請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45029完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳凱儀 | |
| dc.contributor.author | Chu-Yin Liu | en |
| dc.contributor.author | 劉竹茵 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:01:54Z | - |
| dc.date.available | 2011-03-11 | |
| dc.date.copyright | 2010-03-11 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-02-22 | |
| dc.identifier.citation | Agrama H., Eizenga G., Yan W. (2007) Association mapping of yield and its components in rice cultivars. Molecular Breeding 19:341-356.
Belo A., Zheng P., Luck S., Shen B., Meyer D., Li B., Tingey S., Rafalski A. (2008) Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Molecular Genetics and Genomics 279:1-10. Berloo R.v., Zhu A., Ursem R., Verbakel H., Gort G., van Eeuwijk F. (2008) Diversity and linkage disequilibrium analysis within a selected set of cultivated tomatoes. Theoretical and Applied Genetics 117:89-101. Bernacchi D., Tanksley S. (1997) An interspecific backcross of Lycopersicon esculentum x L. hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 147:861-877. Bradbury P., Zhang Z., Kroon D., Casstevens T., Ramdoss Y., Buckler E. (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633-2635. Chen K.Y., Tanksley S.D. (2004) High-resolution mapping and functional analysis of se2.1: a major stigma exsertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus Lycopersicon. Genetics 168:1563-1573. Chen K.Y., Cong B., Wing R., Vrebalov J., Tanksley S.D. (2007) Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science 318:643-645. Cockram J., White J., Leigh F., Lea V., Chiapparino E., Laurie D., Mackay I., Powell W., O'Sullivan D. (2008) Association mapping of partitioning loci in barley. BMC Genetics 9:16. Eshed Y., Zamir D. (1994) A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica 79:175-179. Eshed Y., Zamir D. (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147-1162. Evanno G., Regnaut S., Goudet J. (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14:2611-2620. Farnir F., Coppieters W., Arranz J., Berzi P., Cambisano N., Grisart B., Karim L., Marcq F., Moreau L., Mni M. (2000) Extensive genome-wide linkage disequilibrium in cattle. Genome Research 10:220-227. Flint-Garcia S.A., Thornsberry J.M., Buckler E.S.t. (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357-374. Fulton T., Chunwongse J., Tanksley S. (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Molecular Biology Reporter 13:207-209. Fulton T., Beck-Bunn T., Emmatty D., Eshed Y., Lopez J., Petiard V., Uhlig J., Zamir D., Tanksley S. (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theoretical and Applied Genetics 95:881-894. Gorguet B., Eggink P., Ocana J., Tiwari A., Schipper D., Finkers R., Visser R., van Heusden A. (2008) Mapping and characterization of novel parthenocarpy QTLs in tomato. Theoretical and Applied Genetics 116:755-767. Gur A., Zamir D. (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biology 2:1610-1615. Levin I., Cahaner A., Rabinowitch H., Elkind Y. (1994) Effects of the ms10 gene, polygenes and their interaction on pistil and anther-cone lengths in tomato flowers. Heredity 73:72-77. Maas L., McClung A., McCouch S. (2009) Dissection of a QTL reveals an adaptive, interacting gene complex associated with transgressive variation for flowering time in rice. Theoretical and Applied Genetics 120:895-908. Nicolas R., Stephane M., Sylvain S., Mathilde C. (2008) A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae). BMC Plant Biology 8:130. Palaisa K., Morgante M., Williams M., Rafalski A. (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. The Plant Cell Online 15:1795-1806. Pritchard J.K., Stephens M., Rosenberg N.A., Donnelly P. (2000) Association mapping in structured populations. Am J Hum Genet 67:170-181. Rick C., Fobes J. (1975) Allozyme variation in the cultivated tomato and closely related species. Bulletin of the Torrey Botanical Club 102:376-384. Rick C., Fobes J., Holle M. (1977) Genetic variation in Lycopersicon pimpinellifolium: Evidence of evolutionary change in mating systems. Plant Systematics and Evolution 127:139-170. Rick C., Holle M., Thorp R. (1978) Rates of cross-pollination in Lycopersicon pimpinellifolium: Impact of genetic variation in floral characters. Plant Systematics and Evolution 129:31-44. Rick C., Fobes J., Tanksley S. (1979) Evolution of mating systems in Lycopersicon hirsutum as deduced from genetic variation in electrophoretic and morphological characters. Plant Systematics and Evolution 132:279-298. Scott J., George W. (1980) Breeding and combining ability of heterostylous genotypes for hybrid seed production in Lycopersicon esculentum Mill. Euphytica 29:135-144. Sneller C.H., Mather D.E., Crepieux S. (2009) Analytical Approaches and Population Types for Finding and Utilizing QTL in Complex Plant Populations. Crop Science 49:363-380. Spielman R., McGinnis R., Ewens W. (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). American Journal of Human Genetics 