請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45063
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 胡忠怡 | |
dc.contributor.author | Huei-Yu Lai | en |
dc.contributor.author | 賴慧瑜 | zh_TW |
dc.date.accessioned | 2021-06-15T04:03:06Z | - |
dc.date.available | 2015-03-12 | |
dc.date.copyright | 2010-03-12 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-02-11 | |
dc.identifier.citation | 1. Silver H. Paternity Testing. Crit Rev Clin Lab Sci. 1989;27(5):391 - 408.
2. Gill P, Jeffreys AJ, Werrett DJ. Forensic application of DNA 'fingerprints'. Nature. 1985 Dec 12-18;318(6046):577-9. 3. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350-4. 4. DNA Technology in Forensic Science. Washington, D.C.: National Academy Press; 1992. 5. Litt M, Luty JA. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet. 1989 Mar;44(3):397-401. 6. Hagelberg E, Sykes B, Hedges R. Ancient bone DNA amplified. Nature. 1989 Nov 30;342(6249):485. 7. Paabo S, Gifford JA, Wilson AC. Mitochondrial DNA sequences from a 7000-year old brain. Nucleic Acids Res. 1988 Oct 25;16(20):9775-87. 8. Prado VF, Castro AK, Oliveira CL, Souza KT, Pena SD. Extraction of DNA from human skeletal remains: practical applications in forensic sciences. Genet Anal. 1997 Jul;14(2):41-4. 9. Allen M, Engstrom AS, Meyers S, Handt O, Saldeen T, von Haeseler A, et al. Mitochondrial DNA sequencing of shed hairs and saliva on robbery caps: sensitivity and matching probabilities. J Forensic Sci. 1998 May;43(3):453-64. 10. Mitochondrial DNA Sequence Analysis - Validation and Use for Forensic Casework. Forensic Science Review1999. p. 21-50. 11. 陳孟宜, 孟令敏. 粒線體DNA多變異段序列特徵統計研究及應用. 法務部調查局97年度科技計畫成果效益報告書(2008). 12. Wallace DC. Mitochondrial DNA in aging and disease. Sci Am. 1997 Aug;277(2):40-7. 13. Khrapko K, Vijg J. Mitochondrial DNA mutations and aging: devils in the details? Trends Genet. 2009 Feb;25(2):91-8. 14. Vermulst M, Bielas JH, Kujoth GC, Ladiges WC, Rabinovitch PS, Prolla TA, et al. Mitochondrial point mutations do not limit the natural lifespan of mice. Nat Genet. 2007 Apr;39(4):540-3. 15. Khrapko K, Kraytsberg Y, de Grey AD, Vijg J, Schon EA. Does premature aging of the mtDNA mutator mouse prove that mtDNA mutations are involved in natural aging? Aging Cell. 2006 Jun;5(3):279-82. 16. Meissner C. Mutations of mitochondrial DNA - cause or consequence of the ageing process? Z Gerontol Geriatr. 2007 Oct;40(5):325-33. 17. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457-65. 18. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet. 1999 Oct;23(2):147. 19. Clayton DA. Vertebrate mitochondrial DNA-a circle of surprises. Exp Cell Res. 2000 Feb 25;255(1):4-9. 20. Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta. 1999 Feb 9;1410(2):103-23. 21. Giles RE, Blanc H, Cann HM, Wallace DC. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6715-9. 22. Potter SS, Newbold JE, Hutchison CA, 3rd, Edgell MH. Specific cleavage analysis of mammalian mitochondrial DNA. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4496-500. 23. Vigilant L, Pennington R, Harpending H, Kocher TD, Wilson AC. Mitochondrial DNA sequences in single hairs from a southern African population. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9350-4. 24. Cann RL, Stoneking M, Wilson AC. Mitochondrial DNA and human evolution. Nature. 1987 Jan 1-7;325(6099):31-6. 25. Monnat RJ, Jr., Loeb LA. Nucleotide sequence preservation of human mitochondrial DNA. Proc Natl Acad Sci U S A. 1985 May;82(9):2895-9. 26. Monnat RJ, Jr., Reay DT. Nucleotide sequence identity of mitochondrial DNA from different human tissues. Gene. 1986;43(3):205-11. 27. Hauswirth WW, Clayton DA. Length heterogeneity of a conserved displacement-loop sequence in human mitochondrial DNA. Nucleic Acids Res. 1985 Nov 25;13(22):8093-104. 28. Malik S, Sudoyo H, Pramoonjago P, Suryadi H, Sukarna T, Njunting M, et al. Nuclear mitochondrial interplay in the modulation of the homopolymeric tract length heteroplasmy in the control (D-loop) region of the mitochondrial DNA. Hum Genet. 2002 May;110(5):402-11. 29. 蒲長恩, 孟令敏. 粒線體DNA序列資料庫及鑑識應用. 93年粒線體DNA鑑定之刑事應用國際研討會論文集: 社團法人中華民國鑑識科學學會; 2004. p. 78. 30. Bendall KE, Sykes BC. Length heteroplasmy in the first hypervariable segment of the human mtDNA control region. Am J Hum Genet. 1995 Aug;57(2):248-56. 31. Greenberg BD, Newbold JE, Sugino A. Intraspecific nucleotide sequence variability surrounding the origin of replication in human mitochondrial DNA. Gene. 1983 Jan-Feb;21(1-2):33-49. 32. Stewart JE, Fisher CL, Aagaard PJ, Wilson MR, Isenberg AR, Polanskey D, et al. Length variation in HV2 of the human mitochondrial DNA control region. J Forensic Sci. 2001 Jul;46(4):862-70. 33. Wallace DC. 1994 William Allan Award Address. Mitochondrial DNA variation in human evolution, degenerative disease, and aging. Am J Hum Genet. 1995 Aug;57(2):201-23. 34. Hamazaki S, Koshiba M, Sugiyama T. Organ distribution of mutant mitochondrial tRNA(leu(UUR)) gene in a MELAS patient. Acta Pathol Jpn. 1993 Apr;43(4):187-91. 35. Shoffner JM, Kaufman A, Koontz D, Krawiecki N, Smith E, Topp M, et al. Oxidative phosphorylation diseases and cerebellar ataxia. Clin Neurosci. 1995;3(1):43-53. 36. Ankel-Simons F, Cummins JM. Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13859-63. 37. Zhang H, Cooney DA, Sreenath A, Zhan Q, Agbaria R, Stowe EE, et al. Quantitation of mitochondrial DNA in human lymphoblasts by a competitive polymerase chain reaction method: application to the study of inhibitors of mitochondrial DNA content. Mol Pharmacol. 1994 Dec;46(6):1063-9. 38. Bidooki SK, Johnson MA, Chrzanowska-Lightowlers Z, Bindoff LA, Lightowlers RN. Intracellular mitochondrial triplasmy in a patient with two heteroplasmic base changes. Am J Hum Genet. 1997 Jun;60(6):1430-8. 39. Salas A, Lareu MV, Carracedo A. Heteroplasmy in mtDNA and the weight of evidence in forensic mtDNA analysis: a case report. Int J Legal Med. 2001;114(3):186-90. 40. SWGDAM, Guidelines for Mitochondrial DNA (mtDNA) Nucleotide Sequence Interpretation. Standards and Guidelines: Forensic Science Communications; 2003. 41. Wilson MR, Allard MW, Monson KL, Miller KWP, Budowle B. Further Discussion of the Consistent Treatment of Length Variants in the Human Mitochondrial DNA Control Region. Forensic Science Communications2002. 42. Wilson MR, Allard MW, Monson K, Miller KW, Budowle B. Recommendations for consistent treatment of length variants in the human mitochondrial DNA control region. Forensic Sci Int. 2002 Sep 10;129(1):35-42. 43. Hatsch D, Amory S, Keyser C, Hienne R, Bertrand L. A rape case solved by mitochondrial DNA mixture analysis. J Forensic Sci. 2007 Jul;52(4):891-4. 44. Koons B, Sobieralski C, Comey C, Stanley D, Baechtel F, Smerick J, et al. DNA Extraction Strategies for Amplified Fragment Length Polymorphism Analysis. J Forensic Sci. 1994;39(5):16. 45. Lutz-Bonengel S, Sanger T, Parson W, Muller H, Ellwart JW, Follo M, et al. Single lymphocytes from two healthy individuals with mitochondrial point heteroplasmy are mainly homoplasmic. Int J Legal Med. 2008 May;122(3):189-97. 46. Rodriguez De Alba M, Palomino P, Jurado A, Sanz R, Ibanez MA, Fernandez-Moya JM, et al. Prenatal diagnosis on fetal cells obtained from maternal peripheral blood: report of 66 cases. Prenat Diagn. 1999 Oct;19(10):934-40. 47. Mead DA, Pey NK, Herrnstadt C, Marcil RA, Smith LM. A universal method for the direct cloning of PCR amplified nucleic acid. Biotechnology (N Y). 1991 Jul;9(7):657-63. 48. Shuman S. Recombination mediated by vaccinia virus DNA topoisomerase I in Escherichia coli is sequence specific. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10104-8. 49. Dobrowolski SF, Ellingson C, Coyne T, Grey J, Martin R, Naylor EW, et al. Mutations in the phenylalanine hydroxylase gene identified in 95 patients with phenylketonuria using novel systems of mutation scanning and specific genotyping based upon thermal melt profiles. Mol Genet Metab. 2007 Jul;91(3):218-27. 50. Dobrowolski SF, Ellingson CE, Caldovic L, Tuchman M. Streamlined assessment of gene variants by high resolution melt profiling utilizing the ornithine transcarbamylase gene as a model system. Hum Mutat. 2007 Nov;28(11):1133-40. 51. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem. 2003 Jun;49(6 Pt 1):853-60. 52. Herrmann MG, Durtschi JD, Bromley LK, Wittwer CT, Voelkerding KV. Amplicon DNA melting analysis for mutation scanning and genotyping: cross-platform comparison of instruments and dyes. Clin Chem. 2006 Mar;52(3):494-503. 53. Lipsky RH, Mazzanti CM, Rudolph JG, Xu K, Vyas G, Bozak D, et al. DNA melting analysis for detection of single nucleotide polymorphisms. Clin Chem. 2001 Apr;47(4):635-44. 54. Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, et al. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem. 2004 Jul;50(7):1156-64. 55. Andreasson H, Gyllensten U, Allen M. Real-time DNA quantification of nuclear and mitochondrial DNA in forensic analysis. Biotechniques. 2002 Aug;33(2):402-4, 7-11. 56. Cavelier L, Johannisson A, Gyllensten U. Analysis of mtDNA copy number and composition of single mitochondrial particles using flow cytometry and PCR. Exp Cell Res. 2000 Aug 25;259(1):79-85. 57. Andreasson H, Nilsson M, Budowle B, Lundberg H, Allen M. Nuclear and mitochondrial DNA quantification of various forensic materials. Forensic Sci Int. 2006 Dec 1;164(1):56-64. 58. Roche. LightCycler ® 480 High Resolution Melting Master. Roche; 2008 [updated February 2008]. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45063 | - |
dc.description.abstract | 在刑事案件中,現場蒐證人員為了釐清犯罪事實,往往會採集多種生物跡證(evidence samples,如血液、尿液等),連同嫌疑人的標準檢體(reference sample,通常是口腔黏膜細胞棉棒)提供給鑑識實驗室進行比對,期望藉由生物技術來證明或排除嫌疑人涉案的可能。雖然DNA技術的發展,autosomal STR (short tandem repeats) 分析已成為最快速且有效的個化鑑定方法。然而刑事證物的來源多樣,常有跡證樣本發生autosomal DNA嚴重裂解而無法分析autosomal STR進行鑑定的情形。為了提高案件證物的檢出鑑別力,鑑識人員可改採粒線體DNA序列分析來協助做個案鑑定。粒線體是透過母系遺傳,因此在個案鑑定上,只能做到母系來源的確認,雖無法達到完全個化分析,惟其區別率仍可高達99%以上。另由於細胞內含有豐富的粒線體DNA,因此在高度腐敗的檢體內,還是能夠藉由分析粒線體DNA的序列而協助個案鑑識。分析粒線體DNA 上control region的HVI(highervariable region)和HVII段,不同母系間之粒線體DNA HVI、HVII序列一般會有數個位點的差異,鑑識人員即依據該等位點的差異進行判斷及分析生物跡證與採自嫌疑人之對照檢體之粒線體DNA是否源自同一母系。
實務上最常使用粒線體序列分析的檢體為吸毒嫌疑人的DNA與呈毒品檢測陽性反應的尿液作比對。常見案例為院檢要求確認陳舊尿液是否為吸毒嫌疑人所排放?該尿液是否為混合檢體?若有,更希望能夠確認第二人的身份。然而,目前即使能從粒線體DNA HVI、HVII核酸序列分析的圖譜直接看出是否含有一人以上的混合DNA樣本,但仍無法有效的辨別檢體的來源。本研究利用目前常用的分生技術,建立一套鑑定流程,以解決混合檢體案件中個化分析的困難:先TA cloning將增幅後的粒線體DNA HVI、HVII核酸序列片段個別選殖至大腸桿菌達到株化目的、colony PCR將之各別增幅、結合高分辨熔解曲線(high resolution melting, HRM)screening判定株化核酸片段種類、最後以核酸定序確認,大量的減少人力、物力及時間。此一流程除了可應用於尿液檢體外,將來亦可應用於其他的混合檢體類別,如石蠟包埋組織塊等,對於提昇鑑識科技極有助益。 | zh_TW |
dc.description.abstract | For forensic individualitation, characteristics of the crime scene evidence should be compared to that of reference samples from the suspects. Modern biotechnologies are commonly applied to prove/rule out the possibility of suspect’s involvement of the case. Analysis of autosomal short tandem repeats (STR) has been the most efficient and effective method for individualized identification. Nonetheless, the evidence samples are usually collected from various sources and uncertain circumstances, while deteriorated samples give rise to severely-degraded autosomal DNA and hamper autosomal STR analysis. As mitochondrial DNAs are rich in cells, analysis of mitochondrial DNA HVI (higher variable region I) and HVII in the control region is applied in alternative in case of encountering rotten samples or samples containing scanty genomic DNA. The mitochondrial DNAs are maternally inherited. Therefore, the matching in mitochondrial DNA confirms only the maternal origins but not the individualization of the DNA donor in the evidence materials, but power of discrimination can still reach 99%.
