Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45065
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 何小剛 | |
dc.contributor.author | Ho-Chin Tsai | en |
dc.contributor.author | 蔡和進 | zh_TW |
dc.date.accessioned | 2021-06-15T04:03:09Z | - |
dc.date.available | 2010-03-10 | |
dc.date.copyright | 2010-03-10 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-02-11 | |
dc.identifier.citation | [1] I. S. Towner and J. C. Hardy, Phys. Rev. C 77, 025501 (2008) [arXiv:0710.3181
[nucl-th]]. [2] F. Ambrosino et al. [KLOE Collaboration], JHEP 0804, 059 (2008) [arXiv:0802.3009 [hep-ex]]. [3] C. Amsler et al. [Particle Data Group], Phys. Lett. B 667, 1 (2008). [4] G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996) [arXiv:hep-ph/9512380]. [5] F. J. Gilman et al. [Particle Data Group], Phys. Lett. B 592 793(2004). [6] G. D. Lellis, P. Migliozzi and P. Santorelli, Phys. Rept. 399, 227 (2004) [Erratumibid. 411, 323 (2005)]. [7] A. Kayis-Topaksu et al. [CHORUS Collaboration], Phys. Lett. B 626, 24 (2005). [8] C. Aubin et al. [Fermilab Lattice Collaboration], Phys. Rev. Lett. 94, 011601 (2005) [arXiv:hep-ph/0408306]. [9] G. S. Huang et al. [CLEO Collaboration], Phys. Rev. Lett. 95, 181801 (2005) [arXiv:hep-ex/0506053]. [10] M. Artuso, Int. J. Mod. Phys. A 21, 1697 (2006) [AIP Conf. Proc. 842, 533 (2006)] [arXiv:hep-ex/0510052]. [11] V. B. Golubev, Y. I. Skovpen and V. G. Luth, Phys. Rev. D 76, 114003 (2007) [arXiv:hep-ph/0702072]. [12] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 73, 012006 (2006) [arXiv:hep-ex/0509040]. [13] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 77, 032002 (2008) [arXiv:0705.4008 [hep-ex]]. [14] S. Hashimoto, A. S. Kronfeld, P. B. Mackenzie, S. M. Ryan and J. N. Simone, Phys. Rev. D 66, 014503 (2002) [arXiv:hep-ph/0110253]. [15] A. Gray et al. [HPQCD Collaboration], Phys. Rev. Lett. 95, 212001 (2005) [arXiv:hep-lat/0507015]. [16] S. Aoki et al. [JLQCD Collaboration], Phys. Rev. Lett. 91, 212001 (2003) [arXiv:hep-ph/0307039]. [17] M. Okamoto, PoS LAT2005, 013 (2006) [arXiv:hep-lat/0510113]. [18] D. E. Acosta et al. [CDF Collaboration], Phys. Rev. Lett. 95, 102002 (2005) [arXiv:hep-ex/0505091]. [19] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 100, 192003 (2008) [arXiv:0801.1326 [hep-ex]]. [20] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. D 78, 012005 (2008) [arXiv:0803.0739 [hep-ex]]. [21] CDF note 8968, [CDF Collaboration], contributed to Lepton Photon Symposium 2007, http://www-cdf.fnal.gov/ physics/new/top/confNotes/cdf8968 STME pub.pdf. [22] J. Swain and L. Taylor, Phys. Rev. D 58, 093006 (1998) [arXiv:hepph/ 9712420]. [23] http://ckmfitter.in2p3.fr/ [24] M. Artuso et al., Eur. Phys. J. C 57, 309 (2008) [arXiv:0801.1833 [hep-ph]]. [25] W. M. Yao et al. [Particle Data Group], J. Phys. G 33, 1 (2006); B. Aubert et al., [BaBar