請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45036完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭明良(Min-Liang Kuo) | |
| dc.contributor.author | Ming-Yang Wang | en |
| dc.contributor.author | 王明暘 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:02:08Z | - |
| dc.date.available | 2010-03-12 | |
| dc.date.copyright | 2010-03-12 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-02-22 | |
| dc.identifier.citation | 1. Bork, P. The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett, 327: 125-130, 1993.
2. Kim, H. S., Nagalla, S. R., Oh, Y., et al. Identification of a family of low-affinity insulin-like growth factor binding proteins (IGFBPs): characterization of connective tissue growth factor as a member of the IGFBP superfamily. Proc Natl Acad Sci U S A, 94: 12981-12986, 1997. 3. Luo, Q., Kang, Q., Si, W., et al. Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells. J Biol Chem, 279: 55958-55968, 2004. 4. Bradham, D. M., Igarashi, A., Potter, R. L., and Grotendorst, G. R. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol, 114: 1285-1294, 1991. 5. Lau, L. F. and Lam, S. C. The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res, 248: 44-57, 1999. 6. Perbal, B. NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues. Mol Pathol, 54: 57-79, 2001. 7. Brigstock, D. R. The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev, 20: 189-206, 1999. 8. Perbal, B. CCN proteins: multifunctional signalling regulators. Lancet, 363: 62-64, 2004. 9. Moussad, E. E. and Brigstock, D. R. Connective tissue growth factor: what's in a name? Mol Genet Metab, 71: 276-292, 2000. 10. Kondo, S., Kubota, S., Shimo, T., et al. Connective tissue growth factor increased by hypoxia may initiate angiogenesis in collaboration with matrix metalloproteinases. Carcinogenesis, 23: 769-776, 2002. 11. Xie, D., Nakachi, K., Wang, H., Elashoff, R., and Koeffler, H. P. Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res, 61: 8917-8923, 2001. 12. Wenger, C., Ellenrieder, V., Alber, B., et al. Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene, 18: 1073-1080, 1999. 13. Kubo, M., Kikuchi, K., Nashiro, K., et al. Expression of fibrogenic cytokines in desmoplastic malignant melanoma. Br J Dermatol, 139: 192-197, 1998. 14. Shakunaga, T., Ozaki, T., Ohara, N., et al. Expression of connective tissue growth factor in cartilaginous tumors. Cancer, 89: 1466-1473, 2000. 15. Kang, Y., Siegel, P. M., Shu, W., et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3: 537-549, 2003. 16. Minn, A. J., Kang, Y., Serganova, I., et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest, 115: 44-55, 2005. 17. Fidler, I. J. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer, 3: 453-458, 2003. 18. Martin, S. S. and Vuori, K. Regulation of Bcl-2 proteins during anoikis and amorphosis. Biochim Biophys Acta, 1692: 145-157, 2004. 19. Del Bufalo, D., Biroccio, A., Leonetti, C., and Zupi, G. Bcl-2 overexpression enhances the metastatic potential of a human breast cancer line. Faseb J, 11: 947-953, 1997. 20. Glinsky, G. V., Glinsky, V. V., Ivanova, A. B., and Hueser, C. J. Apoptosis and metastasis: increased apoptosis resistance of metastatic cancer cells is associated with the profound deficiency of apoptosis execution mechanisms. Cancer Lett, 115: 185-193, 1997. 21. Mehlen, P. and Puisieux, A. Metastasis: a question of life or death. Nat Rev Cancer, 6: 449-458, 2006. 22. Greenberg, P. A., Hortobagyi, G. N., Smith, T. L., et al. Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. J Clin Oncol, 14: 2197-2205, 1996. 23. Slamon, D. J., Leyland-Jones, B., Shak, S., et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med, 344: 783-792, 2001. 24. Brunet, A., Pages, G., and Pouyssegur, J. Constitutively active mutants of MAP kinase kinase (MEK1) induce growth factor-relaxation and oncogenicity when expressed in fibroblasts. Oncogene, 9: 3379-3387, 1994. 25. Chen, P. S., Wang, M. Y., Wu, S. N., et al. CTGF enhances the motility of breast cancer cells via an integrin-alphavbeta3-ERK1/2-dependent S100A4-upregulated pathway. J Cell Sci, 120: 2053-2065, 2007. 26. Salvesen, G. S. and Duckett, C. S. IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol, 3: 401-410, 2002. 27. Bryckaert, M., Guillonneau, X., Hecquet, C., Courtois, Y., and Mascarelli, F. Both FGF1 and bcl-x synthesis are necessary for the reduction of apoptosis in retinal pigmented epithelial cells by FGF2: role of the extracellular signal-regulated kinase 2. Oncogene, 18: 7584-7593, 1999. 28. Babic, A. M., Chen, C. C., and Lau, L. F. Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol, 19: 2958-2966, 1999. 29. Deng, X., Ruvolo, P., Carr, B., and May, W. S., Jr. Survival function of ERK1/2 as IL-3-activated, staurosporine-resistant Bcl2 kinases. Proc Natl Acad Sci U S A, 97: 1578-1583, 2000. 30. Bonni, A., Brunet, A., West, A. E., et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science, 286: 1358-1362, 1999. 31. Pardo, O. E., Arcaro, A., Salerno, G., et al. Fibroblast growth factor-2 induces translational regulation of Bcl-XL and Bcl-2 via a MEK-dependent pathway: correlation with resistance to etoposide-induced apoptosis. J Biol Chem, 277: 12040-12046, 2002. 32. Jost, M., Huggett, T. M., Kari, C., Boise, L. H., and Rodeck, U. Epidermal Growth Factor Receptor-dependent Control of Keratinocyte Survival and Bcl-xL Expression through a MEK-dependent Pathway. J. Biol. Chem., 276: 6320-6326, 2001. 33. Furusu, A., Nakayama, K., Xu, Q., Konta, T., and Kitamura, M. MAP kinase-dependent, NF-kappaB-independent regulation of inhibitor of apoptosis protein genes by TNF-alpha. J Cell Physiol, 210: 703-710, 2007. 34. Gao, R. and Brigstock, D. R. Connective Tissue Growth Factor (CCN2) Induces Adhesion of Rat Activated Hepatic Stellate Cells by Binding of Its C-terminal Domain to Integrin {alpha}v{beta}3 and Heparan Sulfate Proteoglycan. J. Biol. Chem., 279: 8848-8855, 2004. 35. Gurish, M. F. and Boyce, J. A. Mast cell growth, differentiation, and death. Clin Rev Allergy Immunol, 22: 107-118, 2002. 36. Xie, D., Yin, D., Wang, H. J., et al. Levels of expression of CYR61 and CTGF are prognostic for tumor progression and survival of individuals with gliomas. Clin Cancer Res, 10: 2072-2081, 2004. 37. Koliopanos, A., Friess, H., di Mola, F. F., et al. Connective tissue growth factor gene expression alters tumor progression in esophageal cancer. World J Surg, 26: 420-427, 2002. 38. Croci, S., Landuzzi, L., Astolfi, A., et al. Inhibition of connective tissue growth factor (CTGF/CCN2) expression decreases the survival and myogenic differentiation of human rhabdomyosarcoma cells. Cancer Res, 64: 1730-1736, 2004. 39. Kumar, R., Mandal, M., Lipton, A., Harvey, H., and Thompson, C. B. Overexpression of HER2 modulates bcl-2, bcl-XL, and tamoxifen-induced apoptosis in human MCF-7 breast cancer cells. Clin Cancer Res, 2: 1215-1219, 1996. 40. Deveraux, Q. L. and Reed, J. C. IAP family proteins--suppressors of apoptosis. Genes Dev, 13: 239-252, 1999. 41. Douglas-Jones, A. G., Collett, N., Morgan, J. M., and Jasani, B. Comparison of core oestrogen receptor (ER) assay with excised tumour: intratumoral distribution of ER in breast carcinoma. J Clin Pathol, 54: 951-955, 2001. 42. Mauri, D., Pavlidis, N., and Ioannidis, J. P. A. Neoadjuvant Versus Adjuvant Systemic Treatment in Breast Cancer: A Meta-Analysis. J. Natl. Cancer Inst., 97: 188-194, 2005. 43. Dornhofer, N., Spong, S., Bennewith, K., et al. Connective tissue growth factor-specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis. Cancer Res, 66: 5816-5827, 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45036 | - |
| dc.description.abstract | 乳癌對於全世界是主要的健康威脅,它不論是在已開發或是開發中國家都是婦女癌症的第一位,佔全部婦女癌症的百分之十六。乳癌手術後接受適當的全身性治療,如輔助性化學治療,在降低乳癌死亡率具有非常重要的地位。然而仍有一部份的病人在接受化學治療後,產生轉移性的病灶,只對於傳統化學治療產生暫時性的反應,最終造成死亡。所以了解產生抗藥性的機轉,終將幫助我們治療這些病患並增進其預後。結締組織生長因子(CTGF)在晚期的乳癌有較高的表現,也
會促進乳癌細胞的轉移。在本研究我們探討CTGF是否會影響乳癌細胞對於化學治療的敏感度。在接受術前化學治療的乳癌病人中,我們使用免疫組織化學染色,發現在高表現的病人族群中,化學治療的反應較差。在細胞實驗中,我們使用CTGF plasmid將其過度表現於MCF7細胞株 (MCF7/CTGF),及使用antisense CTGF抑制MDA231細胞株之CTGF表現。MCF7/CTGF接受化學藥物doxorubicin及paclitaxel後,癌細胞之形成聚落(clonogenic)及存活能力都上升;CTGF表現受到阻斷時(MDA231/AS)則導致相反之結果。在MCF7/CTGF中,我們發現Bcl-xL和cIAP1的表現增加,相對的MDA231/AS則是下降。在MCF7/CTGF中使用siRNA抑制Bcl-xL或cIAP1會阻斷CTGF表現所產生的抗藥性,而使用plasmid轉殖使MDA231/AS中Bcl-xL或cIAP1恢復表現,可使因CTGF表現下降而喪失的抗藥性恢復。在CTGF四個區域(domain)中,我們發現CT domain和CTGF對於活化ERK1/2,增加Bcl-xl和cIAP1的表現及增加MCF7抗藥性的能力,具有相似的生物性質。在臨床標本中,我們可以發現Bcl-xL表現和CTGF的表現有正相關。本研究證明CTGF對於乳癌細胞之抗藥性之重要性,也找出其中調控Bcl-xL/cIAP1之機制。同時也指出CT domain可能是CTGF產生抗藥性的主要功能部分。藉此研究我們發現了一個可以影響乳癌細胞對於藥物敏感性的因子,對於乳癌治療找到ㄧ個可能的標的,作為將來增進乳癌治療成效的研究方向。 | zh_TW |
| dc.description.abstract | Breast cancer is a major health threat world wide. It is the top cancer in women both in the developed and the developing world, comprising 16% of all female cancers. Optimal systemic treatment (adjuvant therapy) after breast cancer surgery is a crucial factor in reducing mortality in women with breast cancer, however a significant number of them still develop metastatic diseases and respond only transiently to conventional treatments leading to eventual mortality. So understanding the mechanism of drug resistance would help us to manage these patients and improved
their prognosis. Connective tissue growth factor (CTGF) expression is elevated in advanced breast cancer and promotes breast cancer metastasis. In the present study, we examined whether CTGF expression could confer drug resistance in human breast cancer. In breast cancer patients who received neoadjuvant chemotherapy, CTGF expression inversely correlated with chemotherapy response. Overexpression of CTGF in MCF7 cells (MCF7/CTGF) enhanced clonogenic ability, cell viability and resistance to apoptosis upon exposure to doxorubicin and paclitaxel. Reducing the CTGF level in MDA-MB-231 (MDA231) cells by antisense CTGF cDNA (MDA231/AS cells) decreased these effects. CTGF overexpression resulted in resistance to doxorubicin- and paclitaxel-induced apoptosis by up-regulation of Bcl-xL and cIAP1. Furthermore, CTGF overexpression resulted in activation of the ERK1/2 pathway. Inhibition of ERK1/2 effectively reversed the resistance to apoptosis as well as the up-regulation of Bcl-xL and cIAP1 in MCF7/CTGF cells. We also found that a C-terminal domain peptide from CTGF could exert similar activities to full-length CTGF in activation of ERK1/2, up-regulation of Bcl-xL/cIAP1 and resistance to apoptosis. We conclude that CTGF expression could confer resistance to chemotherapeutic agents through ERK1/2-mediated Bcl-xL/cIAP1 up-regulation of a survival pathway. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:02:08Z (GMT). No. of bitstreams: 1 ntu-99-D93447003-1.pdf: 3987258 bytes, checksum: 880c7abdeb4cf959da9ef358bf90f71c (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Abstract in Chinese................. 5
Abstract in English................. 7 1. Introduction................... 9 2. Materials and Methods.............. 14 3. Results..................... 24 4. Discussion.................... 34 5. Acknowledgement.................. 38 6. References.................... 39 7. Figures and Figure Legends............ 43 | |
| dc.language.iso | en | |
| dc.subject | ERK1/2 | zh_TW |
| dc.subject | Integrin | zh_TW |
| dc.subject | 結締組織生長因子 | zh_TW |
| dc.subject | Bcl-xL | zh_TW |
| dc.subject | cIAP1 | zh_TW |
| dc.subject | 抗藥性 | zh_TW |
| dc.subject | 乳癌 | zh_TW |
| dc.subject | cIAP1 | en |
| dc.subject | Integrin | en |
| dc.subject | ERK1/2 | en |
| dc.subject | Breast cancer | en |
| dc.subject | Connective tissue growth factor | en |
| dc.subject | Bcl-xL | en |
| dc.subject | drug resistance | en |
| dc.title | 結締組織生長因子經由ERK1/2途徑促進Bcl-xl/cIAP1表現的機轉及其臨床應用 | zh_TW |
| dc.title | Connective Tissue Growth Factor Up-regulate Bcl-xL and cIAP1 via ERK1/2 pathway: Mechanism and Clinical implication | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張金堅(King-Jen Chang),林明燦(Ming-Tsan Lin),莊雙恩(Shuang-En Chuang),夏興國(Shine-Gwo Shiah) | |
| dc.subject.keyword | 結締組織生長因子,乳癌,ERK1/2,Integrin,抗藥性,Bcl-xL,cIAP1, | zh_TW |
| dc.subject.keyword | Connective tissue growth factor,Breast cancer,ERK1/2,Integrin,drug resistance,Bcl-xL,cIAP1, | en |
| dc.relation.page | 57 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-02-22 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
