Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45052
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 楊恩誠(En-Cheng Yang) | |
dc.contributor.author | Hung-Yuan Chen | en |
dc.contributor.author | 陳宏源 | zh_TW |
dc.date.accessioned | 2021-06-15T04:02:41Z | - |
dc.date.available | 2010-03-11 | |
dc.date.copyright | 2010-03-11 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-02-11 | |
dc.identifier.citation | Ahern, G. P., V. A. Klyachko, and M. B. Jackson. 2002. cGMP and S-nitrosylation: two routes for modulation of neuronal excitability by NO. Trends Neurosci. 25: 510-517.
Akaike, T., M. Yoshida, Y. Miyamoto, K. Sato, M. Kohno, K. Sasamoto, K. Miyazaki, S. Udea, and H. Maeda. 1993. Antagonistic action of imidazolineoxyl N-oxides against endothelium-derived relaxing factor/.NO through a radical reaction. Biochemistry 32: 827-832. Bacigalupo, J., D. M. Bautista, D. L. Brink, J. F. Hetxer, and P. M. O’day. 1995. Cyclic-GMP enhances light induced excitation and induces membrane currents in Drosophila retinal photoreceptors. J. Neurosci. 15: 7196-7200. Backhaus, W., and R. Menzel. 1987. Color distance derived from a receptor model of color vision in the honeybee. Biol. Cybernet. 55: 321-331. Bateman, M. A. 1972. The ecology of fruit flies. Annu. Rev. Ecol. 17: 493-518. Ben-Shahar, Y., A. Robichon, M. B. Sokolowski, and G. E. Robinson. 2002. Behavior influenced by gene action across different time scales. Science 296: 742-744. Ben-Shahar, Y., H. T. Leung, W. L. Pak, M. B. Sokolowski, and G. E. Robinson. 2003. cGMP-dependent changes in phototaxis: A possible role for the foraging gene in honey bee division of labor. J. Exp. Biol. 206: 2507-2515. Ben-Shahar, Y. 2005. The foraging gene, behavioral plasticity and honeybee division o f labor. J. Comp. Physiol. A 191: 987-994. Bicker, G. 1998. NO news from insect brains. Trends Neruosci. 21: 349-355. Bicker, G. 2001a. Nitric oxide: an unconventional messenger in the nervous system of an Orthopteroid insect. Arch. Insect Biochem. Physiol. 48: 100-110. Bicker, G. 2001b. Sources and targets of nitric oxide signaling in insect nervous systems. Cell Tissue Res. 303: 137-146. Bicker, G., and O. Schmachtenberg. 1997. Cytochemical evidence for nitric oxide/cyclic GMP signal transmission in the visual system of the locust. Eur. J. Neurosci. 9: 189-193. Bredt, D.S., and S.H. Snyder. 1992. Nitric oxide, a novel neuronal messenger. Neuron 8: 3-11. Bricoe, A. D., and L. Chittka. 2001. The evolution of color vision in insects. Annu. Rev. Entomol. 46: 471-510. Calabrese, V., C. Mancuso, M. Calvani, E. Rizzarelli, D. A. Butterfield, and A. M. G. Stella. 2007. Nitric oxide in the central nervous system: neruoprotection versus neurotoxicity. Nature Rev. Neurosci. 8: 766-775. Chen, B., I. A. Meinertzhagen, and S. R. Shaw. 1999. Circadian rhythms in light-evoker responses of the fly’s compound eye, and the effects of neuromodulators 5-HT and the peptide PDF. J. Comp. Physiol. A. 185: 393-404. Champlin, D. T., and J. W. Turman. 2000. Ecdysteroid coordinates optic lobe neurogenesis via a nitric oxide signaling pathway. Development 127: 3543-3551. Conforti, E., C. Torti, A. R. Malacrida, and G. Bernocchi. 1999 Mature and development of Ceratitis capitata (Diptera, Teephritidae): histochemical evidence of nitric oxide synthase in the wild type and the white eye mutant strains. Brain Res. 843: 1-11 Cudeiro, J., and C. Rivadulla. 1999. Sight and insight – on the physiological role of nitric oxide in the visual system. Trends Neurosci. 