請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45001完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 章良渭(Liang-Wey Chang) | |
| dc.contributor.author | Fang-Chun Liu | en |
| dc.contributor.author | 劉芳君 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:00:55Z | - |
| dc.date.available | 2013-03-10 | |
| dc.date.copyright | 2010-03-10 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-02-23 | |
| dc.identifier.citation | 1.Abel MF, Juhl GA, Vaughan CL, Damiano DL. Gait assessment of fixed ankle-foot orthoses in children with spastic diplegia. Arch Phys Med Rehabil 79 (1998) 126-33.
2.Burler P, Engelbrechr M, Major RE, Tait JH, Srallard J, Patrick JH. Physiological cost index of walking for normal children and its use as an indicator of physical handicap. Developmental Medicine and Child Neurology 26 (1984) 607-612. 3.Buckon CE, Thomas SS, Huston SJ, Moor M, Sussman M, Aiona M. Comparison of three ankle-foot orthosis configurations for children with spastic hemiplegia. Developmental Medicine and Child Neurology 43 (2001) 371-378. 4.Crenna P. Spasticity and ‘spastic’ gait in children with cerebral palsy. Neuroscience and Biobehavioral Reviews 22; 4 (1998) 571-578. 5.Chambers HG. Treatment of functional limitations at the knee in ambulatory children with cerebral palsy. European Journal of Neurology 8; Suppl. 5 (2001) 59-74. 6.Chou PC, Chen YY, Lin YH, Lien HY, Hwang WB, Liu WY. Lower extremity musculoskeletal measures in children: reliabilities and relations to balance function. FJPT 32 (2007) 217-225. 7.Freeman D, Orendurff M, Moor M. Case Study: Improving knee extension with floor-reaction ankle-foot orthoses in a patient with myelomeningocele and 20° knee flexion contractures. Journal of Prosthetics and Orthotics 11; num3 (1999) 63-71. 8.Fatone S, Hansen AH. Effect of ankle-foot orthosis on roll-over shape in adults with hemiplegia. Journal of Rehabilitation Research and Development 44; 1 (2007) 11-20. 9.Gard SA, Miff SC, Kuo AD. Comparison of kinematic and kinetic methods for computing the vertical motion of the body center of mass during walking. Human Movement Science 22 (2004) 597-610. 10.Hansen AH, Childress DS, Knox EH. Roll-over shapes of human locomotor systems: effects of walking speed. Clinical Biomechanics 19 (2004) 4007-414. 11.Keefer DJ, Tseh W, Caputo JL, Apperson K, McGreal S, Morgan DW. Comparison of direct and indirect measures of walking energy expenditure in children with hemiplegic cerebral palsy. Developmental Medicine and Child Neurology 46 (2004) 320-324. 12.Lin CJ, Guo LY, Su FC, Chou YL, Cherng RJ. Common abnormal kinetic patterns of the knee in gait in spastic diplegia of cerebral palsy. Gait & Posture 11 (2000) 224-232. 13.Lamontagne A, Malouin F, Richards CL. Locomotor-specific measure of spasticity of plantarflexor muscles after stroke. Arch Phys Med Rehabil 82 (2001) 1696-704. 14.Lam WK, Leong JCY, Li YH, Hu Y, Lu WW. Biomechanical and electromyography evaluation of ankle foot orthosis and dynamic ankle foot orthosis in spastic cerebral palsy. Gait and Posture 22 (2005) 189-197. 15.Lucareli PRG, Lima M de O, Lucarelli JG de A, Lima FPS. Changes in joint kinematics in children with cerebral palsy while walking with and without a floor reaction ankle–foot orthosis. Clinics 62; 1 (2007) 63-68. 16.Maltais D, Bar-Or O, Galea V, Pierrynowski M. Use of orthoses lowers the O2 cost of walking in children with spastic cerebral palsy. Medicine and Science in Sports and Exercise 33 (2001) 320-325. 17.Norman JF, Bossman S, Gardner P, Moen C. Comparison of the energy expenditure index and oxygen consumption index during self-paced walking in children with spastic diplegia cerebral palsy and children without physical disabilities. Pediatric Physical Therapy 16 (2004) 206-211. 