Collaboration], Evidence for D0−D‾0 Mixing, [arXiv:hep-ex/0703020]. B. Abe et al., [Belle Collaboration], Evidence for D0 - anti-D0 Mixing, [arXiv: hep-ex/0703036]. [26] Heavy Flavour Average Group (HFAG) for the 2007 web update of the Particle Data Group review, http://www.slac.stanford.edu/xorg/hfag/osc/PDG 2007/#DG [27] A. Lenz and U. Nierste, Theoretical update of Bs−B‾s, [arXiv:hep-ph/0612167]. M. Beneke, G. Buchalla, C. Greub, A. Lenz and U. Nierste, Next-to-leading order QCD corrections to the lifetime difference of B/s mesons, Phys. Lett. B 459 (1999) 631 [arXiv:hep-ph/9808385]. M. Ciuchini, E. Franco, V. Lubicz, F. Mescia and C. Tarantino, Lifetime differences and CP violation parameters of neutral B mesons at the next-to-leading order in QCD, JHEP 0308 (2003) 031 [arXiv:hep-ph/0308029]. [28] A. Abulencia et al. [CDF Collaboration], arXiv:hep-ex/0609040; A. Abulencia [CDF - Run II Collaboration], Phys. Rev. Lett. 97 (2006) 062003 [arXiv:hepex/ 0606027]; V. M. Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 97 (2006) 021802 [arXiv:hep-ex/0603029]. [29] Heavy Flavour Average Group (HFAG), http://www.slac.stanford.edu/xorg/hfag/charm/index.html [30] C. Aulak and R. Mohapatra, Neutrino As The Supersymmetric Partner Of The Majoron, Phys. Lett. B119, 136 (1983); F. Zwirner, Observable Delta B=2 Transitions Without Nucleon Decay in a Minimal Supersymmetric Extension of the Standard Model, Phys. Lett. B132, 103 (1983); L. J. Hall and M. Suzuki, Explicit R-Parity Breaking In Supersymmetric Models, Nucl. Phys. B231, 419 (1984); I. H. Lee, Lepton Number Violation In Softly Broken Supersymmetry. 2., Nucl. Phys. B246, 120 (1984); J. Ellis et al., Phenomenology of Supersymmetry with Broken R-Parity, Phys. Lett. B150, 142 (1985); G. G. Ross and J. W. F. Valle, Supersymmetric Models Without R-Parity, Phys. Lett. B151, 375 (1985); S. Dawson, R-Parity Breaking in Supersymmetric Theories, Nucl. Phys. B261, 297 (1985); R. Barbieri and A. Masiero, Supersymmetric Models with Low-Energy Baryon Number Violation, Nucl. Phys. B267, 679 (1986). [31] E. Golowich, S. Pakvasa and A. A. Petrov, New physics contributions to the lifetime difference in D0−D‾0 mixing, Phys. Rev. Lett. 98, 181801 (2007) [arXiv:hepph/ 0610039]. [32] E. Golowich, J. Hewett, S. Pakvasa and A. A. Petrov, Implications of D0-‾D0 Mixing for New Physics, arXiv:0705.3650 [hep-ph]. [33] M. Beneke, G. Buchalla and I. Dunietz, Width Difference in the Bs−B‾s System, Phys. Rev. D 54, 4419 (1996) [arXiv:hep-ph/9605259]. [34] J. Charles et al. [CKMfitter Group], CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41, 1 (2005) [arXiv:hep-ph/0406184]. [35] R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420, 1 (2005) [arXiv:hep-ph/0406039]. [36] M. Chemtob, Phenomenological constraints on broken R parity symmetry in supersymmetry models, Prog. Part. Nucl. Phys˙54, 71 (2005) [arXiv:hepph/ 0406029]. [37] B. C. Allanach, A. Dedes and H. K. Dreiner, Bounds on R-parity violating couplings at the weak scale and at the GUT scale, Phys. Rev. D 60, 075014 (1999) [arXiv:hep-ph/9906209]. [38] A. Deandrea, J. Welzel and M. Oertel, K → pi nu anti-nu from standard to new physics, JHEP 0410, 038 (2004) [arXiv:hep-ph/0407216]; N. G. Deshpande, D. K. Ghosh and X. G. He, Constraints on new physics from K → pi nu anti-nu, Phys. Rev. D 70, 093003 (2004) [arXiv:hep-ph/0407021]. [39] C. E. Carlson, P. Roy and M. Sher, New bounds on R-parity violating couplings, Phys. Lett. B 357, 99 (1995) [arXiv:hep-ph/9506328]. [40] A. Kundu and J. P. Saha, Constraints on R-parity violating supersymmetry from neutral meson mixing, Phys. Rev. D 70, 096002 (2004) [arXiv:hep-ph/0403154]. [41] D. K. Ghosh, X. G. He, B. H. J. McKellar and J. Q. J. Shi, Constraining R-parity violating couplings from B → P P decays using QCD improved factorization method, JHEP 0207, 067 (2002) [arXiv:hep-ph/0111106]. [42] S. Bar-Shalom, G. Eilam and Y. D. Yang, B → Phi pi and B0 → Phi Phi in the standard model and new bounds on R parity violation, Phys. Rev. D 67, 014007 (2003) [arXiv:hep-ph/0201244]. [43] S. Nandi and J. P. Saha, B/s - anti-B/s mixing, B decays and R-parity violating supersymmetry, Phys. Rev. D 74, 095007 (2006) [arXiv:hep-ph/0608341]. [44] D. Chakraverty and D. Choudhury, B physics constraints on baryon number violating couplings: Grand unification or R-parity violation, Phys. Rev. D 63, 112002 (2001) [arXiv:hep-ph/0012309]. [45] H. Georgi, Phys. Rev. Lett. 98, 221601 (2007) [arXiv:hep-ph/0703260]; H. Georgi, Phys. Lett. B 650, 275 (2007) [arXiv:0704.2457 [hep-ph]]. [46] T. Banks and A. Zaks, Nucl. Phys. B 206, 23 (1982). [47] S. L. Chen and X. G. He, arXiv:0705.3946. [48] K. Cheung, W. Y. Keung and T. C. Yuan, Phys. Rev. Lett. 99, 051803 (2007) [arXiv:0704.2588 [hep-ph]]; P. J. Fox, A. Rajaraman and Y. Shirman, arXiv:0705.3092 [hep-ph]; N. Greiner, Phys. Lett. B 653, 75 (2007) [arXiv:0705.3518 [hep-ph]]; S. L. Chen and X. G. He, arXiv:0705.3946 [hep-ph]; P. Mathews and V. Ravindran, arXiv:0705.4599 [hep-ph]. M. Bander, J. L. Feng,A. Rajaraman and Y. Shirman, arXiv:0706.2677 [hep-ph]; T. G. Rizzo, arXiv:0706.3025 [hep-ph]; K. Cheung, W. Y. Keung and T. C. Yuan, Phys. Rev. D 76, 055003 (2007) [arXiv:0706.3155 [hep-ph]]; T. Kikuchi and N. Okada, arXiv:0707.0893 [hep-ph]; D. Choudhury and D. K. Ghosh, arXiv:0707.2074 [hepph]; H. Zhang, C. S. Li and Z. Li, arXiv:0707.2132 [hep-ph]; N. G. Deshpande, X. G. He and J. Jiang, arXiv:0707.2959 [hep-ph]; A. Delgado, J. R. Espinosa and M. Quiros, arXiv:0707.4309 [hep-ph]. M. x. Luo, W. Wu and G. h. Zhu, arXiv:0708.0671 [hep-ph]; A. T. Alan and N. K. Pak, arXiv:0708.3802 [hepph]; T. i. Hur, P. Ko and X. H. Wu, arXiv:0709.0629 [hep-ph]; S. Majhi, arXiv:0709.1960 [hep-ph]; M. C. Kumar, P. Mathews, V. Ravindran and A. Tripathi, arXiv:0709.2478 [hep-ph]; K. m. Cheung, W. Y. Keung and T. C. Yuan, arXiv:0710.2230 [hep-ph]. [49] G. J. Ding and M. L. Yan, arXiv:0705.0794 [hep-ph]; Y. Liao, Phys. Rev. D 76, 056006 (2007) [arXiv:0705.0837 [hep-ph]]; S. Zhou, arXiv:0706.0302 [hepph]; G. J. Ding and M. L. Yan, arXiv:0706.0325 [hep-ph]; S. L. Chen, X. G. He and H. C. Tsai, arXiv:0707.0187 [hep-ph]; R. Zwicky, arXiv:0707.0677 [hep-ph]; X. Q. Li, Y. Liu and Z. T. Wei, arXiv:0707.2285 [hep-ph]; G. Bhattacharyya, D. Choudhury and D. K. Ghosh, arXiv:0708.2835 [hep-ph]. A. B. Balantekin and K. O. Ozansoy, arXiv:0710.0028 [hep-ph]; E. O. Iltan, arXiv:0710.2677 [hep-ph]. [50] M. Luo and G. Zhu, arXiv:0704.3532 [hep-ph]; C. H. Chen and C. Q. Geng, arXiv:0705.0689 [hep-ph]; X. Q. Li and Z. T. Wei, Phys. Lett. B 651, 380 (2007) [arXiv:0705.1821 [hep-ph]]. R. Mohanta and A. K. Giri, arXiv:0707.1234 [hepph]; A. Lenz, Phys. Rev. D 76, 065006 (2007) [arXiv:0707.1535 [hep-ph]]. [51] T. M. Aliev, A. S. Cornell and N. Gaur, arXiv:0705.1326 [hep-ph]; C. D. Lu, W. Wang and Y. M. Wang, Phys. Rev. D 76, 077701 (2007) [arXiv:0705.2909 [hep-ph]]; D. Choudhury, D. K. Ghosh and Mamta, arXiv:0705.3637 [hep-ph]; T. M. Aliev, A. S. Cornell and N. Gaur, JHEP 0707, 072 (2007) [arXiv:0705.4542 [hep-ph]]; C. H. Chen and C. Q. Geng, Phys. Rev. D 76, 036007 (2007) [arXiv:0706.0850 [hep-ph]]; C. S. Huang and X. H.Wu, arXiv:0707.1268 [hep-ph]; R. Mohanta and A. K. Giri, Phys. Rev. D 76, 057701 (2007) [arXiv:0707.3308 [hep-ph]]; C. H. Chen and C. Q. Geng, arXiv:0709.0235 [hep-ph]; G. j. Ding and M. L. Yan, arXiv:0709.3435 [hep-ph]; T. M. Aliev and M. Savci, arXiv:0710.1505 [hep-ph]. [52] Y. Liao and J. Y. Liu, arXiv:0706.1284 [hep-ph]; H. Goldberg and P. Nath, arXiv:0706.3898 [hep-ph]; N. G. Deshpande, S. D. H. Hsu and J. Jiang, arXiv:0708.2735 [hep-ph]; S. Das, S. Mohanty and K. Rao, arXiv:0709.2583 [hepph]. [53] H. Davoudiasl, arXiv:0705.3636 [hep-ph]; S. Hannestad, G. Raffelt and Y. Y. Y. Wong, arXiv:0708.1404 [hep-ph]; P. K. Das, arXiv:0708.2812 [hep ph]; D. Majumdar, arXiv:0708.3485 [hep-ph]; A. Freitas and D. Wyler, arXiv:0708.4339 [hep-ph]; L. Anchordoqui and H. Goldberg, arXiv:0709.0678 [hep-ph]; J. McDonald, arXiv:0709.2350 [hep-ph]. [54] M. A. Stephanov, Phys. Rev. D 76, 035008 (2007) [arXiv:0705.3049 [hepph]]. Y. Nakayama, arXiv:0707.2451 [hep-ph]; T. A. Ryttov and F. Sannino, arXiv:0707.3166 [hep-th]; M. Neubert, arXiv:0708.0036 [hep-ph]; Y. Liao, arXiv:0708.3327 [hep-ph]; I. Gogoladze, N. Okada and Q. Shafi, arXiv:0708.4405 [hep-ph]. [55] M. Okamoto, PoS LAT2005, 013 (2006) [arXiv:hep-lat/0510113]. [56] M. Staric et al. [Belle Collaboration], Phys. Rev. Lett. 98, 211803 (2007) [arXiv:hep-ex/0703036]; K. Abe et al. [BELLE Collaboration], arXiv:0704.1000 [hep-ex]. B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 98, 211802 (2007) [arXiv:hep-ex/0703020]. [57] L. Willmann et al., Phys. Rev. Lett. 82, 49 (1999) arXiv:9807011[hep-ex]. [58] G. Feinberg and S. Weinberg, Phys. Rev. Lett. 6, 381 (1961). Phys. Rev. 123, 1439 (1961). M. L. Swartz, Phys. Rev. D 40, 1521 (1989). [59] W. S. Hou and G. G. Wong, Phys. Rev. D 53, 1537 (1996) [arXiv:hepph/ 9504311]. V. Pleitez, Phys. Rev. D 61, 057903 (2000) [arXiv:hepph/ 9905406]. [60] K. Horikawa and K. Sasaki, Phys. Rev. D 53, 560 (1996) [arXiv:hepph/ 9504218]. [61] E.W. Kolb and M. Turner, The Early Universe (Westview Press, Boulder, 1990). [62] C. Amsler et al. [Particle Data Group], Phys. Lett. B 667, 1 (2008). [63] For recent review, see W. de Boer, arXiv:0810.1472 [astro-ph]. [64] J. Angle et al. [XENON Collaboration], Phys. Rev. Lett. 100, 021303 (2008) [arXiv:0706.0039 [astro-ph]]. [65] Z. Ahmed et al. [CDMS Collaboration], arXiv:0802.3530 [astro-ph]. [66] R. Gaitskell, V. Mandic, and J. Filippini, http://dmtools.berkeley.edu/limitplots. [67] V. Silveira and A. Zee, Phys. Lett. B 161, 136 (1985). [68] C.P. Burgess, M. Pospelov, and T. ter Veldhuis, Nucl. Phys. B 619, 709 (2001) [arXiv:hep-ph/0011335]. [69] J. McDonald, Phys. Rev. D 50, 3637 (1994) [arXiv:hep-ph/0702143]; M.C. Bento, O. Bertolami, R. Rosenfeld, and L. Teodoro, ibid. 62, 041302 (2000) [arXiv:astro-ph/0003350]; D.E. Holz and A. Zee, Phys. Lett. B 517, 239 (2001) [arXiv:hep-ph/0105284]. M.C. Bento, O. Bertolami, and R. Rosenfeld, ibid. 518, 276 (2001) [arXiv:hep-ph/0103340]; J. McDonald, Phys. Rev. Lett. 88, 091304 (2002) [arXiv:hep-ph/0106249]; C. Bird, P. Jackson, R. Kowalewski, and M. Pospelov, ibid. 93, 201803 (2004) [arXiv:hep-ph/0401195]; H. Davoudiasl, R. Kitano, T. Li, and H. Murayama, Phys. Lett. B 609, 117 (2005) [arXiv:hepph/ 0405097]. G. Cynolter, E. Lendvai, and G. Pocsik, Acta Phys. Polon. B 36, 827 (2005) [arXiv:hep-ph/0410102]; C. Bird, R. Kowalewski, and M. Pospelov, Mod. Phys. Lett. A 21, 457 (2006) [arXiv:hep-ph/0601090]; S.h. Zhu, arXiv:hepph/ 0601224; S. Andreas, T. Hambye, and M.H.G. Tytgat, JCAP 0810, 034 (2008) [arXiv:0808.0255 [hep-ph]]. [70] X.G. He, T. Li, X.Q. Li, and H.C. Tsai, Mod. Phys. Lett. A 22, 2121 (2007) [arXiv:hep-ph/0701156]. [71] X. G. He, T. Li, X. Q. Li, J. Tandean and H. C. Tsai, Phys. Rev. D 79, 023521 (2009) [arXiv:0811.0658 [hep-ph]]. [72] V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf, and G. Shaughnessy, Phys. Rev. D 77, 035005 (2008) [arXiv:0706.4311 [hep-ph]]. [73] C.E. Yaguna, arXiv:0810.4267 [hep-ph]. [74] W. de Boer, C. Sander, V. Zhukov, A.V. Gladyshev, and D.I. Kazakov, Astron. Astrophys. 