22: 109-116. Davies, S. A. 2000. Nitric oxide signaling in insects. Insect Biochem. Mol. Biol. 30: 1123-1138. Elofsson, R., M. Carlberg, L. Moroz, L. Nezlin, and D. Sakharov. 1993. Is nitric oxide (NO) produced by invertebrate neurons. Neuroreport 4: 279–282. Elphick, M. R., L. Williams, and M. O’Shea. 1996. New features of the locust optic lobe: evidence of a role for nitric oxide in insect vision. J. Exp. Biol. 199: 2395-2407. Fruchgott, R. F., and J. V. Zawadzki. 1980. The obligatory role of endothelial cells in relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373-376. Gally, J. A., P. R. Motague, G. N. Reeke, Jr, and G. M. Edelman. 1990. The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc. Natl. Acad. Sci. U.S.A. 87: 3547-3551. Garthwaite, J., L. Charles, and R. 1998. Chess-Willians Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336: 385-388. Garthwaite, J. 1991. Glutamate, nitric oxide and cell-cell signaling in the nervous system. Trends Neurosci. 14: 60-67 Gibbs, S. M. and J. W. Truman. 1998. Nitric oxide and cyclic GMP regulate retinal patterning in the optic lobe of Drosophila. Neuron 20: 83-93. Hanyu, Y, and N. Franceschini. 1993. Pigment granule migration and phototransduction are triggered by separate pathways in fly photoreceptor cells. Neuro Report 4: 215-218. Harris, W. A., W. S. Stark, and J. A. Walker. 1976. Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J. Physiol. 256: 415-439. Helfrich-förster , C., M. Stengl, and U. Homberg . 1998. Organization of the circadian system in insects. Chronobiol. Int. 15: 567-594. Hsieh, W. H. 2007. Nitric oxide in the visual system of insects. Master thesis from Dept. of Entomology, National Chung Hsing University. 62pp (in Chinese) Holmqvist, B. I., T. Östholm, P. Alm, and P. Ekström. 1994 Nitric oxide synthase in the brain of a teleost. Neurosci. Lett. 171: 205-208. Hope, B. T., G. J. Michael, K. M. Knigge, and S. R. Vincent. 1991. Neuronal NADPH diaphorase is a nitric oxide synthase. Proc. Natl. Acad. Sci. U.S.A. 88: 2811-2814. Horridge, G. A. 1996. Vision of the honeybee Apis mellifera for patterns with two pairs of equal orthogonal bars. J. Insect Physiol. 42: 131-138. Hu, J., M. I. Mahmoud, and E. E. el-Fakahany. 1994. Polyamines inhibit nitric oxide synthase in rat cerebellum. Neurosci. Lett. 175: 41-45. Ignarro, L. J., G. M. Buga, K. S. Wood, E. R. Byrns, and G. Chaudhuri. 1987. Endothelium-derived relaxing factor produced and released from artery and vein in nitric oxide. Proc. Natl. Acad. Sci. U.S.A. 84: 9265-9269. Jones, I. W., and M. R. Elphick. 1999. Dark-dependent soluble guanylyl cyclase activity in locust photoreceptor cells. Proc. R. Soc. Lond. B 266: 413-419. Katz. B., and B. Minke. 2009. Drosophila photoreceptors and signaling mechanisms. Front. Cell. Neurosci. Vol. 3 Art. 2. Kirschfeld, K. 1971. Uptake and processing of optic data in the complex eye of insects. Naturwiss. 58: 201-209. Kirschfeld, K., and N. Franceschini. 1968. Optical characteristics of ommatidia in the complex eye of Musca. Kybernetik 5: 47-52. Kirschfeld, K., and N. Franceschini. 1969. A mechanism for the control of the light flow in the rhabdomeres of the complex eye of Musca. Kybernetik 6: 13-22. Kirschfeld, K., and N. Franceschini. 1971. The automatic control of the light flux in the compound eye of Diptera spectral, statical, and dynamical properties of the mechanism. Biol. Cybernetics 21: 181-203. Kirschfeld, K., and A. W. Snyder. 1976. Measurement of a photoreceptor’s characteristic waveguide parameter. Vision Res. 16: 775-778. Kirschfeld, K. and K. Vogt. 1980. Calcium ions and pigment migration in fly photoreceptors. Natruwiss. 67: 516-517. Knowles, R. G., M. Palacios, R. M. J. Palmer, and S. Moncada. 1989. Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for the stimulation of the soluble guanylate cyclase. Proc. Natl. Acad. Sci. U.S.A. 86: 5159–5162. Kollau. A., M. Beretta, M. Russwurm, D. Koesling, W. M. Kenug, K. Schmide, and B. Mayer. 2009. Mitochondrial nitrite reduction coupled to soluble guanylate cyclase activation: Lack of evidence for a role in the bioactivation of nitroglycerin. Nitric Oxide 20: 53-60. Koudstaal, J., and M. J. Hardonk. 1969. Histochemical demonstration of enzymes related to NADPH-dependent hydroxylating systems in rat liver after Phenobarbital treatment. Histochemie 20: 68-77. Kuzin, B., I. Roberts, N. Peunova, and G. Enikolopov. 1996. Nitric oxide regulates cell proliferation during Drosophila development. Cell 87: 639-649. Lin, M. F. and E. M. Leise. 1996. NADPH-diaphorase activity changes during gangliogenesis and metamorphosis in the gastropod mollusk Ilyanassa obsolete. J. Comp. Neurol. 374: 194-203. Lundberg, J. O. and E. Weitzberg. 2008. Nitric reduction to nitric oxide in the vasculature. Am. J. Physiol. Heart Circ. Physical. 295: H477-H478. Martinez, A. 1995. Nitric oxide synthase in invertebrates. Histchem. J. 24: 770-776 Melster, A., and Anderson, M. E. 1983. Glutathione. Annu. Rev. Biochem. 52: 711-760. Müller, U. 1994. Ca2+/calmodulin-dependent nitric oxide synthase in Apis mellifera and Drosophila melanogaster. Eur. J. Neurosci. 6: 1362-1370. Müller, U. 1996. Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee Apis melifera. Neuron 16: 541-549. Müller, U. 1997. The nitric oxide system in insects. Prog. Neurobiol. 51: 363-381. Müller, U., and G. Bicker. 1994. Calcium-activated release of nitric oxide and cellular distribution of nitric oxide-synthesizing neurons in the nervous system of the locust. J. Neurosci. 14: 7251-7528. Müller, U., and H. Hildebrandt. 1995. The nitric oxide/cGMP system in the antennal lobe of Apis melifera in implicated in integrative processing of chemosensory stimuli. Eur. J. Neurosci. 7: 2240-2248. Ott, S. R., and M. R. Elphick. 2002. Nitric oxide synthase histochemistry in insect nervous system: methanol/formalin fixation reveals the neuroarchitectrue of formaldehyde-sensitve NADPH diaphorase in the cockroach Periplaneta americana. J. Comp. Nerual. 448: 165-185. Ott, S. R., and M. R. Elphick. 2003. New techniques for whole mount NADPH diaphorase histochemistry demonstrated in insect ganglia. J. Histochem. Cytochem. 51: 523-532. Peitsch, D., A. Fietz, H. Hertel, J. de Souza, D. F. Ventura, and R. Menzel. 1992. The spectral input systems of hymenopteran insects and their receptor-based colour vision. J. Comp. Physiol. A 170: 23-40. Radomski, M. W., D. D. Rees, A. Dutra, and S. Moncada. 1992. S-nitroso-glutathione inhibits platelet activation in vitro and in vivo. Br. J. Pharmacol. 107: 745-749. Roan, C. C., N. E. Flitters, and C. J. Davis. 1958. Light intensity and temperature as factors limiting the mating of the oriental fruit fly. Ann. Entomol. Soc. Am. 47: 593-594. Roda, E., E. Municchi, E. Conforti, M. B. Pisu, L. M. Gomulski, A. R. Malacrida, and G. Bernocchi. 2004. Nitric oxide synthase-dependent NADPH-diaphorase activity in the optic lobes of male and female Ceratitis capitata mutants. Eur. J. Histochem. 48: 141-150. Sandau, K., and B. Brüne. 1996. The dual role of S-nitrosoglutathione (GSNO) during thymocyte apoptosis. Cell. Signal. 