18.Orendurff MS, Segal AD, Klute GK, Berge JS, Rohr ES, Kadel NJ. The effect of walking speed on center of mass displacement. Journal of Rehabilitation Research and Development 41; num 6A (2004) 829-834. 19.Rose J, Gamble JG, Medeiros J, Burgos A, Haskell WL. Energy cost of walking in normal children and in those with cerebral palsy: comparison of heart rate and oxygen uptake. Journal of Pediatric Orthopaedics 9 (1989) 276-279. 20.Radtka SA, Skinner SR, Dixon DM, Johanson ME. A comparison of gait with solid, dynamic, and no ankle-foot orthoses in children with spastic cerebral palsy. Phys Ther 77 (1997) 395-409. 21.Rethlefsen S, Kay R, Dennis S, Forstein M, Tolo V. The effects of fixed and articulated ankle-foot orthoses on gait patterns in subjects with cerebral palsy. Journal of Pediatric Orthopaedics 19; 4 (1999) 470-474. 22.Rodda J, Graham HK. Classification of gait patterns in spastic hemiplegia and spastic diplegia: a basis for a management algorithm. European Journal of Neurology 8; Suppl. 5 (2001) 98-108. 23.Romkes J, Brunner R. Comparison of a dynamic and a hinged ankle–foot orthosis by gait analysis in patients with hemiplegic cerebral palsy. Gait and Posture 15 (2002) 18-24. 24.Radtka SA, Skinner SR, Johanson ME. A comparison of gait with solid and hinged ankle-foot orthoses in children with spastic diplegic cerebral palsy. Gait and Posture 21 (2005) 303-310. 25.Romkes J, Hell AK, Brunner R. Changes in muscle activity in children with hemiplegic cerebral palsy while walking with and without ankle–foot orthoses. Gait & Posture 24 (2006) 467-474. 26.Raja K, Joseph B, Benjamin S, Minocha V, Rana B. Physiological cost index in cerebral palsy: Its role in evaluating the efficiency of ambulation. Journal of pediatric orthopedics 27 (2007) 130-136. 27.Sutherland DH, Davids JR. Common gait abnormalities of the knee in cerebral palsy. Clinical Orthopaedics and Related Research 288 (1993) 139-147. 28.Sutherland DH, Kaufman KR, Wyatt MP, Chambers HG, Mubarak SJ. Double-blind study of botulinum A toxin injections into the gastrocnemius muscle in patients with cerebral palsy. Gait and Posture 10 (1999) 1-9. 29.Smith PA, Hassani S, Graf A, Flanagan A, Reiners K, Kou KN, Roh JY, Harris GF. Brace evaluation in children with diplegic cerebral palsy with a jump knee gait pattern. The Journal of Bone and Joint Surgery 91 (2009) 356-365. 30.Thomson JD, Ounpuu S, Davis RB, DeLuca PA. The effects of ankle-foot orthoses on the ankle and knee in persons with myelomeningocele: an evaluation using three-dimensional gait analysis. Journal of Pediatric Orthopaedics 19; 1 (1999) 27-33. 31.Winter DA, Scott SH. Technique for interpretation of electromyography for concentric and eccentric contractions in gait. Journal of Electromyography and Kinesiology 1; 4 (1991) 263-269. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45001 | - |
| dc.description.abstract | 背景與目的:腦性麻痺患者有很多不同的病理步態,常常使用各種不同的功能性「踝足部矯具」(Ankle-Foot Orthosis, AFO) 做為步態訓練及功能維持的工具,目前已有許多研究指出這類矯具對於改善步態功能方面有很大的幫助。一般來說,膝屈曲腦性麻痺患者會得到醫師處方以客製化固定式踝關節踝足部矯具(solid AFO, SAFO)或活動式踝關節踝足部矯具(articulated AFO, HAFO)。而腦性麻痺患者通常會伴隨著肌肉痙攣性,但是過去並沒有去探討這兩種踝足部矯具對肌肉痙攣性的影響,因此,本研究將針對膝屈曲腦性麻痺患者穿戴這兩種踝足部矯具對步態以及痙攣性特徵的情形。
方法:本研究招募九位膝屈曲腦性麻痺患者,在下列三種情況下來回行走進行步態分析:(1) 只穿著運動鞋,(2) 雙腳穿著SAFO加運動鞋,(3) 雙腳穿著HAFO加運動鞋。步態分析各項資料及參數藉由OPTOTRAK動作分析系統以及AMTI力板取得,肌肉活動藉由Biomonitor ME6000系統取得,並利用WristOxTM 3100量取走路時的心跳數。 結果:本研究結果顯示,(1) SAFO符合研究假說所提出的改善步態表現之行走速度、步長、比HAFO減少更多的踝、膝、髖關節之角度、減少膝伸肌力矩及減少能量損耗;(2) HAFO 提供更適合的踝足部滾動形狀的弧半徑及提供在質量中心內外側偏移量上更穩定的狀況;(3) 兩種踝足部矯具或許無法提供更好的痙攣性控制。 結論:對於膝屈曲腦性麻痺患者來說,結果是顯示SAFO比起HAFO可以在步態上提供更好的功能,而這些資訊也可以提供給臨床醫師、物理治療師、矯具師做參考,以及提供家長資訊以選擇最合適的矯具。 | zh_TW |
| dc.description.abstract | Objective: The aim of this study is to explore the effects of solid and articulated AFO on spasticity and gait dynamics for spastic diplegic cerebral palsy with knee flexion crouch gait.