444, 51 (2005) [arXiv:astro-ph/0508617]. [75] M.A. Shifman, A.I. Vainshtein, and V.I. Zakharov, Phys. Lett. B 78, 443 (1978). [76] T.P. Cheng, Phys. Rev. D 38, 2869 (1988); H.Y. Cheng, Phys. Lett. B 219, 347 (1989). [77] For review, see J.F. Gunion, H.E. Haber, G.L. Kane, and S. Dawson, The Higgs Hunter’s Guide (Westview Press, Colorado, 2000). [78] J. Gasser, H. Leutwyler, and M. E. Sainio, Phys. Lett. B 253, 252 (1991). [79] J.R. Ellis, K.A. Olive, and C. Savage, Phys. Rev. D 77, 065026 (2008) [arXiv:0801.3656 [hep-ph]]; H. Ohki et al., arXiv:0806.4744 [hep-lat]; references therein. [80] A. Wahab El Kaffas, P. Osland, and O.M. Ogreid, Phys. Rev. D 76, 095001 (2007) [arXiv:0706.2997 [hep-ph]]. [81] H. Davoudiasl, T. Han, and H.E. Logan, Phys. Rev. D 71, 115007 (2005) [arXiv:hep-ph/0412269]. [82] ATLAS Collaboration, Report No. CERN/LHCC 99-15. [83] G. Eilam, B. Haeri and A. Soni, Phys. Rev. D 41, 875 (1990). [84] J.A. Aguilar-Saavedra and G.C. Branco, Phys. Lett. B495, 347 (2000); J.A. Aguilar-Saavedra, Phys. Lett. B502, 115 (2001); F. Larios, R. Martinez and M.A. PerezInt, J. Mod. Phys. A21, 3473 (2006) [arXiv: hep-ph/0605003]. [85] A. W. El Kaffas, O. M. Ogreid and P. Osland, In the Proceedings of 2007 International Linear Collider Workshop (LCWS07 and ILC07), Hamburg, Germany, 30 May - 3 Jun 2007, pp HIG08 [arXiv:0709.4203 [hep-ph]]. [86] J. Gasser and H. Leutwyler, Annals Phys. 158, 142 (1984); J. Bijnens, H. Sonoda, and M.B. Wise, Nucl. Phys. B 261, 185 (1985); E. Jenkins and A.V. Manohar, in Effective Field Theories of the Standard Model, edited by U.-G. Meissner (World Scientific, Singapore, 1992). [87] See, e.g., J.F. Donoghue, E. Golowich, and B.R. Holstein, Dynamics of the Standard Model (Cambridge University Press, Cambridge, 1992). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45065 | - |
dc.description.abstract | 首先在論文的第一部分先回顧些許粒子物理與現代宇宙學的標準模型的背景知識,這些標準模型理論雖然極端地成功,但在實驗上甚至理論上的不足之處仍十分地多。舉例來說,粒子物理標準模型裡所預測的希格斯粒子還尚未被探測到,所以其存在與否仍屬未知?宇宙上的各種觀測顯示需要大量的暗物質,這些物質不存在基本粒子的標準模型裡,它的本質至今也仍屬未知?而眾多待決的問題引領我們去尋求標準模型之外的答案解釋。
在論文的第二部分我們描述了三個超越標準模型的模型的一些主題的探討,前半段探討了兩個超越標準模型的模型並圍繞在介子混合的研究主題上,後半段探討了暗物質。 因為介子混合的實驗對於標準模型或超越標準模型理論來說,都是非常好的驗證場所。所以先介紹了些介子混和基本的背景知識之後,分別討論了 一、 研究超對稱的R 宇稱破壞模型對D 與B 介子混合系統的影響,以其透過 量子圈圖對於長短生命期差異量的貢獻來限制其耦合常數的大小。和 二、 非粒子物理模型是H.Georgi 教授提出的一個有趣的尺度不變結構,我們同樣以其對介子混合系統產生的修正效應來限制其耦合常數大小。而暗物質為二十一世紀的大課題之一,但在標準模型之內卻缺乏暗物質的候選者。於是在簡單介紹暗物質背景知識後。研究了 三、 一個具有暗物質的候選者的最簡單模型,其在標準模型上加上了一規範單態實標量場(取名為暗子)來當作暗物質的候選者。研究發現此標準模型加暗子的理論模型被暗物質直接量測實驗限制地十分嚴格。而兩個希格斯雙重態理論模型II 再加上一暗子的超越標準模型的模型,其如同被預測般給出比較不嚴格的限制。 第三部分為總結與未來展望。在實驗的最後判決來臨之前仍有相當多的工作可以做。 附錄跟參考文獻列在最後。 | zh_TW |
dc.description.abstract | In part I, we review the background of the standard model of particle physics and cosmology. These standard models, while very successful, have still not been perfected either experimentally or even theoretically. Many questions remain: does Higgs exist? What is the identity of dark matter? Answers to these and other questions may reside beyond the boundaries of the standard models.