8: 173-177. Satoh, A. K., B. X. Li, H. Xia, and D. F. Ready. 2008. Calcium-activated myosin V closes the Drosophila pupil. Curr. Biol. 18: 951-995. Schmachtenberg, O., and G. Bicker. 1999. Nitric oxide and cyclic GMP modulate photoreceptor cell responses in the visual system of the locust. J. Exp. Biol. 202: 13-20. Seidel, C., and G. Bicker. 1997. Colocalization of NADPH-diaphorase and GABA immunoreactivity in the olfactory and visual system of the locust. Brain Res. 769: 273-280. Seidel, C., and G. Bicker. 2000. Nitric oxide and cyclic GMP influence axonogenesis of antennal pioneer neurons. Development 127:4541-4549. Stark, W. S., and C. F. Thomas. 2004. Microscopy of multiple visual receptor type in Drosophila. Mol. Vision 10: 943-955. Truman, J. W., J. D. Vente, and E. E. Ball. 1996. Nitric oxide-sensitive guanylate cyclase activity is associated with the maturational phase of neuronal development in insects. Development 122: 3949-3958. Vincent, S. R., and H. Kimura. 1992. Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46: 755-784. Watanabe, T., M. Kikuchi, D. Hatakeyama, T. Shiga, T. Yamamoto, H. Aonuma, M. Takahata, N. Suzuki, and E. Ito. 2007. Gaseous meruomodulator-related genes expressed in the brain of honeybee Aphis melifera. Dev. Neurobiol. 67: 456-473. Wildemann, B., and G. Bicker. 1999. Nitric oxide and cyclic GMP induce vesicle release at Drosophila neuromuscular junction. J. Neurobiol. 39: 337-346. Wu, C. Y., C. S. Chang, L. C. Tung, and J. T. Lin. 1985. The fine structure of the compound eye of the oriental fruit fly Dacus dorsalis Hedel. Bull. Inst. Zool., Academia Sinica 24: 27-38. Yang, E. C., and T. Maddess. 1997. Orientation-sensitive neurons in the brain of the honeybee (Aphis melifera). J. Insect Physiol. 43: 329-336. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45052 | - |
dc.description.abstract | 一氧化氮(nitric oxide, NO)為一種半衰期短暫的不穩定氣體分子。在生物體內由一氧化氮合成酶(nitric oxide synthase, NOS)產生,作用於標的細胞內的水溶性鳥苷酸環化酶(soluble guanylyl cyclase, sGC),以提升細胞內cyclic GMP的含量。NO在昆蟲的中樞神經系統,被學界推測與嗅覺及視覺的形成過程有關,然而NO在昆蟲視覺系統真正的生理功能及作用機制仍有待證實。本研究以NADPH-diaphorase標定東方果實蠅(Bactrocera dorsalis)複眼中的NOS。在初級色素細胞及基底膜相鄰細胞標定出具有活性的NOS。而此兩處的細胞,相較於視官柱體(rhabdome),含有較多的色素存在。為了驗證NO在此是否與昆蟲視網膜色素的調控有關,以NO生成劑(GSNO)及NO清除劑(C-PTIO)注入東方果實蠅視網膜內,觀察光適應時複眼偽瞳孔(pseudopupil)光影因視網膜細胞內色素顆粒移動所造成的變化。以GSNO處理的視網膜,偽瞳孔光影亮度減弱,在光刺激下視網膜仍保持暗適應的狀態;而對照組維持正常,表示NO的確可影響視網膜細胞內色素顆粒的移動。由本研究的結果推論,NO可由在東方果實蠅的視網膜產生,並且藉由調整色素顆粒的移動而改變其視網膜對光暗的適應狀態。 | zh_TW |
dc.description.abstract | Nitric oxide (NO) is an unstable gas molecular with short half-life. In organism, NO is produced by nitric oxide synthase (NOS), affects on the soluble guanylyl cyclase (sGC) of target cells, and lead to the increase of cyclic GMP level. In insect central nervous system, NO is supposed to have some physiological functions related to the olfaction and vision. However, the real function and mechanism of NO still need to be proved. In this study, NADPH-diaphorase was used to detect the expression of NOS in the compound eye of oriental fruit fly (Bactrocera dorsalis). The existence of NOS in the primary pigment cell and around the basement membrane was observed. Compare with the rhabdome, these two areas contain more pigments. To verify the relationship between NO and the pigments of insect retinula, the NO donor (GSNO) and the NO scavenger (C-PTIO) were injected into the retinula, and to observe the pseudopupil reflection caused by the migration of the pigment granules in light-adapted retinula cells. The pseudopupil reflection decreased in GSNO treatment group, and the retinula was kept in dark-adaptation with light stimulation, indicating that NO control the pigment granule migration in the retinula cells. According to these results, it is concluded that NO can be produced from the retinula of oriental fruit fly and control the light/dark-adaptation of retinula by regulating the migration of the pigment granules. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:02:41Z (GMT). No. of bitstreams: 1 ntu-99-R96632001-1.pdf: 917011 bytes, checksum: 18dff0e75afe063312647373a9156dbd (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 目錄
口試委員審定書............................................i 誌謝.....................................................ii 中文摘要................................................iii 英文摘要.................................................iv 前言......................................................1 前人研究..................................................2 一氧化氮在生理學上的研究源起...........................2 一氧化氮的基本資訊.....................................2 一氧化氮的生成與其在神經系統內的生理作用...............3 一氧化氮在昆蟲之生理及組織學研究.......................4 一氧化氮在昆蟲視覺系統之生理研究.......................5 一氧化氮在昆蟲視覺系統的量測紀錄.......................6 材料與方法................................................7 NADPH-diaphorase組織化學染色...........................7 NOS在東方果實視網膜分布之組織學染色 ...................7 1. 供試動物.........................................7 2. 試驗藥品.........................................7 3. NADHP-diaphorase染色.............................8 東方果實蠅偽瞳孔觀察..................................10 NO對東方果實蠅視網膜光暗適應調節上的藥理測試..........10 1. 裝置架設........................................10 2. 試驗藥品........................................11 3. NO藥理測試......................................11 4. 影像結果數據分析................................12 結果.....................................................14 NOS在東方果實蠅視網膜分布之組織學染色.................14 NO在東方果實蠅視網膜光暗適應調節上的藥理測試..........14 1.瞳孔光暗適應基本狀態測量.........................14 2.NO在視網膜上的藥理測試...........................15 討論.....................................................16 NOS在東方果實蠅視網膜的組織學染色.....................16 1.NOS在視網膜的分布情形............................16 2.視網膜整體觀察與切片觀察的差異...................16 3.NOS在雌雄成蟲視網膜的分布差異....................16 4.NOS在東方果實蠅視網膜上的意義....................17 5.NO的訊息傳遞方向.................................17 東方果實蠅偽瞳孔在光暗適應上的轉變....................18 NO在東方果實蠅視網膜的藥理試驗........................18 1.藥品注射的誤差...................................18 2.NO對視網膜所造成的影響...........................19 3.NO在視網膜細胞內的訊息傳遞.......................19 4.NO對於視網膜光暗適應的意義.......................20 未來研究..............................................20 參考文獻.................................................22 圖.......................................................31 附錄.....................................................40 | |
dc.language.iso | zh-TW | |
dc.title | 一氧化氮對東方果實蠅視網膜色素顆粒移動之調控 | zh_TW |
dc.title | Control of pigment granular migration in the retinula of oriental fruit fly (Bactrocera dorsalis) by nitric oxide | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李後晶(How-Jing Lee),路光暉(Kuang-Hui Lu) | |
dc.subject.keyword | 一氧化氮合成酶,昆蟲視網膜,色素顆粒,偽瞳孔,東方果實蠅, | zh_TW |
dc.subject.keyword | Nitric oxide synthase (NOS),retinula,pigment granule,pseudopupil,Bactrocera dorsalis, | en |
dc.relation.page | 44 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-02-11 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
Appears in Collections: | 昆蟲學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-99-1.pdf Restricted Access | 895.52 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.