Design: Experimental gait analysis, one-way repeated ANOVA analysis and non-parametric repeated measure analysis. Participants: Nine spastic diplegic cerebral palsy patients with knee flexion crouch gait (seven boys and two girls) anticipated in this study. And their Gross Motor Function Classification System is level 2. Setting: Rehabilitation Engineering Research Center in National Taiwan University with instrumented gait laboratory. Interventions: Three conditions: shoes only, shoes with the solid AFOs, and shoes with articulated AFOs. Results: 1.The SAFOs was found to be consistent of hypotheses, which improved the stride length, walking velocity, decreased batter than HAFOs in knee and hip angle, knee extensor moment, and reduce energy consumption. 2.The HAFOs provided more appropriate arc radius of ankle-foot roll-over shape and more stable in medio-lateral excursion of COM. 3.It seems that both of AFOs would not offer better control in spasticity. Conclusion: For spastic diplegic CP patients with knee flexion crouch gait, overall results showed that SAFOs would provide better functions than HAFOs. Furthermore, these results could provide useful information for orthotists, clinicians, physical therapists, and parents so that could choose the best opinion for their children. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:00:55Z (GMT). No. of bitstreams: 1 ntu-99-R96548003-1.pdf: 2424301 bytes, checksum: ef4e1f083f9e669b12dde7bffb5fd11e (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III Contents V Figure Contents VII Table Contents VIII Chapter 1. Introduction 1 1.1 Background 1 1.2 Research motivation 1 1.3 Literature Review 3 1.3.1 Gait pattern in CP 3 1.3.2 Treatments in CP 6 1.3.3 Orthotic interventions in CP 8 1.3.4 Roll-over shape 18 1.3.5 Stability 20 1.3.6 Muscle activity 22 1.3.7 Measurement of spasticity 24 1.3.8 Energy consumption 27 1.4 Objectives and Hypotheses 30 Chapter 2. Materials and Methods 32 2.1 Design and Subjects 32 2.2 Materials 32 2.3 Experiment schedule 35 2.4 Procedure 36 2.5 Measurement of spasticity 38 2.6 Data analysis 40 2.6.1 Temporal-distance data analysis 40 2.6.2 Kinematic data analysis 40 2.6.3 Kinetic data analysis 40 2.6.4 EMG measurement 41 2.6.5 Statistical analysis 41 Chapter 3. Results 42 3.1 Clinical Assessment 42 3.2 Gait performance 46 3.2.1 Temporal-distance parameters 46 3.2.2 Joint kinematics and kinetics 48 3.2.3 Ankle-foot roll-over shape 53 3.2.4 The relationship between energy consumption and COM excursion 56 3.3 EMG responses and lengthening velocity during stance phase 57 3.3.1 EMG responses and lengthening velocity with shoes 58 3.3.2 EMG responses and lengthening velocity with SAFOs 60 3.3.3 EMG responses and lengthening velocity phase with HAFOs 62 3.3.4 Comparing of spasticity index during stance phase with/without AFOs 64 Chapter 4. Discussion 65 4.1 Comparison of the solid and articulated AFOs 65 4.2 The effects of solid and articulated AFOs on spasticity 69 4.3 The knee flexion crouch gait with drop foot group 69 Chapter 5. Conclusion 70 References 71 | |
| dc.language.iso | en | |
| dc.subject | 步態分析 | zh_TW |
| dc.subject | 腦性麻痺 | zh_TW |
| dc.subject | 痙攣性 | zh_TW |
| dc.subject | 膝屈曲步態 | zh_TW |
| dc.subject | Gait analysis | en |
| dc.subject | Knee flexion crouch gait | en |
| dc.subject | Cerebral palsy | en |
| dc.subject | Spasticity | en |
| dc.title | 膝屈曲步行腦性麻痺病患穿著踝足部矯具之痙攣與步態特徵 | zh_TW |
| dc.title | Knee Flexion Crouch Gait and Spasticity Characteristics in Spastic Diplegic Cerebral Palsy Patients with Ankle-Foot Orthoses | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊士偉,王瑞瑤,謝正宜 | |
| dc.subject.keyword | 腦性麻痺,膝屈曲步態,步態分析,痙攣性, | zh_TW |
| dc.subject.keyword | Cerebral palsy,Knee flexion crouch gait,Gait analysis,Spasticity, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-02-23 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
