Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45013
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏瑞泓(YEN JUI-HUNG)
dc.contributor.authorPo-Yuan Panen
dc.contributor.author潘泊原zh_TW
dc.date.accessioned2021-06-15T04:01:20Z-
dc.date.available2010-03-10
dc.date.copyright2010-03-10
dc.date.issued2010
dc.date.submitted2010-02-22
dc.identifier.citation尹耀邦。2001年。奈米時代 實現與夢想。中國輕工業出版社。北京。
林永鴻,陳仁炫。2006年。第17卷第2期。高雄區農業改良場研究彙報,p. 19-33。
高景輝。2005年。植物生理分析技術。五南圖書出版公司。台北。
郭清癸,黃俊傑,牟中原。2001年。第二十三卷第六期。物理雙月刊,p. 614-624。
教育部高工進修奈米課程。2002。第七章 奈米材料科技。
黃建豪。2007年。脈衝直流濺鍍法製作摻雜氮之二氧化鈦。國立中央大學光電科學研究所碩士論文。
黃瀚慶。2006年。鄰苯二甲酸丁酯苯甲酯對空心菜與萵苣生理及蛋白質體之影響。國立臺灣大學農業化學研究所碩士論文。
詹逸民。2008年。工業材料雜誌第259期
鄧宗禹。2002年。第九卷第一期。毫微米通訊,p. 32-41。
鄧宗禹、蔡明蒔。2005年。No.62。半導體科技期刊。
環保署。2005。水樣急毒性檢測方法-水蚤靜水式法。
Adams, L. K., D. Y. Lyon, and P. J.J. Alvarez. 2006. Comparative eco-effect of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527-3532.
Aruoja, V., H.-C. Dubourguier, K. Kasemets, and A. Kahru. 2009. Effect of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461-1468.
Blinova, I., A. Ivask, M. Heinlaan, M. Mortimer, and A. Kahru.2010. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158:41-47.
Bohn, H. L., L. M. Brain, and A. O. George. 1994. Soil Chemistry. Wiley. New York.
Brayner, R., R. Ferrari-lliou, N. Brivois, S. Djediat, M. F. Benedetti, and F. Fiévet.2006. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866-870.
Chang, H., C.S. Jwo, C.H. Lo, T.T. Tsung, M.J. Kao, and H. M. Lin.2005. Rheology of CuO nanoparticle suspension prepared by ASNSS. Rev Adv Mater Sci 10: 128–132.
Hagfeldt, A., and M. Gratzel.1995. Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68.
Heinlaan, M., A. Ivask, I. Blinova, H.C. Dubourguier, and A. Kahru.2008. Effect of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308-1316.
Jiang, W., H. Mashayekhi, and B. Xing. 2009. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut 157:1619-1625.
Kasemets, K., A. Ivask, H.C. Dubourguier, and A. Kahru.2009. Effect of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23:1116-1122.
Liao, C. M., Y. H. Chiang, C. P. Chio.2009. Assessing the airborne titanium dioxide nanoparticle-related exposure hazard at workplace. J Hazard Mater 162:57-65.
Lin D., and B. Xing.2007. Phytoeffect of nanoparticles: Inhibition of seed germination and root growth. Environ Pollut 150:243-250.
Lee, C., J. Y. Kim, W.I. Lee, K. L. Nelson, J. Yoon, and D. L. Sedlak. 2008. Bactericidal Effect of Zero-Valent Iron Nanoparticles on Escherichia coli. Environ Sci 42:4927-4933.
Meng, H., Z. Chen, G. Xing, H. Yuan, C. Chen, F. Zhao, C. Zhang, and Y. Zhao.2007. Ultrahigh reactivity provokes nanoeffect: Explanation of oral effect of nano-copper particles. Toxicol Lett 175:102-110.
Muyzer, G., E. C. Dewall, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chaon reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:659-700.
Peppas, L. B. and J. O. Blanchette. 2004. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56:1649-1659.
Popov, A.P., A.V. Priezzhev, J. Lademann, and R. Myllylä. 2005. TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens, J Phys D Appl Phys 38:2564–2570.
Radix, P., M. Léonard, C. Papantoniou, G. Roman, E. Saouter, S. G. Schmitt, H. Thiébaud, and P. Vasseur. 2000. Comparison of four chronic toxicity tests using algae, bacteria, and invertebrates assessed with sixteen chemicals. Ecotoxicol Environ Saf 47:186-194.
Reeves, J. F., S. J. Davies, N. J.F. Dodd, and A. N. Jha. 2008. Hydroxyl radicals (˙OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells, Mutat Res 640:113-122.
Tubbing, D.M.J., W. Admiraal, R.F.M.J. Cleven, M. Iqbal, D. Van de Meent, and W. Verweij.1994. The contribution of complexed copper to the metabolic inhibition of algae and bacteria in synthetic media and river water, Water Res 28:37–44.
Sydlik, U, A. Weissenberg, H. Peuschel, J. Krutmann, and K. Unfried.2009. The compatible solute ectoine protects against nanoparticle-induced neutrophilic lung inflammation, Toxicol Lett 189:188.
Wang, H., R. L. Wick, and B. Xing.2009. Effect of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157:1171-1177.
Wiench, K., W. Wohlleben, V. Hisgen, K. Radke, E. Salinas, S. Zok, and R. Landsiedel. 2009. Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere 76:1356-1365.