52:506-516. Szalma S., Hostert B., LeDeaux J., Stuber C., Holland J. (2007) QTL mapping with near-isogenic lines in maize. Theoretical and Applied Genetics 114:1211-1228. Tanksley S. (1993) Mapping polygenes. Annual Review of Genetics 27:205-233. Thornsberry J., Goodman M., Doebley J., Kresovich S., Nielsen D., Buckler E. (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics 28:286-289. Tommasini L., Schnurbusch T., Fossati D., Mascher F., Keller B. (2007) Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theoretical and Applied Genetics 115:697-708. Waugh R., Jannink J., Muehlbauer G., Ramsay L. (2009) The emergence of whole genome association scans in barley. Current Opinion in Plant Biology 12:218-222. Weir B. (1996) Genetic data analysis II. Sinauer. Sunderland, MA. Yu J., Buckler E. (2006) Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology 17:155-160. Zhu C., Yu J. (2009) Nonmetric Multidimensional Scaling Corrects for Population Structure in Association Mapping with Different Sample Types. Genetics 182:875-888. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45029 | - |
| dc.description.abstract | 柱頭突出程度是決定番茄交配行為的重要因子, se2.1 是位在番茄第二對染色體上控制柱頭突出的數量性狀基因座,其中包含數個與柱頭突出相關的基因,分別控制花柱長度、雄蕊長度及雄蕊管柱的開裂。為了解柱頭凸出的遺傳基礎,本研究使用關聯式遺傳定位法及替換式遺傳定位法針對 se2.1 進行高解析度遺傳定位分析。在關聯式遺傳定位法中使用100個 Solanum lycopersicum var. cerasiforme 選系與99個 S. pimpinellifolium 選系組成的族群進行分析。族群結構分析利用63個分散在基因體中的CAPS標記,藉由貝式統計方法將定位族群分群,用來校正因為族群結構可能產生的偽相關。利用29個CAPS標記觀察兩個物種中連鎖失衡的範圍,由於 S. lycopersicum var. cerasiforme 內有高度連鎖失衡,不適合進行高解析度遺傳定位,因此僅使用 S. pimpinellifolium 族群進行關聯式分析。在關聯式遺傳定位分析中將S. pimpinellifolium 族群分為兩個次族群進行校正,結果顯示在 Style2.1 影響花柱長度的主要遺傳變異有兩個,包括基因轉譯的起始位置及距離起始位置上游4kb外啟動子上450bp 核酸片段缺失處附近。此外,在 Stamen2.2 及 Stamen2.3 所在的染色體區間內,分子標記TAP109顯示與雄蕊長度的變異有統計上顯著的相關。在替換式遺傳定位法中則使用7個在se2.1內不同位置發生重組的滲入系,將外表型結果與親本比較,鑑別出候選基因 Stamen2.1 ,並發現可能存在新的控制雄蕊長度基因 Stamen2.4 。 | zh_TW |
| dc.description.abstract | The degree of stigma exserted above the stamen is a key determinant of mating behavior in tomato. Se2.1 was previously identified as a quantitative trait locus controlling stigma exsertion and is a gene complex affecting style length, stamen length, and anther dehiscence. In the current study, genetic components of se2.1 were further investigated using association mapping and substitution mapping.
For association mapping, one hundred Solanum lycopersicum var.cerasiforme accessions and ninety nine S. pimpinellifolium accessions from TGRC were used. Sixty three randomly chosen CAPS markers from the whole tomato genome were used to estimate population structure and defined two sub-populations for the S. pimpinellifolium accessions analyzed. Twenty nine CAPS markers within a 214.78kb genomic contig which contains Style2.1, Stamen2.2, and Stamen2.3 were genotyped to estimate the range of linkage decay in S. lycopersicum var cerasiforme and S. pimpinellifolium populations, respectively. Only the S. pimpinellifolium population showed very short linkage decay and was suitable for high-resolution genetic mapping. The result of association mapping delineated the genetic variations of Style2.1 attributed to phenotypic variations of style length at two sites: one close to the start codon and the other close to the 450bp indel located at 4kb upstream of the start codon. In addition, a statistically significant association between marker TAP109 and stamen length was detected within the genomic region containing Stamen2.2 and Stamen2.3. For substitution mapping, nearly isogenic lines delimiting genes responsible for stamen length in the previous study were evaluated again. In additional to Stamen2.1, existence of additional gene controlling stamen length was suggested. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:01:54Z (GMT). No. of bitstreams: 1 ntu-99-R96621120-1.pdf: 1605158 bytes, checksum: 60ef01df28246bc8425fa809d5bfcb59 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract iv 目錄 v 圖目錄 vi 表目錄 vii 縮 寫 字 對 照 viii 第一章 總論 1 第二章 關聯式遺傳定位 5 前言 5 材料及方法 7 1 植物材料 7 2 外表型評估 7 3 番茄葉片DNA萃取 7 4 分子標記基因型分析 12 5 資料分析 13 結果與討論 20 1 族群結構 20 2 連鎖失衡範圍 21 3 標記與性狀關聯性 22 第三章 替換式遺傳定位 31 前言 31 材料及方法 33 1 植物材料 33 2 資料分析 33 結果與討論 36 第四章 總結 40 第五章 參考文獻 41 附錄 44 | |
| dc.language.iso | zh-TW | |
| dc.subject | 雄蕊 | zh_TW |
| dc.subject | 關聯式遺傳定位法 | zh_TW |
| dc.subject | 替換式遺傳定位法 | zh_TW |
| dc.subject | 番茄 | zh_TW |
| dc.subject | substitution mapping | en |
| dc.subject | association mapping | en |
| dc.subject | tomato | en |
| dc.subject | stamen | en |
| dc.title | 以替換式遺傳定位法與關聯式遺傳定位法分析位於se2.1數量性狀基因座附近控制番茄雄蕊長度的遺傳因子 | zh_TW |
| dc.title | Dissection of genetic factors controlling tomato stamen length around se2.1 QTL using substitution mapping and association mapping | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 于宏燦,胡凱康,王仕賢 | |
| dc.subject.keyword | 關聯式遺傳定位法,替換式遺傳定位法,雄蕊,番茄, | zh_TW |
| dc.subject.keyword | association mapping,substitution mapping,stamen,tomato, | en |
| dc.relation.page | 49 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-02-22 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