In practice, mitochondrial DNA analysis has been commonly applied in controversial cases in comparing the DNAs collected from the aged urine and the freshly collected buccal epithelium of the drug-abuse suspect who gave a positive result in the urine drug screening. Upon the request of the court, the forensic laboratory has to identify if the aged urine was expelled by the drug-abuse suspect, or, whether the urine is a mixed sample? Sometimes, the second donor in the mixed sample has to be confirmed. Nevertheless, in the case of finding a mixed DNA sequences while performing traditional PCR/DNA sequencing of mitochondrial HVI/HVII sequence, the source of the DNA could not be identified. The objective of this research is to set up a procedure for individualized- identification within the aged and mixed urine samples. In brief, mitochondrial DNA HVI/ HVII sequence were amplified by PCR, followed by TA cloning to incorporate individual DNA fragment into single E. coli. The cloned DNA of the bacterial colonies were then amplified and grouped by high resolution melting (HRM), and verified by DNA sequencing. Screening and auto-grouping of PCR products derived from TA cloning by HRM help to reduce the cost, time, and man-power in handling large amount of colonies. This procedure will be helpful in individualized-identification of the DNA donor in the mixed samples. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:03:06Z (GMT). No. of bitstreams: 1 ntu-99-R96424030-1.pdf: 4395678 bytes, checksum: 8895bcc3bb99db12a0dfc565c0fbb082 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 論文口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract v 目 錄 vii 第一章 緒論 1 第一節 分子生物技術於親子鑑定與刑事鑑定上之發展與應用 1 1.1 鑑定技術之演進 1 1.2 鑑定技術之應用 2 第二節 粒線體DNA介紹與刑事鑑定之應用 3 2.1 粒線體之功能 3 2.2 粒線體DNA的結構 3 2.3 粒線體的母系遺傳 4 2.4 粒線體DNA之特性(與細胞核DNA之比較) 4 2.5 粒線體DNA之異質性 5 2.6 mtDNA序列比對方式與判讀依據 7 2.7 粒線體DNA於刑事鑑識上之應用 9 第三節 mt DNA常見鑑定類型 10 3.1 緣由 10 3.2 毒品之定義與施用毒品之刑責 10 3.3 鑑定流程 10 第四節 濫用藥物者之尿液檢驗 12 4.1 檢測尿液毒品含量之法規及鑑定流程 12 4.2 免疫學分析法之原理 13 第五節 混合檢體之檢驗方法 14 5.1 混合檢體之成因 14 5.2 鑑定混合檢體之方法 14 5.3 尿液混合案件 15 第六節 TA cloning 16 6.1 原理 16 6.2 篩選含有目標序列之菌落的原理 17 第七節 高分辨熔解曲線(High resolution melting;HRM) 18 7.1 原理 18 7.2 技術之演進 18 7.3 HRM的應用 19 第二章 研究目的與策略 20 第三章 實驗材料及方法 21 第一節 試劑與器材清單 21 第二節 實驗材料 21 第三節 mtDNA絕對定量分析 21 第四節 聚合酶之忠誠度測試 22 第五節 混合檢體之HVI、HVII之TA cloning 23 第六節 mtDNA之HRM分析 23 第四章 實驗結果 24 第一節 粒線體DNA定量結果 24 1.1 標準品 24 1.2 尿液中mtDNA定量 25 第二節 聚合酶之忠誠度測試結果 26 2.1 緣由 26 2.2 聚合酶之選擇 26 2.3 檢體準備及實驗結果 26 第三節 檢體做TA cloning,以觀察個人mtDNA異質現象情形 28 3.1 長度異質現象 28 3.2 序列異質現象 28 第四節 mtDNA之HRM結果 30 4.1 引子之設計 30 4.2 不同濃度的template,HRM分析結果比較 31 4.3 以不同引子做不同序列之檢體比較 31 第五節 混合檢體實驗結果 33 5.1 混合檢體直接定序 33 5.2 混合檢體做TA cloning後,進行HRM分析 33 5.3 TA cloning後進行序列分析 33 第五章 討論 34 參考文獻 39 圖 46 表 69 附錄 77 | |
dc.language.iso | zh-TW | |
dc.title | 建立以粒線體DNA檢測混合檢體之個化分析系統 | zh_TW |
dc.title | Development procedures for individualized identification within mixed samples using mitochondrial DNA markers | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林亮音,蒲長恩,趙齊相 | |
dc.subject.keyword | 鑑識科學,混合檢體,粒線體DNA,TA選殖,高分辨熔解曲線,核酸序列分析, | zh_TW |
dc.subject.keyword | Forensic science,Mixed sample,mitochondria DNA,TA cloning,high resolution melting (HRM),DNA sequencing, | en |
dc.relation.page | 104 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-02-11 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 4.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。