In part II, we go beyond the standard models and analyze three advanced models by applying basic knowledge to the supersymmetry R-parity violating model, unparticle physics, and a real scalar singlet darkon as dark matter: 1. Supersymmetry has drawn much attention to the community. Meson mixing experiments provide a very good testing ground for the standard model and the models BSM. Here we will use the lifetime differences of the D0−‾D0 and B0d,s−‾B0d,s system to constrain some couplings of supersymmetry R-parity violating model (SUSY ̸R) by loop level interactions. 2. ”Unparticle,” a scale invariant sector proposed H. Georgi, is discussed and also subjected to the particle and antiparticle oscillation constraints. 3. A gauge singlet dubbed darkon, acting as a dark matter candidate, is studied. The standard model plus darkon (SM+D) is severely constrained by dark matter direct search experiments and one of its extensions the two Higgs doublets model II plus darkon (THDM II+D), could be constrained loosely as expected. And two Higgs doublets, model III plus darkon (THDM III+D), can offer a checking channel when subjected to the top quark decay at LHC. In part III, we summarize our findings and discuss future prospects. And finally some appendices and references are provided. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:03:09Z (GMT). No. of bitstreams: 1 ntu-99-D94222001-1.pdf: 1054333 bytes, checksum: 0f1dc21fcbf9bff8227d8f800a7c2561 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | I The Standard Models 1
1 The Standard Models 5 1.1 The Standard Model of Particle Physics . . . . . . . . . . . . . . . . 5 1.1.1 The Standard Model Lagrangian . . . . . . . . . . . . . . . . 5 1.1.2 Higgs Mechanism . . . . . . . . . . . . . . . . . . . . . . . . .7 1.1.3 CKM Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2 The Standard Model of Modern Cosmology . . . . . . . . . . . . . . . 14 1.2.1 The Big-Bang Cosmology . . . . . . . . . . . . . . . . . . . . 14 1.2.2 Dark Matter Evidence . . . . . . . . . . . . . . . . . . . . . . 16 1.3 Beyond the Standard Models . . . . . . . . . . . . . . . . . . . . . . 17 II Topics Beyond the Standard Models 19 2 Particle-Antiparticle Oscillation Preliminary 23 3 SUSY R-Parity-Violating Model (The First BSM Topic) 29 3.1 SUSY R-Parity-Violating (̸R) Model . . . . . . . . . . . . . . . . . . 29 3.2 General Expression for Γ12 . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.1 RPV contributions to Γ12 for D0 − ‾D0 mixing . . . . . . . . . 33 3.2.2 RPV contributions to Γ12 for B0d,s− ‾B0d,s mixing . . . . . . . . 34 3.3 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.1 D0 − ‾D0 System . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.2 B0d− ‾B0d System . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.3 B0s− ‾B0s System . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4 Unparticle Physics (The Second BSM Topic) 43 4.1 Scale Invariance and Unparticle . . . . . . . . . . . . . . . . . . . . . 43 4.2 Unparticle Effects on Particle and Antiparticle Oscillations . . . . . . 47 4.2.1 Unparticle Exchange on Meson and Antimeson Oscillations . . 47 4.2.2 Muonium-antimuonium Oscillation . . . . . . . . . . . . . . . 51 4.3 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 53 5 Dark Matter Preliminary 55 5.1 Dark Matter Relic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 Dark Matter Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6 Darkon as Dark Matter (The Third BSM Topic) 61 6.1 Standard Model Plus Darkon . . . . . . . . . . . . . . . . . . . . . . 61 6.1.1 Brief description of the SM+D . . . . . . . . . . . . . . . . . . 62 6.1.2 Effective Higgs-nucleon coupling . . . . . . . . . . . . . . . . . 63 6.1.3 Darkon-nucleon elastic cross-section in SM+D . . . . . . . . . 64 6.2 Two Higgs Doublet Model II Plus Darkon . . . . . . . . . . . . . . . 64 6.2.1 Brief description of the THDM II+D . . . . . . . . . . . . . . 64 6.2.2 Darkon-nucleon elastic cross-section in THDMII+D . . . . . . 66 6.3 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 69 III Summary and the Prospect 73 7 Summary and the Prospect 77 8 Appendix 79 8.1 Two Higgs Doublet Models (THDM) . . . . . . . . . . . . . . . . . . 79 8.2 Derivation of Higgs-Nucleon Coupling . . . . . . . . . . . . . . . . . . 81 8.3 Darkon Annihilation . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 | |
dc.language.iso | en | |
dc.title | 超越標準模型主題探討 | zh_TW |
dc.title | Topics Beyond Standard Model | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 黃偉彥,耿朝強,陳泉宏,蔡俊謙,張嘉泓,阮自強 | |
dc.subject.keyword | 超越標準模型,介子混合,R 宇稱破壞,非粒子,暗物質, | zh_TW |
dc.subject.keyword | BSM, meson mixing, SUSY RPV, unparticle, dark matter, THDM, | en |
dc.relation.page | 92 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-02-11 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
Appears in Collections: | 物理學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-99-1.pdf Restricted Access | 1.03 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.