Yang, L., and D. J. Watts. 2005. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxocol Lett 158:122-132.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45013-
dc.description.abstract本研究探討三種奈米級及微米級氧化材料TiO2, SiO2和Al2O3對本土水蚤 (Daphnia pulex) 、大腸桿菌 (E. coli) 和葉菜類小白菜 (Chinese cabbage) 和空心菜 (Water spinach) 的毒性,並結合核酸萃取、聚合酶鏈鎖反應 (Polymerase chain reaction, PCR) 及變性凝膠梯度電泳 (Denaturing gradient gel electrophoresis, DGGE) 等分子生物技術來探討三種奈米級材料對土壤中細菌族群結構之影響。結果發現TiO2, SiO2和Al2O3三種材料中,以Al2O3對水蚤的毒性最大,TiO2次之。奈米級和微米級粒子懸浮液對大腸桿菌的生長影響試驗中,Al2O3的毒性最大,TiO2次之,SiO2最小,奈米材料抑制程度大於微米材料。抑制情況主要發生於加入懸浮液處理的初期,時間經過越久,生長曲線有趨近於對照組之跡象。藉由電子顯微鏡的觀察,發現奈米粒子會聚集於大腸桿菌細胞周圍,但仍無法斷定是否侵入細胞體。奈米TiO2, SiO2和Al2O3懸浮液葉面施灑試驗中,發現對小白菜葉綠體合成有明顯抑制,並且產生植物逆境指標脯胺酸 (Proline) ,而在以上兩項指標中,空心菜對處理都顯示出比小白菜更高的耐受度。氧化逆境指標丙二醛 (Malondialdehyde, MDA) 的檢測結果在所有葉面施灑處理樣品中都無顯著差異。以奈米懸浮液對採集自桃園區農業改良場之坡堵系土壤 (簡稱Pu土壤) 及花蓮區農業改良場之五里林系土壤 (簡稱Wl土壤) 做菌相變化分析的試驗中,於土中添加濃度為10000和1000 mg L-1的奈米粒子懸並觀察菌相變化的試驗發現菌相變化大致在處理初期受到較嚴重影響,然而距離處理時間越長,菌相開始恢復並趨於平衡,顯示奈米懸浮液對土壤菌相的影響並不具持久性。zh_TW
dc.description.abstractThe effect of three nano- and micro-size materials including TiO2, SiO2 and Al2O3 on water flea, Escherichia coli, chinese cabbage, water spinach and the effect on soil bacterial community structure were studied here.
Among the three materials, Al2O3 showed the highest toxicity toward water fleas . The rank of the toxicity of the three materials was Al2O3>TiO2>SiO2 for E.coli growth, nano particles showed higher toxicity than micro particles. The inhibition was obvious right after the amendment.,but would recover fastly with time. Nanoparticle gather around the surface of cells with the inspection of TEM, but whether or not the particle had enter into the cell could not be determined. In the test spraying Nano-TiO2, SiO2 and Al2O3 suspension onto the plant leaves, significant inhibition of chlorophyll on chinese cabbage was discovered, but only slight inhibition was observed on water spinach. Proline was produced more in chinese cabbage than that in water spinach after the treatment. Both no significant difference were shown on the production of MDA. It was concluded that water spinach showed more tolerance than chinese cabbage from the above indexes. Soil samples which collected from Taoyuan District Agricultural Research and Extension Center (Pu) and Hualien District Agricultural Research and Extension Center (Wl) were used in the nanoparticle (with concentrations 10000 and 1000 mg L-1) suspension incubation test. The bacterial community structure in the first 24h in most of the soil samples are quit different, but the effect wouldn’t continue for a long time.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:01:20Z (GMT). No. of bitstreams: 1
ntu-99-R96623019-1.pdf: 2042742 bytes, checksum: 8ae98f8d431750a8685572ceb1d88c5b (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents1 前言 1
1.1 奈米技術簡介 1
1.2 奈米材料種類 2
1.3 奈米材料的特性 2
1.4 奈米氧化金屬 9
1.5 奈米材料的風險 9
1.6 研究目的 11
1.7 試驗材料選擇 12
2 材料與方法 15
2.1 奈米粒子基本性質分析 15
2.2 奈米粒子對水蚤 (Daphnia pulex) 的急毒性試驗 16
2.3 奈米粒子對大腸桿菌生長曲線的影響 19
2.4 奈米與微米粒子懸浮液對小白菜與空心菜根部生長影響測試 20
2.5 以奈米與微米粒子懸浮液小白菜與空心菜葉面施灑影響試驗 20
2.6 奈米粒子懸浮液對土壤細菌族群影響之分析 23
3 結果與討論 40
3.1 奈米粒子基本性質分析 40
3.2 奈米粒子對水蚤 (Daphnia pulex) 的急毒性試驗 43
3.3 奈米懸浮液之離心上清液對水蚤存活率的影響 43
3.4 奈米和微米懸浮液對大腸桿菌生長曲線影響 50
3.5 奈米與微米粒子懸浮液對小白菜與空心菜根部生長影響 59
3.6 以奈米與微米粒子懸浮液小白菜與空心菜葉面施灑影響 59
3.7 奈米粒子懸浮液對土壤細菌族群影響之分析 70
4 結論 86
5 參考文獻 87
dc.language.isozh-TW
dc.title奈米和微米級TiO2, SiO2和Al2O3對本土水蚤、大腸桿菌、小白菜和空心菜的毒性及土壤菌相的影響zh_TW
dc.titleThe effect of nano and micro-TiO2, SiO2 and Al2O3 on water flea, E. coli, chinese cabbage and water spinach and soil bacterial communityen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王一雄(Yei-Shung Wang),劉秀美(Siou-Mei Liou),袁紹英(Shao-Ying Yuan),陳佩貞(Pei-Jen Chen)
dc.subject.keyword奈米,二氧化鈦,二氧化矽,三氧化二,鋁變性梯度凝膠電泳,水蚤,大腸桿菌,zh_TW
dc.subject.keywordNano,TiO2,,SiO2,Al2O3,DGGE,Daphnia pulex,E. coli,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2010-02-22
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
1.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved