiou, C. T., Determination of N-nitrosamines in drinking water treatment processes using solid-phase microextraction coupled with gas chromatography. unpublished. 69. Mitch, W. A.; Gerecke, A. C.; Sedlak, D. L., A N-Nitrosodimethylamine (NDMA) precursor analysis for chlorination of water and wastewater. Water Research 2003, 37, 3733-3741. 70. Jafvert, C. T.; Valentine, R. L., REACTION SCHEME FOR THE CHLORINATION OF AMMONIACAL WATER. Environmental Science & Technology 1992, 26, (3), 577-586. 71. Yang, X.; Shang, C.; Huang, J.-C., DBP formation in breakpoint chlorination of wastewater. Water Research 2005, 39, (19), 4755-4767. 72. Lin, H. C. The Effect of Pre-Oxidation on Fraction of NOM and DBPs formation. National Taiwan University, Taipei, Taiwan, 2008. 73. Lee, W. T.; Westerhoff, P.; Esparza-Soto, M., Occurrence and removal of dissolved organic nitrogen in US water treatment plants. Journal American Water Works Association 2006, 98, (10), 102-110. 74. Michalski, R., Inorganic Oxyhalide By-Products in Drinking Water and Ion Chromatographic Determination Methods. Polish Journal of Environmental Studies 2005, 14, (3), 257-268. 75. Wang, G.; Lai, S.; Chang, H., HAA Removal in Slow Sand Filtrations: Case Study in Water with High DOC. Proceedings 2005 AWWA Annual Conference, San Francisco, CA. 2005. 76. Williams, S. L., Degradation of Haloacetic Acids at Maximum Residence Time Locations. Proceedings 1995 AWWA WQTC, New Orleans, LA. 1995. 77. Williams, S. L., The Impact of Bacterial Degradation of Haloacetic Acids in the Distribution Systems. Proceedings 1996 AWWA WQTC, Boston, MA. 1996. 78. Hua, G.; Reckhow, D. A., DBP formation during chlorination and chloramination: Effect of reaction time, pH, dosage, and temperature. American Water Works Association Journal 2008, 100, (8), 82-12. 79. Uchiyama, H.; Nakajima, T.; Yagi, O.; Nakahara, T., ROLE OF HETEROTROPHIC BACTERIA IN COMPLETE MINERALIZATION OF TRICHLOROETHYLENE BY METHYLOCYSTIS SP STRAIN-M. Applied and Environmental Microbiology 1992, 58, (9), 3067-3071. 80. Zhou, H. J.; Xie, Y. F. F., Using BAC for HAA removal - Part 1: Batch study. Journal American Water Works Association 2002, 94, (4), 194-200. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45070 | - |
| dc.description.abstract | 經處理之汙水放流水已知為消毒副產物及其前驅物的來源之一,放流水的排放更可能影響下游水質以及增加下游自來水淨水廠的操作負擔。
為了解各項淨水流程對於消毒副產物的生成與宿命之影響,本研究調查傳統汙水處理廠及自來水處理廠處理流程中消毒副產物、消毒副產物前驅物之降解效率以及相關水質參數的變化。並以人工模擬受放流水汙染之天然水樣於實驗室模擬傳統自來水處理流程,以評估受放流水汙染之天然水樣將對淨水流程造成何種程度的衝擊。本研究評估之消毒副產物包含傳統消毒副產物:三鹵甲烷(Trihalomathanes;THMs)、含鹵乙酸(Haloacetic acids;HAAs),以及新興消毒副產物:N-亞硝基二甲基胺(N-Nitrosodimethylamine;NDMA)。 研究結果顯示,家庭廢水因水中有機物濃度較高,有機碳、有機氮、UV吸光值等水質參數與消毒副產物生成潛能呈現相關性。實廠調查結果顯示二級生物處理能移除絕大部分的有機前驅物,生物處理對於THMs、HAAs以及NDMA的前驅物移除效率分別為:83.7%、79.0%、97.5%。但NDMA濃度於汙水處理流程中無明顯變化趨勢,其濃度介於13 ng/L至23 ng/L之間。 傳統自來水淨水流程也觀察到消毒副產物之前驅物濃度以及有機碳隨著處理流程而漸漸降低。由於部分有機前質被移除,NDMA生成潛能由原水之114.3-194.58 ng/L降至清水之32.9-49.6 ng/L,在自來水淨水流程當中所產生的NDMA濃度皆低於10 ng/L。因為自來水水源相較於家庭汙水相對乾淨,有機氮濃度並無觀察到顯著地變化趨勢。 而添加汙水放流水之天然水樣則因為廢水的添加而使得不同水質參數與消毒副產物前驅物濃度顯著增加。與傳統淨水流程相同的是,THMs與HAAs之前驅物濃度經淨水流程處理後濃度皆顯著下降。但因實驗設備的限制與水源特性稍有不同,NDMA前驅物實驗結果與傳統自來水處理流程稍有差異。 | zh_TW |
| dc.description.abstract | The treated wastewater effluent has known to be a source of disinfection by-products (DBPs) and DBP precursors. The discharge of effluent may also impact the quality of source water and raise the burden of drinking water treatment plant in the downstream area.
To gain a better understanding for the effects of the different treatment processes on the formation and fate of DBPs, this study investigated the degradation profiles of DBPs precursors and related water quality parameters within the wastewater and drinking water treatment plants. Furthermore, laboratory synthetic wastewater impaired natural water was prepared to assess the impacts from treated wastewater effluent and treatment efficiency after conventional drinking water treatment processes. The DBPs investigated in this study included: (1) traditional DBPs: trihalomathanes (THMs) and haloacetic acids (HAAs), and (2) emerging DBPs: N-nitrosodimethylamine (NDMA). The results showed that in wastewater treatment plant, the concentrations of DBPs precursors were correlated with concentration of dissolved organic carbon, dissolved organic nitrogen, and UV absorbance due to the presence of the high concentrations of organic contents in wastewater. Moreover, the biological treatment could remove a great portion of organic precursors, where the precursor removal efficiencies (measured as DBP formation potential, DBPFP) of THMs, HAAs, and NDMA were 83.7%, 79.0%, and 97.5%, respectively. The concentration of NDMA in wastewater was around 13-23 ng/L in each treatment unit, but there was no obvious trend for concentrations of NDMA within the wastewater treatment processes. In conventional drinking water treatment plant, the concentrations of DBPs precursors and organic carbon were found to be reduced after treatments. Indeed, the NDMAFP were decreased from 114.3-194.6 ng/L to 32.9-49.6 ng/L. Because of the great reduction of organic precursors, the NDMA concentration in finished water was very low (<10 ng/L). However, it was difficult to characterize the trend of dissolved organic nitrogen concentration in drinking water treatment units because of its relatively low concentration (0.6-1.1 mg/L as N) as compared with those observed in wastewater (17.2 mg/L as N). The results of simulated drinking water treatment process showed that the concentrations of water quality parameters and DBPs precursors were significantly increased after spiking wastewater effluent into the natural water. The significant reductions of THMs and HAAs precursors after conventional treatment processes were similar to those obtained in full scale conventional drinking water treatments. However, different results of NDMA precursor removals were observed between simulated treatment tests and conventional drinking water treatment plant operation; and it was resulted from the different properties of raw waters used and the limitations between laboratory and full scale operations. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:03:20Z (GMT). No. of bitstreams: 1 ntu-99-R96844007-1.pdf: 3568487 bytes, checksum: e75ffb3e2b82df8f663b49f22301c5d0 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Abstract ......................................................................................................... i
Contents ....................................................................................................... vi List of Figures ........................................................................................... viii List of Tables ................................................................................................ x Chapter 1 Introduction ............................................................................... 1 Chapter 2 Literature Review ..................................................................... 5 2.1 Drinking water treatments .................................................................................. 5 2.1.1 Conventional water treatments ................................................................ 5 2.1.2 Disinfection ............................................................................................. 6 2.2 Disinfection By-Products (DBPs) in Drinking Water ........................................ 7 2.2.1 Introduction of DBPs ............................................................................... 7 2.2.2 Factors affecting DBPs formation ........................................................... 9 2.3 NDMA .............................................................................................................. 11 2.3.1 Occurrence and distribution of NDMA ................................................. 11 2.3.2 Formation of NDMA ............................................................................. 13 2.3.3 Removal of NDMA and its precursors from drinking water ................. 17 2.4 Health effects and regulations of DBPs ............................................................ 21 2.4.1 Health effects and Regulations .............................................................. 21 Chapter 3 Material and Methods ............................................................ 24 3.1 Process Schema ................................................................................................ 24 3.1.1 Monitoring of water quality changes in sewage treatment plant ........... 24 3.1.2 Full scale drinking water treatments study for DBPs formation ........... 25 3.1.3 Simulated drinking water treatment process ......................................... 29 3.2 Methods ............................................................................................................ 31 3.2.1 Organic Carbon Contents ...................................................................... 31 3.2.1.1 NPDOC ....................................................................................... 31 3.2.1.2 UV absorbance and SUVA ......................................................... 32 3.2.2 Nitrogen Species .................................................................................... 33 3.2.2.1 Total dissolved nitrogen (TDN) .................................................. 33 3.2.2.2 Ammonium ................................................................................. 34 3.2.2.3 Nitrite and Nitrate ....................................................................... 35 3.2.2.4 Dissolved organic nitrogen (DON) ............................................. 36 3.2.3 Disinfection By-Products ...................................................................... 36 3.2.3.1 THMs .......................................................................................... 37 3.2.3.2 HAAs .......................................................................................... 39 3.2.3.3 NDMA ........................................................................................ 42 3.2.4 Disinfection By-Products Formation Potential (DBPFP) ...................... 45 3.2.4.1 THMFP and HAAFP .................................................................. 46 3.2.4.2 NDMAFP ................................................................................... 48 Chapter 4 Results and Discussions .......................................................... 53 4.1 Treatment efficiency of organic matters in Neihu Wastewater Treatment Plant53 4.1.1 Degradation profiles of water quality parameters ................................. 53 4.1.2 Formation and removal of DBPs and DBP precursors .......................... 57 4.2 DBPs formation in conventional drinking water treatment processes ............. 60 4.2.1 Changes on water quality parameters after treatment ........................... 61 4.2.2 Formation and removal of DBPs and DBPFP ....................................... 67 4.3 Simulated treatment processes of raw water impaired by treated wastewater effluents .................................................................................................................. 77 4.3.1 Changes of water quality parameters..................................................... 77 4.3.2 Formation and removal of DBPs and DBPFP ....................................... 81 Chapter 5 Conclusions and suggestions .................................................. 86 5.1 Conclusions ...................................................................................................... 86 5.2 Suggestions ....................................................................................................... 88 References .................................................................................................. 91 Appendixes ................................................................................................... I | |
| dc.language.iso | en | |
| dc.subject | 溶解性有機氮 | zh_TW |
| dc.subject | 水質參數 | zh_TW |
| dc.subject | N-亞硝基二甲基胺 | zh_TW |
| dc.subject | 消毒副產物 | zh_TW |
| dc.subject | 淨水流程 | zh_TW |
| dc.subject | Disinfection by-products (DBPs) | en |
| dc.subject | N-Nitrosodimethylamine (NDMA) | en |
| dc.subject | Water quality parameters | en |
| dc.subject | Dissolved organic nitrogen | en |
| dc.subject | Water treatment processes | en |
| dc.title | 消毒副產物於淨水流程中之生成與宿命研究 | zh_TW |
| dc.title | Formation and Fate of Disinfection By-products in Water Treatment Processes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林財富(Tsair-Fuh Lin),陳家揚(Chia-Yang Chen) | |
| dc.subject.keyword | 消毒副產物,N-亞硝基二甲基胺,水質參數,溶解性有機氮,淨水流程, | zh_TW |
| dc.subject.keyword | Disinfection by-products (DBPs),N-Nitrosodimethylamine (NDMA),Water quality parameters,Dissolved organic nitrogen,Water treatment processes, | en |
| dc.relation.page | 97 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-02-11 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
| 顯示於系所單位: | 環境衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
